欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

用比例解应用题复习(人教版六年级教案设计)

时间:2023-09-04 08:12:58 其他范文 收藏本文 下载本文

下面是小编帮大家整理的用比例解应用题复习(人教版六年级教案设计),本文共15篇,希望对大家的学习与工作有所帮助。

用比例解应用题复习(人教版六年级教案设计)

篇1:用比例解应用题复习(人教版六年级教案设计)

教学目标

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。

3.复习用反比例方法解答应用题。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学过程设计

(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。

1.被除数一定,除数和商。

2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。

4.每块砖的面积一定,砖的块数和铺地面积。

5.挖一条水渠,参加的人数和所需要的时间。

6.从甲地到乙地所需的时间和所行走的速度。

7.单位面积一定,播种面积和总产量。

8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。

(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系:

8天--56台

31天--?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

请你在对应关系的旁边写上“正”字,决定用正比例方法做。

解 设到月底可生产x台。

x=217

答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系:

20页--600本

24页--?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)

请你在对应关系的旁边写上“反”字,决定用反比例方法做。

解 钉成24页一本的练习本,可钉x本。

24x=20×600

x=500

答:如果钉成24页一本的练习本可钉500本。

学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成:

解  设x天读完。

(6+4)x=6×30

10x=6×30

x=18

答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解  设如果每天多读4页,x天读完。

(6+4)x=6×30

10x=6×30

x=18

30-18=12(天)

答:提前12天读完。

(指导学生分析、比较。)

以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

练习(学生独立分析,做题。)

1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

解 设甲城到乙城有x千米。

3x=105×(3+1.2)

x=147

答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

解  设剩下的x天可以收割完。

90x=5×54

x=3

答:剩下的3天可以收割完。

(再用间接设的方法做两道题。)

1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

16×42=24x

42-x

2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=48×15

x-48

(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

板书设计

篇2:用比例知识解应用题教案设计

用比例知识解应用题教案设计

本资料为WORD文档,请点击下载地址下载全文下载地址 用比例知识解应用题

一、教学内容:

P113例5,练习二十三。

二、教学目标:

使学生进一步认识正反比例应用题的特点,理解并掌握解答正反比例应用题的解题思路和解题方法。

三、教学重点:

使学生学会正确的解答正反比例应用题。

四、教学难点:

进一步培养学生应用知识进行分析、推理的能力,发展学生的思维。

五、教具准备:

小黑板。

六、教学过程:

教学过程自我增减

一、复习:

1、判断比例关系练习

出示一块小黑板,指名学生回答下列数量关系是否成比例,成什么比例?并说明理由。

(1)、汽车行驶的速度一定,行驶的路程与行驶的时间。( )

(2)、把一袋大米平均分装成小袋,每小袋装的数量与装的袋数。( )

(3)、一段公路的长度―定,已经修完的长度与还没有修的长度。( )

(4)、总产量一定.每天的产量与生产的天数。( )

(5)、一本书的单价一定,售出的本数与总价。( )

(6)、长方形的面积一定,它的长与它的.宽。( )

2、说出这两种量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行X小时。

二、复习用正比例知识解答应用题

1、教师出示

例5:“修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?”

问:这道题可以怎样解答?题中的数量关系能否成比例?如果成比例,成什么比例?

生:分析、讨论、交流并汇报。

师:巡视并提醒学生,题里问的是修完这条公路还要多少天?而不是求一共用多少天。在设未知数时要怎样设?列方程时应当怎样列?”

(1)、学生动脑想、动手试做。

(2)、学生相互交流并说解题思路。

(3)、教师分析并讲解解题思路。

①设修完这条公路还要X天: ②设修完这条公路一共要X天。

= (直接设未知数) = (间接设未知数)

(4)、分析比较两种不同的解法。

―是在列方程时,要使等式的每一边都是对应的量相比。如,在第(1)种解法中,等式右边的分母是修完这条公路还要用的天数x。上面的分子就要用还要修的长度来对应是l2-1.5而不是12。

二是在第(2)种解法中,列方程求出的是一共要用多少天,还要减去已经修的3天,才是还要多少天。

2、引导学生用算术解解答。能用几种方法?讲出每种方法的解题思路。

3、与算术方法解答联系对比。

教师概括:“用正比例关系解答的应用题,就是以前我们学过的‘归一问题’。如果题目中没有限定解法。用哪种方法解答都可以。

三、复习用反比例知识解答应用题

例:一艘轮船从甲港驶往乙港,每小时航行25千米,12小时到达。如果每小时多航行5千米,多少小时可以到达乙港?

教师引导学生分析题意,学生尝试做题。

四、课堂练习。

1、做练习二十三的第1、2、3题。

做题时先让学生判断题中的数量关系成不成比例?如果成比例,成什么比例?”

