今天小编就给大家整理了用百分数解决问题(3) 教案教学设计(人教新课标六年级下册),本文共19篇,希望对大家的工作和学习有所帮助,欢迎阅读!

篇1:用百分数解决问题(3) 教案教学设计(人教新课标六年级下册)
用百分数解决问题(3)
教学目标:
1、使学生掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+ )
二、新授
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。
(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?
① 今年图书增加的部分是原有的12%。
② 今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:
第一种:1400×12%=168(册)
1400+168=1568(册)
第二种:1400×(1+12%)
=1400×112%
=168(册)
2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成P93“做一做”第1题。
三、练习
1、补充练习
(1)出示练习:
①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?
②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
教学追记:
本部分内容是“求比一个数多(少)百分之几”的应用题,这部分内容与“求比一个数多(少)几分之几”的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也较为容易。
新课标第一网
篇2:用百分数解决问题 教案教学设计(人教新课标六年级上册)
第一课时:求百分率的应用题
教学内容
课本第85--86页的例1
教学目标:
1、理解生活中百分率问题的含义,掌握 求百分率的方法。
2、理解此类应用题的一般结构和求百分率思考过程的主要步骤,提高应用数学知识解决问题的能力。
重难点:
理解百分率问题的含义,掌握求百分率的方法。
教学过程:
一、知识准备:
1、什么叫百分数?
2、口答:
10是50的几分之几?
13厘米是43厘米的几分之几?
明确计算方法。
二、授新课
1、教学例1
(1)出示例1的第(1)题
①明确什么叫达标率?
达标率是指达标学生的人数占学生总人数的百分之几。
提问:题中谁与谁比?应把谁看作单位“1”
②引导学生归纳总达标率的关系式:
达标率= ×100%
请学生自己独立求出达标率
2、教学例(第(2)题)
(1)什么叫发牙率?
引导完成发牙率关系式: 发牙率= ×100%
(2)学生独立求出三种种子的发牙率。
(三生板演,其他自算)
(3)哪种种子的发牙率高?说明发牙率的作用。
3、介绍其他百分率
学生的出勤率,产品的合格率,小麦的出粉率等。
4、练习:
(1)完成“做一做”的第1题。
先小组讨论完成,再交流汇总。
(2)完成“做一做”的第2题。
完成合讲评。
第二课时:稍复杂的“求一个数是另一个数的百分之几”
教学内容:
课一第90页例2及“做一做”内容。
教学目标:
1、使学生进一步理解和掌握百分数应用题中的数量关系,会解答“求一个数比另一个数多(或少)百分之几的应用题。
2、通过学习,培养学生会利用已有的基础知识,来探索解决新问题。
重难点:
进一步掌握百分数应用题中的数量关系;会解答“求一个数比另一个数多(或少)百分之几的应用题。”
教学过程:
一、旧知识准备
出示:一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
学生独立解答:14÷12≈1.167=116.7%
二、授新课
1、出示例2(把复习题的问题改为:实际造林比原计划增加了百分之几?)
2、比较两题的不同,明确问题意义,画线段及帮助理解。
3、学生独立列式。
(14-12)÷12 要求学生明确各步骤的意义
2÷12
≈0.167
=16.7%
引导学生想一想,还有其他解法吗?
讲评其他解法。
4、介绍:在实际生活中,人们常用“增加百分之几”
“减少百分之几”“节约百分之几”--来表达增加、减少的幅度。
讨论这些话的含义:
增加百分之几表示增加的占原来的百分之几。
减少百分之几表示减少的占原计划的百分之几。
节约百分之几表示节约的占原来的百分之几。
三、巩固练习
1、完成“做一做”
提问:比原来节约了百分之几,表示什么意思?把谁看作单位“1”,学生独立解答后讲评。
2、完成练习二十一的第1--3题。
xkb1.com
第三课时:稍复杂的“求一个数的百分之几是多少”
教学内容
课本第93页的例1和“做一做”
教学目标
1、使学生利用已有知识,理解并掌握稍复杂的“求一个数的百分之几几是多少”的应用题的数量关系,以及解题的方法,提高学生解答百分数应用题的能力。
2、通过弄清百分数问题和相应分数问题的异同点,培养学生的辨析能力。
重难点:
理解稍复杂的“求一个数的百分之几是多少”应用题的数量关系,掌握这类题的解答方法,并能正确解答。
教学过程
一、知识准备
出示题目:学校图书室原有的图书1400册,今年图书册数增加了
今年增加了多少册?