教师巡视,个别指导。如果有时间,还可以指名学生说一说解题思路和方法。

五、总结。

谈谈这节课你的收获?

六、布置作业:

练习二十三的第4、5、6、7题。

自我加减

篇3:解比例(六年级)(人教版六年级教案设计)

教学目标

1.使学生理解解比例的意义.

2.使学生掌握解比例的方法,会解比例.

教学重点

使学生掌握解比例的方法,学会解比例.

教学难点

引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

学过的含有未知数的等式.

教学过程

一、复习准备

(一)解下列简易方程,并口述过程.

2  =8×9

(二)什么叫做比例?什么叫做比例的基本性质?

(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

(四)根据比例的基本性质,将下列各比例改写成其他等式.

3∶8=15∶40

二、新授教学

(一)揭示解比例的意义.

1.将上述两题中的任意一项用  来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

2.学生交流

根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

(二)教学例2.

例2.解比例 3∶8=15∶

1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

2.组织学生交流并明确.

(1)根据比例的基本性质,可以把比例改写为:3  =8×15.

(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

(3)规范并板书解比例的过程.

解:3 =8×15

=40

(三)教学例3

例3.解比例

1.组织学生独立解答.

2.学生汇报

3.练习:解下面的比例.

=      ∶  =  ∶

三、全课小结

这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

四、巩固练习

(一)解下面的比例.

1.  2.  3.

(二)根据下面的条件列出比例,并且解比例.

1.5和8的比等于40与  的比.

2.  和  的比等于  和  的比.

3.等号左端的比是1.5∶  ,等号右端比的前项和后项分别是3.6和4.8.

五、布置作业

(一)解比例.

=    =    ∶  =3∶12

(二)商店有一种衣服,售价是24元,比原来定价便宜25%.现在售价比原来定价便宜多少元?

(三)一个梯形的面积是12平方厘米,它的上底是3厘米,下底是5厘米,高是多少厘米?(列方程解答)

六、板书设计

教案点评

该教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。

篇4:用比例知识解答应用题(人教版六年级教案设计)

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

(板书:用比例知识解应用题)

二、探讨新知.

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

1.学生读题,独立解答.

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

(二)反馈.

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的 .第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结.

通过这堂课的学习,你有什么收获?

五、课后作业.

1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件.实际每天加工2100个零件.实际用了多少天就完成了任务?

2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?

六、板书设计

篇5:按比例分配应用题(人教版六年级教案设计)

教学目标

1.使学生理解按比例分配问题的意义。

2.使学生掌握按比例分配应用题的结构及解答方法。

3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

教学重点和难点

1.理解按比例分配问题的意义。

2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

教学过程设计

(一)复习准备

1.复习比的有关知识,为学习新知识做准备。

已知六年级1班男生人数和女生人数的比是3∶4。

男生人数与全班人数的比是(  )∶(  )。

女生人数与全班人数的比是(  )∶(  )。

2.创设情境,提出课题。

(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

提问:妈妈是怎样分的?(平均分)

(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

提问:这样分还是平均分吗?

日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

(二)学习新课

1.讲解例2。

例2  一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论。

④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

(3)解答例2。

①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

②说说你是怎样做的?

方法a:3+2=5

播种大豆的面积 100÷5×3=60(公顷)

播种玉米的面积 100÷5×2=40(公顷)

方法b:总面积平均分成的份数为

3+2=5

③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)

2.练习:第62页中的“做一做”(1)。

六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

(1)弄懂题意。

(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)

(3)独立完成。组员之间互相检验。

3.学习例3。

例3  学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)

(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

(3)请你在练习本上独立完成。

①三个班的总人数:

47+45+48=140(人)

②一班应栽的棵数:

③二班应栽的棵数:

④三班应栽的棵数:

答:一班、二班、三班分别栽树94棵、90棵、96棵。

(4)同组同学互相检验。

4.练习:第62页中的“做一做”(2)。

一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

(1)在练习本上独立完成。

(2)同组同学互相检验。

(三)课堂总结

今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)

回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

(四)巩固反馈

1.填空练习:

①把35千克苹果平均分成7份,每份(  )千克,2份(  )千克,5份是(  )千克。

2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?

3.第62页的“做一做”(3)。

一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

与练习题2有什么区别?

如果求它的最短边、最长边怎么求?

4.判断练习:(正确举√,错误举×)

一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

(五)布置作业

第63页第1,2,3,4题。

课堂教学设计说明

本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。

本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

篇6:简单应用题(人教版六年级教案设计)

教学目的

1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.

2.通过教学,进一步提高学生分析和解答应用题的能力.

3.探索知识间的内在联系,激发学生的学习兴趣.

教学重点

掌握简单应用题的结构,正确解答简单应用题.

教学难点

掌握简单应用题的数量关系.

教学过程

一、基本训练.

1.口算.

2.2+3.57   ×    ×1.2

1.4-    +0.5 11.3-8.6

(  +  )×12 (0.18+  )÷9 7.75-  -

2.下面各题只列式不计算.

(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?

(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?

(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?

(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?

(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?

(6)五年级有学生136人,其中  是女生,女生有多少人?

二、归纳整理.

揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)

(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?

教师提问:这道题有哪几个已知条件?

问题是什么?

问题与已知条件有什么关系?

你为什么要这样回答?

教师总结:

这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.

(二)变式练习.

1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?

①男工比女工多多少人?

②男工人数是女工人数的几倍?

③女工人数是男工人数的几分之几?

2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?

①某工厂男工和女工一共有455人,男工有364人,女工有多少人?

②某工厂男工和女工一共有455人,女工有91人,男工有多少人?

③某工厂有女工91人,男工比女工多273人,男工有多少人?

④某工厂女工比男工少273人,女工有91人,男工有多少人?

⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?

⑥某工厂有男工364人,女工人数是男工人数的  ,女工有多少人?

⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?

⑧某工厂有女工91人,女工人数是男工人数的  ,男工有多少人?

教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?

教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.

(三)复习已经学过的一些常见的数量关系.

通过例1我们已经研究了一些简单应用题的数量关系,下面我们再来复习一些常见的数量关系.(出示下表)

数量关系 数量关系式

收入、支出、结余 收入-支出=结余

单价、数量、总价

单产量、数量、总产量

速度、路程、时间

工作效率、时间、工作总量

本金、时间、利率、利息

1.请你们以小组为单位,先举例说明数量关系的意义,在填出每组数量中最基本的数量关系式.

2.根据这些数量关系式你能够各编出三道不同的应用题吗?

篇7:六年级数学解比例教案设计

解比例

教学目标:

使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

教学重点:

学会解比例。

教学难点:

掌握解比例的书写格式。

教学过程:

一、铺垫孕伏

1.解下列简易方程,并口述过程。

2.什么叫做比例?比例的基本性质是什么?

3.应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

4.根据比例的基本性质,将下列各比例改写成其它等式。

二、教学新课

1.出示例5

(1)审题,帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?

(放大前后的相关线段的长度是可以组成比例的)。

(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?

引导学生写出含有未知数的比例式。

告诉学生:“像上面这样求比例中的未知项,叫做解比例。

(3)讨论:怎样解比例?根据是什么?

(4)思考:“根据比例的基本性质可以把比例变成什么形式?”

教师板书:6x=13.5×4。 “这变成了什么?”(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)

(5)让学生把解比例的过程完整地写出来。指名板书。

2.总结解比例的过程。

提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?” (先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”

(根据比例的基本性质把比例变成方程。)

3.补充练习:

利用比例的.基本性质,把下列比例改写成含有未知数的等式。(投影出示,由学生独立完成后汇报。

)

三、全课小结:

1.通过本课的学习,你有哪些收获?

2.这节课我们学习了解比例。想一想,解比例的关键是什么?

(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可。

篇8:六年级数学解比例教案设计

“解比例”教学方案

简要提示:

本课教学内容是课程标准苏教版六年级(下)第45页的“解比例”。这部分内容是在学生已经理解了比例的意义、掌握了比例的基本性质的基础上进行教学的,通过教学使学生会应用比例的基本性质解比例,并掌握解比例的方法和过程;使学生在应用比例的基本性质解比例的过程中感受不同领域数学内容的内在联系,发展对数学的积极情感。

教学流程:

流程1:教学例5a

教师:李明同学在学习了图形的放大和缩小后,也在电脑上把下面的一张照片按比例放大。 课件出示例5。

教师读题:现在只知道放大后照片的长是13.5厘米,宽是多少厘米呢?你能解决这个问题吗? 教师:要求出宽,我们必须先理解“按比例放大”是什么意思,你能说给你的同桌听一听吗? 教师:按比例放大的意思呀就是说明这张照片放大前后的相应边长的比能组成比例,例如:放大前的照片的长:放大后的照片的长=放大前照片的宽:放大前照片的长:宽=放大后照片的长:宽。

流程2:教学例5b

教师:现在放大后的宽不知道,我们可以用什么来表示?

教师:我们就可以假设放大后的照片的宽为x厘米。

课件出示 解:设放大后的照片的宽为x厘米。

教师:现在你能列出比例式吗?

教师:我们可以列出这样的比例13.5:6=x:4

教师:动动脑筋,这个比例中的未知数x你能求出来吗?试一试!

流程3:教学例5c

课件出示解答过程。

教师:可以这样来解答。你知道把比例写成“6x=13.5×4”这一步的依据是什么吗?