学生独立解答:1400× =168(册)
把上题问题改为:现在图书室有多少册图书?
学生独立解答:1400+1400× =1568(册)
1400×(1+ )=1568(册)
二、教授新课www.xkb1.com
1教学例3(改原题中 为12%)
(1)分组讨论如何解答。
汇报交流:方法一:1400+1400×12%
=1400+168
=1568(册)
方法二:1400×(1+12%)
=1400×112%
=1568(册)
(2)通过以上解答比较百分数应用题与相应的分数应用题,有什么异同点。
相同点:它们的数量关系一样,都是用乘法计算。
不同点:一个呈现的分数,一个呈现的是百分数。
三、巩固练习
1、完成“做一做”的第1题。
提问:0.5%的这道题里把谁看作单位“1”
学生独立列式后,全班讲评,要求用两种解法解答。
2、完成“做一做”的第2题。
提问:如何理解“由原来的12m增加到25m”?拓宽的路面是占 谁的百分之几?
学生独解答,再讲评。
篇3:《用百分数解决问题》教学设计 (人教新课标六年级上册)
(6)教师对学生的进行补充讲解。再让学生板演在黑板上。对学生的做题情况进行评价,适时表扬鼓励。
(7)师生共同总结出两种解答方法。让学生比较一下哪种方法最优。学生纷纷陈述自己的理由。
(8)比较百分数应用题和分数应用题的区别和联系。
相同点:数量关系和解题方法完全相同
不同点:百分数应用题的数量关系用百分数来表示;分数应用题的数量关系用分数来表示。
(设计意图:让学生经过了思考再进行小组合作更有利于学生的自主学习,体现了新的教学理念并且注意了解题策略的多样化,最优化。)
三、巩固应用,内化提高
1、幸福镇去年收粮食300万吨,今年比去年多20%,今年生产粮食多少万吨?
2、.龙泉镇去年有小生2800人,今年比去年减少了0.5%。今年有小学生多少人?
3、思考:如果例3改成:学校图书室现有图书1568册,比原有图书册数增加了12%,图书室原有多少册图书?(这题单位“1”的量不变,要比较的量也不变,例3单位“1”的量是已知量,这题单位“1”的量是未知量。)
(设计意图:巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习, 加深了学生对知识的巩固及迁移。达到灵活运用的目的。)
四、回顾整理,反思提升。
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了比一个数多(或少)百分之几是多少的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
百分数应用题和分数应用题的思路和方法是一样的,只不过表示形式不一样而已。
板书设计:
百分数应用题(三)
例3: 方法一: 方法二:
1400+1400×12% 1400×(1+12%)
=1400+168 =1400×112%
=1568 (册) =1568 (册)
答:现在图书室有1568册图书。
篇4::《解决问题》 教案教学设计(人教新课标六年级下册)
编制人:蔡 娜 时间: . 08 .25
课题 NO.3-4
班级 姓名 小组 小组评价
学习目标:
1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。
2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。
难点:根据分数乘法的意义,找到等量关系,正确列出方程。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:xkb1.com
1、自学课本P37-P39页
思考:1)、列方程解应用题的关键。
2)、用算术法解除法应用题的关键。
2、填空。
1)、 米是 米的( ); 米相当于( )米 。
2)、自行车的速度是汽车的 ,把( )看作单位“1”。
3)、一个数的 是 ,这个数是( )。
4)、一根卅绳长54米,剪去 ,还剩( )米,把( )看作单位“1” 。
3、解方程。
二、合作探究:
例1、根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,小明体内有28千克的水分,小明的体重是爸爸的 。
1)、小明的体重是多少千克?
2)、小明爸爸的体重是多少千克?