教师:其实这就是根据比例的基本性质两个内项的积等于两个外项的积写的。你看懂了吗? 教师(指着):现在我们已经把未知数x求出来了,像这样求比例中的未知项的过程,就叫做解比例。(板书课题:解比例)

教师:请大家完整地看一看解比例的过程,想一想解比例的过程中最关键的是哪一步?把一个比例转化成这个等式的依据是什么?

教师:最关键的还是把一个比例写成等式这一步,它就是根据比例的基本性质得来的。

流程4:教学“试一试”a

教师:你现在会解比例了吗? 请大家看课本45页的试一试,请你接着完成它。

流程5:教学“试一试”b

课件出示解比例的过程。

教师:看一看,你做对了吗?说说把比例写成1.2x=75×0.4的依据是什么?

流程6:完成“练一练”

教师:请同学们继续看课本45页上的练一练,把这3题做在自己的练习本上,看谁做得有对又快。

教师:核对一下,你是这样做的吗?

课件出示三题的解题过程。

流程7:课堂总结

教师:今天我们学习了解比例,想一想在列比例解决问题时要注意什么?解比例的依据又是什么?

教师:在列比例式时我们要根据题意,正确找出题目里的比例,列出比例式,在解比例的过程中最重要的是要把比例根据比例的基本性质转化成一个等式,同时计算也要认真、细心。

流程8:完成练习十第6题

教师:下面我们再来做一些练习。

课件出示题目。

教师:请大家先读一读,然后独立在练习本上完成。

教师:我们可以这样来求未知数。

课件出示解答过程。

流程9:完成练习十第7

题教师:先读一读,想一想,然后做在练习本上,做完后同桌互相批改一下。

流程10:完成练习十第8题a

教师:请大家看课本47页第8题,先轻声地读一读。

教师:在练习本上分别写出每杯蜂蜜水中蜂蜜和水体积的比,然后看一看它们能不能组成比例。 教师:可以写成这样的比25:200、30:250,它们能组成比例。

流程11:完成练习十第8题b

教师:大家看第2个问题,题目中的“照第一杯蜂蜜水中蜂蜜和水的比计算:是什么意思? 教师:这句话的意思就是300毫升水中应加入的蜂蜜与水的体积的比等于第一杯中蜂蜜与水体积的比。

教师:正确理解了这个条件的意思后,就请大家列比例来解决这个问题。

课件出示解答过程。

教师:核对一下,你做对了吗?

流程12:完成思考题

教师:下面我们要来挑战一下自己了,有信心吗?请看??

课件出示题目。

教师:大家读一读,想一想,题目中告诉了我们哪些信息?

教师:“两个外项正好互为倒数”是什么意思?由此你能想到什么呢?

教师:两个外项正好互为倒数就说明两个外项的积是1,由此我们就能想到两个内项的积也是1。 教师:那另一个内项可以怎么求呢?请你列式算一算。 教师:另一个内项是3 ,你算对了吗? 16

流程13:布置作业

教师:今天的课堂作业是练习十的第5题。希望大家能认真完成。

篇9:分数、百分数应用题复习(人教版六年级教案设计)

教学目标

1.使学生较熟练地掌握“求一个数的几分之几(百分之几)是多少”和“已知一个数的几分之几(百分之几)是多少,求这个数”这两类应用题。

2.提高学生分析、解答应用题的能力,培养学生“对立统一”的辩证思想。

教学重点和难点

找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。

教学过程设计

(一)复习基础知识

教师谈话:我们已经复习了“求一个数是另一个数的几分之几(百分之几)”、“求一个数的几分之几(百分之几)是多少”和“已知一个数的几分之几(百分之几)是多少,求这个数”这三类应用题。这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。(板书:分数,百分数应用题复习)

投影出示如下习题:

1.读题列式并按要求改编题:

①一本书100页,读了60页,读了这本书的几分之几?

学生读题:

如果把问题改成“读了百分之几”应如何解答?

样列式计算?

③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板

2.补充问题。

(1)六一班有男生30人,女生20人,_______________?

可以求什么?从最基本的想起。

学生读题后补充问题并列式:

①女生是男生的几分之几(百分之几?)

②女生比男生少几分之几(百分之几?)

③男生是女生的几分之几(百分之几?)

④男生比女生多几分之几(百分之几?)

可以求什么?从最基本的想起,

学生读题后补充问题并列式:

①女生有多少人?

②全班共有多少人?

③男生比女生多多少人?

④女生比男生少多少人?

3.回答问题。

师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。)

③甲是甲乙差的4倍。

⑤乙是单位“1”。

4.小结。

通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?

(二)画线段图分析解答

投影出示如下练习:

1.录音机每台降价30%后,售价350元,这种录音机原来售价多少元?

①学生读题;

②学生自己画图列式;

③订正画图;

④指名列式。为什么不是350×(1-30%)?

⑤那为什么也不是350×30%?

2.修一条路,第一天修了全长的20%,第二天修了200m,第三天修的是前两天的总和,这条路全长多少米?

3.一根绳子截去20%后,再接上6m,结果比原来的绳子长了30%。这根绳子原来长多少米?

指名学生到黑板上画图。

4.一根绳子截去20%后,再接上6m,结果比原来的绳子长了1.5m,这根绳子原来长多少米?

(三)综合练习

1.题组训练(只列式不计算)

共多少吨?

箱重量正好相等,原来两箱桔子各有多少千克?

老师用投影出示下图帮助学生理理解题意。

学生课后完成。

课堂教学设计说明

本节课教学可分为三部分。

第一部分,复习“求一个数是另一个数的几分之几(百分之几)”,“求一个数的几分之几(百分之几)是多少”和“已知一个数的几分之几(百分之几)是多少,求这个数”这一类应用题。通过补充问题这种方式,使学生能够把分数、百分数应用题的数量关系和解题方法进行复习,并且打开解应用题的思路,充分调动学生的积极性。

第二部分是画线段图分析应用题。这部分的应用题具有典型性,要求学生能够画图进行分析,通过线段图找准量和率的对应关系,能够顺利地解决分数、百分数应用题。

第三部分是深入理解三种应用题的解题思想,综合应用知识。这部分应用题比较难,主要是为了让学生能够综合应用所学过的知识,进一步提高学生的解题能力,让学有余力的学生有发散思维的机会,调动他们的积极性。

板书设计

篇10:用比例解答应用题的和复习

教学内容:

教科书第70页的4~5题,练习十九的第4~6题。

教学目的:

使学生进一步掌握用比例解答应用题的方法,提高解答应用题的能力。

教具准备:小黑板

教学过程:

一.复习用比例解答应用题

教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答,现在我们就来复习一下。

1.用小黑板出示第70页第4题

教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的。

提问“这道题有几种相关联的量?它们成什么关系?为什么?”(有两种相关联的量,因为转的周数/时间=速度,而速度是一定的,所以转的周数同时间成正比例关系)。

教师板书出解答过程:

解:设运行14周要x小时

6:10.6=14:x

6x=10.×14

x=148.46

x≈24.7

答:运行14周要用24.7小时。

2.用小黑板出示27页第5题

一个农业专业组平整土地,原来打算每天平整0.4公顷,15天可以完成任务,结果12天完成了任务,平均每天平整多少公顷?

指名学生读题,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题,教师板书出解答过程。

3.总结

教师:像上面这样的题在解答时,先要判断两种相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。

二.课堂练习

指导学生完成练习十九第4~6题。90

1.第4题,先说明一下,农药是药液和水合起来的重量。再提示:第(1)题,要求配制这种农药750.5千克,需要药液与水多少千克,就先算出农药和药液的比、农药和水的比。

2. 第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。

3.第6题,让学生独立完成,集体订正时,说说解答思路。

创意作业:回家搜集有关资料,编写有关正反比例应用题。然后小组交流。进行解答。

篇11:用不同知识解应用题(人教版六年级教案设计)

教学目的

1.通过复习,使学生能够运用已学的知识解答应用题.

2.通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.

3.使学生知道知识的内在联系及其可以转化的辩证唯物主义观点.

教学重点

通过复习,使学生能够运用已学的数量关系,正确解答应用题.

教学难点

通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.

教学过程

一、复习准备.

1.导入:我们已经复习了应用题的数量关系掌握了不同的应用题的不同分析、解答方法.今天我们就用我们学过的不同知识来解应用题.(板书课题:用不同知识解应用题)

2.填空:已知甲数是乙数的6倍.那么:

(1)乙数是甲数的

教师追问:为什么填  呢?这时两个数的倍数关系转化成了什么关系?

(2)甲数与乙数的比是(   )∶(   )

(3)甲数与甲乙两个数的和的比是(   )∶(   )

(4)乙数与甲乙两个数的和的比是(   )∶(   )

教师提问:这时两个数的倍数关系转化成了什么关系?

教师总结:通过复习,我们发现了倍数关系、分数关系、比的关系之间,可以互相转化.

二、复习探讨.

(一)教学例6.

少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?

1.学生读题,分析已知条件和问题.

2.分组讨论:

(1)题目中的数量关系是什么?

(2)松树的棵树是柏树的4倍,可以转化成哪几种关系?

(3)本题有几种解法?

3.学生汇报反馈.

(1)因为:松树的棵数+柏树的棵数=120棵

所以:我们可以根据这个等式列方程解应用题.

解:设柏树种了  棵.

120-24=96(棵)

解:设松树种了  棵.

120-96=24(棵)

答:柏树种了24棵,松树种了96棵.

(2)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1.

所以根据转化的比的关系,可以用按比分配的知识来解答.

4+1=5

120×  =96(棵)

120×  =24(棵)

答:柏树种了24棵,松树种了96棵.