要求:(1)、用两种方法解答。
(2)、画出线段图表示题中的数量关系。新课标第一网
小结:(1)、列方程解应用题的关键:
(2)、用算术法解分数除法应用题的关键:
例2、小伟买了一枝钢笔,一枝圆珠笔和一枝铅笔,一枝圆珠笔的价钱是一枝钢笔 ,一枝铅笔的价钱是一枝圆珠笔的 ,买一枝铅笔花了2元钱,买一枝钢笔花多少元钱?
要求:1)、用两种方法解答。
2)、画线段图表示题中的数量关系。
小结:1)、分数连除应用题的解题关键:
2)、分数连除应用题的解题方法:
方程解法:
算术解法:
三、学以致用:
1、画线段图表示下面各数量关系。
1)、鸡的只数是鸭的 。
2)、女生人数占全班的 。
2、列式计算新课 标 第 一 网
1)、一个数的 是64,求这个数。
2)、12的 与什么数的2倍相等?
3)、 加上一个数的 ,和是1,求这个数。
四、解决问题:
1、小红看一本书,已看了76页,是未看页数的 ,这本书小红还有多少页未看?
2)、修一条公路,施工方工作3天,每天修 千米,已知3天修了这条路的 ,这条路一共有多长?
3)、小明看一本书,第一天看了全书的 ,第二天看了余下的 ,这时还剩80页没看,这本书共有多少页?
篇5::《解决问题》 教案教学设计(人教新课标六年级下册)
编制人:蔡 娜 时间:2010 . 08 .27
课题 NO.3-5
班级 姓名 小组 小组评价
学习目标:
1、掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。
2、在分析数量关系解决实际问题的过程中,提高学生分析问题和解决问题的能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:掌握解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的方法。
难点:学会分析题中数量之间的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。
并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本P39-P40页
2、直接写出得数。
3、画线段图表示下面各数量关系,并写出等量关系式。
1)、杨树比柳树少 。
2)、柳树比杨树多 。
xkb1.com
二、合作探究:
例1、美术小组有25人,美术小组的人比航模小组多 ,航模小组有多少人?
要求:1)、画线段图表示题中的数量关系。
2)、用方程和算术方法两种方法解答。
小结:解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解题关键是:
例2、一个机械加工厂,九月份生产一种零件1000个,比原计划多生产 。多生产多少个零件?
要点提示:解答分数应用题,在找准单位“1”的同时,还要看清所要求的问题与单位“1”的关系。
三、学以致用:
1、想一想,填一填。
商店运来彩电150台,( ),运来空调多少台?
1)、空调比彩电少 ,列式是( )。
2)、150除以(1 - ),条件是( )。
3)、空调比彩电多 ,列式是( )。
4)、彩电比空调多 ,列式是( )。
2、列式计算
1)、一个数的 是 的 ,求这个数。
2)、 与 的积再除以 ,商是多少?
3)、 的倒数的3倍减去 ,差是多少?
四、解决问题:新课标第一网
1)、超市运来一批洗衣粉,第一天卖出 ,第二天卖出剩下的 ,第三天和第二天卖得一样多,这时还有500袋,超市一共进了多少袋洗衣粉?
2)、有一桶油,第一次到出总数的 ,第二次倒出总数的 ,第二次倒出12千克,第一次倒出油多少千克?
3)、一筐苹果的 是16千克,吃去这筐苹果的 ,还剩多少千克?
4)、有一根竹竿插入池塘中,竹竿的 露出水面, 插在泥里,池塘水深1.7米,问这根竹竿长多少米?
新课标第一网xkb1.com
篇6:用比例解决问题 教案教学设计(人教新课标六年级下册)
导学内容:P59--60页例5、例6,完成做一做及练习九3--7题
导学目标
1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。
2、引导学生利用已学知识,自主探索,培养学生问题解决的能力。
导学重点:用比例知识解答比较容易的归一、归总应用题。
导学难点:正分析题中的比例关系,列出方程。
预习学案
1.一辆汽车行驶的速度不变,行驶的时间和路程。
2.一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:
(1)各有哪三种量?
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?
导学案
1、学习例5
(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?
(2)学生读题后,思考和讨论下面的问题:
① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(4)根据正比例的意义列出方程:
解:设李奶奶家上个月的水费是χ元。
12.8/8=χ/10
8χ= 12.8×10
χ=128÷8
χ= 16 答:李奶奶家上个月的水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、学习例6新课标第一网
(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
巩固练习
1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。
2、完成练习九第5、6、7题。
总结:用比例知识解决问题的步骤是什么?
课堂检测
一、填空
1、车轮直径一定,所行的路程和车轮的转数成( )比例。
2、因为每度电的价格一定,所以电费和用电的度数成( )比例。
3、如果苹果的总重量一定,那么箱数和每箱的重量成( )比例,也就是说,每箱的重量和箱数的( )相等。
二、解决问题
1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?xkb1.com
2、一个修路队,原计划每天修400m,15天可以修完。结果12天就完成任务,实际每天修多少米?
3、学校用同样的方砖铺地,铺5m2 ,用了方砖120块,照这样计算,再铺23m2,一共用了这种方砖多少块?
课后拓展
如图,有一只老鼠沿着A→B→C的方向逃跑,同时有一只猫也从A点出发沿着A→D→C 的方向追捕老鼠,在E点将老鼠捉住。已知老鼠的速度是猫的58 ,且CE长9米。求平行四边形ABCD的周长。
板书设计
用比例解决问题
例5 张大妈家上个月用了8吨水,水费 例6.一批书如果每包20本,要
是12.8元,李奶奶家用了10吨水,水 捆18包,如果每包30本,要捆
费是多少元? 多少包?
解:设李奶奶家上个月的水费是x元。 解:设要捆x包。
12.88 =x10 30x=20×18
8x=12.8×10 30x=360
8x=128 30x=36030
x=1288 x=12
x=16
答:李奶奶家上个月的水费是16元。 答:要捆12包。
篇7:用比例解决问题 教案教学设计(人教新课标六年级下册)
教学内容:教科书P59~60例5、例6,练习九3、7题。
教学目标:
1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
教学重点:用比例知识解答比较容易的归一、归总应用题。
教学难点:正确分析题中的比例关系,列出方程。
教学过程:
一、复习铺垫,引入新课。(课件出示)
1、判断下面每题中的两种量成什么比例?
(1)速度一定,路程和时间.
(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.
(5)全校学生做操,每行站的人数和站的行数.
2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?
(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。
(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。
3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?
(1)学生自己解答,然后交流解答方法。
(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
二、探究新知。
1、教学例5
(1)学生再次读题,理解题意。思考和讨论下面的问题:
① 问题中有哪三种量?哪一种量一定?哪两种量是变化的?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(3)根据正比例的意义列出方程:
12.88=χ10
解:设李奶奶家上个月的水费是χ元。
8χ= 12.8×10
χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元。
(4)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6
(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)
(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?
(3)学生独立解答。
(4)指名板演,全班交流。
三、巩固提高。
做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
四、课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?
五、课堂作业。
教科书P62练习九第3、7题。
自行车里的数学
教学目标
知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
过程与方法:经历“提出问题-分析问题-建立数学模型-求解-解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。
教学重难点
引导学生理解变速自行车能变速的原理。
教学过程
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数
3、建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。
各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、学以致用
一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈?
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
[自行车里的数学]
1、踏板蹬一圈,是不是车轮也走一圈?
2、踏板蹬一圈,所走的路程与什么有关
3检测
(1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
(2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
篇8:百分数纳税 教案教学设计(人教新课标六年级下册)
吴兴区学校 (幼儿园)具体课时备课表(成熟型教师用)
单元(章)主题 百分数 任课教师与班级
本课(节)课题 纳税 第 8 课时 / 共 9 课时
教学目标(含重点、难点)
及设置依据 1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
重点:税额的计算。
难点:税率的理解。
教学准备
多媒体课件。
教 学 过 程
内容与环节预设 个人二度备课 课后反思
一、复习
1.口答算式。
(1)100的5%是多少? (2)50吨的10%是多少?
(3)1000元的8%是多少? (4)50万元的20%是多少?
内容与环节预设 个人二度备课 课后反思
2.什么是税率?
二、新授
1.阅读P98页有关纳税的内容。说说:什么是纳税?
2.税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。
(2)试说以下税率表示什么。
A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
3.税款计算
(1)出示例5(课本99页)
一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)
(3)要求“应缴纳营业税款多少”就是求什么?