(3)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的和是柏树棵树的5倍,我根据倍数的数量关系可以运用算术方法解题.

120÷(4+1)=24(棵)

120-24=96(棵)

答:柏树种了24棵,松树种了96棵.

(4)因为松树的棵树是柏树的4倍,所以柏树的棵数就是松树棵树的  ,如果把松树的棵数看作单位1,那么,120棵对应的率就是1+  ,根据倍数的数量关系可以运用算术方法解题.

120÷(1+  )=96(棵)

120-24=96(棵)

答:柏树种了24棵,松树种了96棵.

(5)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1,松树和松树、柏树棵树和的比是1∶5,所以根据转化的比的关系,我可以用比例的知识来解答.

解:设柏树有  棵.

∶120=1∶5

5  =120

=24

120-24=96(棵)

答:柏树种了24棵,松树种了96棵.

4.请你以小组为单位,讨论、交流你最喜欢那种方法.为什么?

5.教师总结:在我们解应用题时,一道应用题的数量关系,可以转化成不同解决形式.在解答时,我们选择我们熟练、简便的方法进行解答.

三、巩固反馈.

1.用不同的方法解答下面各题.

(1)幼儿园买来120张彩色电光纸,比买来的白纸少  .这两种纸一共买来多少张?

(2)养鸡场的肉用鸡是蛋用鸡的3倍,肉用鸡比蛋用鸡多15000只.蛋用鸡和肉用鸡各养多少只?

篇12:复合应用题(人教版六年级教案设计)

教学目的

1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的.

2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力.

3.培养学生认真负责的态度和良好的学习习惯.

教学重点

能够掌握复合应用题的结构,正确解答复合应用题.

教学难点

使学生掌握复合应用题的关系.

教学过程

一、基本训练.

1.口算.

2.5×4 127+28 0.37+1.6 88÷16

3.37+6.63 8.4÷0.7 0.125×8 1.02-0.43

1.25+  1÷    ×16

2.要求下面的问题需要知道哪两个条件?

(1)实际每天比原计划多种多少棵?

(2)桃树的棵数是梨树棵数的多少倍?

(3)五年级平均每人捐款多少元?

(4)这堆煤实际烧了多少天?

(5)剩下的书还需要多少小时能够装订完?

(6)小明几分钟可以从家走到学校?

教师总结:

应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键.

二、归纳整理.

揭示课题:这节课,我们复习复合应用题(板书课题).

(一)教学例2:

a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米.实际比原计划每小时多走多少千米?

b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米.实际比原计划平均每小时多走多少千米?

c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程.实际比原计划平均每小时多走多少千米?

1.指名读题,学生独立解答.(学生板演)

2.小组讨论:这三道题都有什么联系?这三道题有什么区别?

联系:这三道题说的是同一件事,要求的问题也相同,都是求“实际比原计划平均每小时多走多少千米?”要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数.

区别:

a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;

b、实际每小时走的千米数是已知的.原计划每小时走的千米数是未知的,需要两步计算;

c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算.

3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题.

4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的.在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止.

5.检验应用题的方法.

我们想知道此题目做的对不对,你有什么好办法吗?

(1)按照题意进行计算;

(2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意.

三、巩固反馈.

1.解答并且比较下面两道应用题,说说它们之间有什么区别?

(1)时新手表厂原计划25天生产手表1000只,实际每天生产50只.实际比原计划提前几天完成任务?

(2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务.实际每天生产手表多少只?

2.判断:下面列式哪一种是正确的?

(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

A:2100-240×5÷3 B:(2100-240)÷3

C:(2100-240×5)÷3

(2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?

A:(2640-240)÷240

篇13:分数应用题(人教版六年级教案设计)

教学目标

1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.

2.培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力.

3.培养学生的推理能力.

教学重点

培养学生分析、解答两步计算的分数应用题的能力

教学难点

使学生正确地解答两步计算的分数一般应用题.

教学过程

一、复习引新

(一)全体学生列式解答,再说一说列式的依据.

两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

13÷2-5

=6.5-5

=1.5(千米)

根据:路程÷相遇时间-甲速度=乙速度

(二)教师提问:谁来说一说相遇问题的三量关系?

速度和×相遇时间=总路程

总路程÷相遇时间=速度和

总路程÷速度和=相遇时间

(三)引新

刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为  小时)

二、讲授新课

(一)教学例1

例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过  小时相遇.甲每小时行5千米,乙每小时行多少千米?

1.读题,分析数量关系.

2.学生尝试解答.

方法一:解:设乙每小时行  千米.

方法二:  (千米)

3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

相同:解题思路和解题方法相同;

不同:数据不同,由整数变成分数.

4.练习

甲、乙两车同时从相距90千米的两地相对开出,  小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

(二)教学例2

例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的  ,这批水果有多少千克?

1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.

由此得出:一批水果的重量  第一次+第二次

2.列式解答

方法一:解:设这批水果有  千克

方法二:

3.以组为单位说一说解题的思路和依据.

4.练习

六年级一班有男生23人,女生22人,全班学生占六年级学生总数的  .六年级有学生多少人?

三、巩固练习

(一)写出下列各题的等量关系式并列出算式

1.甲、乙两车同时从相距184千米的两地相对开出,  小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的  .这部书稿有多少页?

(二)选择适当的方法计算下面各题

1.一根长绳,第一次截去它的  ,第二次截去  米,还剩7米,这根绳子长多少米?

2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行  千米,两人多少小时后相遇?

四、课堂小结

今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?

五、课后作业

1.商店运来苹果4吨,比运来的橘子的2倍少  吨.运来橘子多少吨?

2.一套西装160元,其中裤子的价格是上衣的  .上衣和裤子的价格各是多少元?

六、板书设计

分数应用题

例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过

小时相遇.甲每小时行5千米,乙每小时行多少千米? 例2.一个水果店运一批水果,第一次运了50千克,第二次运了

70千克,两次正好运了这批水果 的 ,这批水果有多少千克?

解:设乙每小时行  千米

答:,乙每小时行  千米.

解:设这批水果有  千克

篇14:应用题复习课(人教版一年级教案设计)

应用题复习课

教学目标

(一)通过求一个数比另一个数少几的应用题和求比一个数少几的数的应用题对比,学生更好地掌握它们的分析思路和解题方法.

(二)初步培养学生的分析、推理能力.

教学重点和难点

重点:通过分析,找出这两种应用题的相同点和不同点.

难点:明白两种应用题都是用减法计算,但它们所表示的意义并不一样的道理.

教学过程设计

(一)复习准备

1.口算.

26+30  27-9  40-4  37+10

60-40  38+6  56+4  40+28

2.按要求摆圆.

师:第一排摆6个圆,第二排摆4个圆.想一想,可以提什么问题?怎样列式?

学生经过思考以后,可能提出这样的问题.

(1)两排一共有多少个圆?  6+4=10.

(2)第一排比第二排多几个或第二排比第一排少几个? 6-4=2.

(3)第一排去掉几个和第二排同样多或第二排再添上几个和第一排同样多? 6-4=2.

(二)学习新课

出示例7.

(1)有红花9朵,黄花6朵,黄花比红花少几朵?

(2)有红花9朵,黄花比红花少3朵.黄花有几朵?

1.指名读题,找出已知条件和问题.

师:从哪句话知道红花多,还是黄花多?

生:第(1)题从问话“黄花比红花少几朵?”第(2)题从第2个已知条件“黄花比红花少3朵”都能知道红花比黄花多,黄花比红花少.

2.解答第(1)题.

(1)让学生用红花和黄花摆出条件和问题,教师出示意图:

②分析:

师:这道题的问题是求什么?

生:这道题要求黄花比红花少几朵?

师:这个问题与已知条件有什么关系呢?

生:分析这个问题,可以知道黄花少,红花多,要求黄花比红花少几朵,必须知道黄花有几朵,还要知道红花有几朵.

师:既然红花的朵数多,我们应该把红花的朵数怎么办呢?请同学们边摆边说.(学生操作完,请一名学生叙述)

生:黄花比红花少,红花多.红花的朵数可以分成两部分,一部分是跟黄花同样多的,另一部分是比黄花多的,从红花的朵数里去掉跟黄花同样多的部分,剩下的就是红花比黄花多的部分,也就是黄花比红花少的朵数.

师:用什么方法计算?

生:用减法计算.

③列式计算:(教师板书)

9-6=3(朵)

口答:黄花比红花少3朵.

3.解答第(2)题.

①让学生把刚才摆的第(1)题图,改变成第(2)题图.(事先给每位学生准备一张纸条代表问题放到6朵红花下面)教师先出示有9朵红花的图.

②分析

师:这道题的问题是求什么?(黄花比红花少几朵)

生:黄花有多少朵?黄花比红花少3朵.

师:这句话是什么意思?

生:黄花少,红花多.

师:红花的朵数多,我们就可以把红花的朵数怎么办?

生:把红花的朵数分成两部分,一部分是和黄花同样多的朵数,另一部分是红花比黄花多的朵数,也就是黄花比红花少的朵数.(让每位同学边摆边说)

教师在学生说的基础上把红花的朵数分两部分,并让学生指一指哪一部分是同样多的朵数,哪一部分是黄花比红花少的朵数,哪一部分是所求的黄花的朵数.教师根据学生说的,完成示意图,把图中各部分标出.

生:从红花的朵数里去掉红花比黄花多的,得到红花和黄花同样多的,也就是黄花的朵数.