(4)让学生独立完成?
4.看课本98页内容。读一读,什么是纳税?什么是税率?
内容与环节预设 个人二度备课 课后反思
三、练习
1.巩固练习:练习二十三第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。 )
2.依据第5题,学生各自发表意见。
(有关税率的常识:由于不同行业的经营效果有差别,又由于国家为了保护和扶持某些人民群众迫切需要的产品和服务行业等,会减少这些行业的税率,因此消费税和营业税的税率会有很大差别。如例5中说到饭店的营业税率是5%,而审稿费的个人所得税率就是3%。)
3.王经理的月工资是3900元,规定超出元的部分按5%缴纳个人所得税。王经理每月税后工资是多少?
四、小结:今天你有什么收获?
板书
设计 纳税
应缴税款=应纳税金额×税率 个人二度备课: 课后反思:
作业布置或设计 学习、宣传税法知识。 课后反思:
教后整体反思
篇9:百分数利息 教案教学设计(人教新课标六年级下册)
吴兴区学校 (幼儿园)具体课时备课表(成熟型教师用)
单元(章)主题 百分数 任课教师与班级
本课(节)课题 利息 第 9 课时 / 共 9 课时
教学目标(含重点、难点)
及设置依据 1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
重点:掌握利息的计算方法。
难点:正确地计算利息,解决利息计算的实际问题。
教学准备 多媒体课件。
教 学 过 程
内容与环节预设 个人二度备课 课后反思
一、导入
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
内容与环节预设 个人二度备课 课后反思
二、新课
1. 介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读P99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
本金:存入银行的钱叫做本金.小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读P99页表格,了解同一时期各银行的利率是一定的。
4.利息的计算。
(1)出示利息的计算公式: 利息=本金×利率×时间
(2)计算方法:
按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。
内容与环节预设 个人二度备课 课后反思
(3)两年后取款,李奶奶能得到93.6元利息吗?为什么?
学生发表意见后,教师指出:国家规定存款时,要按利息的5%缴纳利息税,你能再算一算实际能得多少利息吗?
(4)学生计算后回答,教师板书:
1000×4.68%×2=93.6(元) 1000×4.68%×2=93.6(元)
93.6-93.6×5%=88.92(元) 93.6×(1-5%)=88.92(元)
比较两种方法?
加上她存入本金1000元,到期时她可以实际取回多少元?
5.练习。
1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
2、完成100页做一做。
3、完成练习二十三的第9题。
三、小结:这节课你懂得了什么?
板书
设计 利息
利息=本金×利率×时间
1000×4.68%×2=93.6(元) 1000×4.68%×2=93.6(元)
93.6-93.6×5%=88.92(元) 93.6×(1-5%)=88.92(元)
个人二度备课: 课后反思:
作业布置或设计 自学103页什么是成数?说说自己对成数的了解。 课后反思:
教后整体反思
篇10:百分数折扣 教案教学设计(人教新课标六年级下册)
吴兴区学校 (幼儿园)具体课时备课表(成熟型教师用)
单元(章)主题 百分数 任课教师与班级
本课(节)课题 折扣
第 7 课时 / 共 9 课时
教学目标(含重点、难点)
及设置依据 1.明确折扣的含义。
2.能熟练地把折扣写成分数、百分数。
3.正确解答有关折扣的实际问题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
重点:会解答有关折扣的实际问题。
难点:合理、灵活地选择方法,解答有关折扣的实际问题。
教学准备 多媒体课件。
教 学 过 程
内容与环节预设 个人二度备课 课后反思
一、导入新课。
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)
二、在生活情境中,讲授新知。
1.教学折扣的含义,会把折扣改写成百分数。
内容与环节预设 个人二度备课 课后反思
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)
①大衣,原价:1000元,现价:700元。
②围巾,原价:100元,现价:70元。
③铅笔盒,原价:10元,现价:?
④橡皮,原价:1元,现价:?
(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。
(5)讨论,找规律。
A、学生动手操作、计算,并在计算或讨论中发现规律。
B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。
(6)归纳,得定义。
A、通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?