师:用什么方法计算?

生:用减法计算.

③列式计算:(教师板书)

9-3=6(朵)

口答:黄花有6朵.

4.分组讨论.

师:刚才我们解答的这两道题有什么相同的地方?有什么不同的地方?

教师在学生叙述的基础上加以概括:

相同点:

①第一个已知条件相同,都是有红花9朵.

②两道题都是已知黄花比红花少,也就是红花多.红花可以分成两部分.一部分是跟黄花同样多的,另一部分是比黄花多的.

③都是用减法计算.

不同点:

①有一个已知条件不同,第(1)题知道有黄花6朵,第(2)题知道黄花比红花少3朵.

②要求的问题不同,第(1)题的问题是求黄花比红花少几朵?第(2)题的问题是求黄花有几朵?也就是第(1)题的第二个已知条件是第(2)题的所求问题.第(1)题的所求问题是第(2)题的一个已知条件.

③虽然都是用减法计算,但它们所表示的意义不一样.第(1)题求黄花比红花少几朵,要从红花的朵数里去掉和黄花同样多的部分,剩下的就是比黄花多的部分,也就是黄花比红花少的朵数.第(2)题求有多少朵黄花,要从红花朵数里去掉比黄花多的部分,剩下的就是和黄花同样多的部分,也就是黄花的朵数.

④所列算式不同,结果不同.

第(1)题:9-3=6(朵)

第(2)题:9-6=3(朵)

(三)巩固反馈

1.教科书第105页“做一做”.

(1)让学生自己读题,找出已知条件和问题.

(2)教师提示,学生思考.

师:第(1)题求象比熊少几只怎样想?第(2)题求象有几只怎样想?

(3)同桌同学互相说说这两道题有什么相同的地方和不同的地方?

(4)做在书上,及时订正.

2.根据本班男、女生人数仿例7编题后解答.

3.课堂作业.

(四)总结

师:今天我们学习的是两种应用题的对比,解题的关键是注意分清楚题里的数量关系,找到那个较大的数,再做进一步分析,最后解答.

课堂教学设计说明

这节课讲授两种应用题的对比,重点是在正确解答的基础上,引导学生进一步探究两种应用题的相同点和不同点.

复习时,教师说明摆的要求,发挥学生思维水平,让学生自己提出问题,便于与后面教学联系.通过操作,使学生对相比较的两个数量之间的数量关系获得初步表象,然后引导学生分析应用题里的数量关系,掌握解题思路.教师精心设计了一个问题:“从哪句话知道红花多,还是黄花多?”主要是培养学生思维能力,养成认真审题的习惯.最后引导学生比较两种应用题的异同,使学生清楚地认识到,虽然两道题都是用减法计算,但它们所表示的意义不一样.这样,既培养了学生的思维能力,又初步发展了学生的分析问题和解题的能力.

板书设计

篇15:比例的应用(人教版六年级教案设计)

教学目标

1.使学生能正确判断应用题中涉及的量成什么比例关系.

2.使学生能利用正、反比例的意义正确解答应用题.

3.培养学生的判断推理能力和分析能力.

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.

教学难点

利用正反比例的意义正确列出等式.

教学过程

一、复习准备.(课件演示:比例的应用)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间.

2.路程一定,速度和时间.

3.单价一定,总价和数量.

4.每小时耕地的公顷数一定,耕地的总公顷数和时间.

5.全校学生做操,每行站的人数和站的行数.

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.

教师板书:比例的应用

二、新授教学.

(一)教学例1(课件演示:比例的应用)

例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

1.学生利用以前的方法独立解答.

140÷2×5

=70×5

=350(千米)

2.利用比例的知识解答.

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设甲乙两地间的公路长  千米.

2  =140×5

=350

答:两地之间的公路长350千米.

3.怎样检验这道题做得是否正确?

4.变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(二)教学例2(课件演示:比例的应用)

例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?

1.学生利用以前的方法独立解答.

70×5÷4

=350÷4

=87.5(千米)

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,_________和_________成_________比例.

所以两次行驶的_________和_________的_________是相等的.

3.如果设每小时需要行驶  千米,根据反比例的意义,谁能列出方程?

4  =70×5

=87.5

答:每小时需要行驶87.5千米.

4.变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?

三、课堂小结.

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.

四、课堂练习.(课件演示:比例的应用)

(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.

1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

2.王师傅4小时生产了200个零件,照这样计算,_______?

五、课后作业.

1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本

如何解比例分配应用题六年级教案设计

六年级解比例测试题

六年级《解比例》教学设计

《解比例》说课稿

解比例教学反思

解比例教学反思

解比例教学设计

《解比例》教学反思

分数乘法应用题(人教版六年级教案设计)

分数连除应用题(人教版六年级教案设计)

《用比例解应用题复习(人教版六年级教案设计)(精选15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档