内容与环节预设 个人二度备课 课后反思
B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?( “几折”是就是十分之几,也就是百分之几十)
(7)练习。
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
④九二折是十分之( ),改写成百分数是( )。
2.运用折扣含义解决实际问题。
例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
(1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?
(2)学生试做,讲评。
3、巩固练习:
(1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
A、打九折怎么理解?是以谁为单位“1”?
B、学生试做,讲评。
(2)判断:
① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )
② 一件上衣现在打八折出售,就是说比原价降低10%。( )
(3)完成课本中P97“做一做”练习题。
四、这节课你学会了什么?
板书
设计 折扣
“几折”是就是十分之几,也就是百分之几十
个人二度备课: 课后反思:
作业布置或设计 练习二十三第1、2、3题。
课后反思:
教后整体反思
篇11:《用比例解决问题》的教学设计 (人教新课标六年级下册)
张鸿森供稿
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第59-60页例5、6及做一做。
【教学目标】
1、进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能正确运用正、反比例知识解决有关问题。
2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。
【教学重点】用比例知识解决实际问题。
【教学难点】正确分析题中的数量关系,列出方程。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、今天的学习从一个简单的图形开始,(如图)。每个小长方形完全相同,紫色部分表示多少?
2、预设:
(1)60÷2×3=90(用总数除以份数,可以求出每份是多少;用每份数乘份数,可以求出总数是多少。)
(2)解:设紫色部分表示 。
÷3=60÷2
(3)解:设紫色部分表示 。(板书)
(4)解:设紫色部分表示 。
3、这节课,我们就一起用比例的知识来解决问题。
二、关键点拨
1、指着解法(3),你是怎么想的?
生: 都表示一个小长方形是多少。每个小长方形完全相同,说明比值一定,所以大长方形表示的数和小长方形的个数成正比例。
【若冷场,可提示: 分别表示什么?大长方形和小长方形表示的数成什么比例?】
2、汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要几小时到达?
(1)学生独立用比例解答。
(2)汇报交流,说说你的想法。
3、你认为用比例解决生活中的问题,关键是什么?
(1)找出题目中的一定量;
(2)根据一定的量,判断相关联的两个量成什么比例。
三、巩固练习
1、一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?
2、对比练习
(1)小明读一本书,每天读25页,16天可以完成。如果每天读20页,多少天可以读完?
(2)小明读一本书,每天读25页,16天可以完成。如果每天少读5页,多少天可以读完?
3、一根木料,锯3段需要9分钟,如果锯5段,需要多少分钟?(用比例知识解)
四、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
《练习九》的教学设计
张鸿森供稿
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第61-62页练习九。
【教学目标】
使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。
【教学重点】用比例知识解决实际问题。
【教学难点】正确分析题中的数量关系,列出方程。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、基础练习
1、判断下面各题中相关联的量成什么比例。
(1)三角形面积一定,底和高。
(2)水池的容积一定,水管每小时注水量和所用时间。
(3)总面积一定,每块砖的面积和砖的块数。
(4)在一定的时间里,加工每个零件所用时间和加工零件个数。
2、说一说。
(1)判断两种量成正比例还是成反比例的关键是什么?
(2)用比例解决问题的步骤。
二、综合练习
1、用比例解决下面两个问题。
(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?
(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?
过程要求:找出相关联的量,判断成什么比例;写出关系式;列式解答,指名两位学生板演。
2、引导比较。
(1)说出题中数量关系,写关系式。
每本页数×本数=总页数
(2)说一说哪一种量一定,另外两种量成什么比例。
(3)针对以上两题,说一说思维过程和解题步骤
① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。
② 根据等量关系列比例式、解比例、检验。
三、巩固练习
完成课文练习九第6、7题。
四、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
《比例的整理和复习》的教学设计
张鸿森供稿
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第63页整理和复习。
【教学目标】
1、使学生进一步理解比例的意义和性质,明确比和比例的联系与区别。
2、使学生能正确地、熟练地解比例。
3、使学生进一步理解、掌握正、反比例的意义,能正确进行判断。
【教学重点】用比例知识解决实际问题。
【教学难点】根据实际情况运用比例的知识解决问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、关于比例的知识,通过你自己的整理和复习,谁愿意来说说,比例单元有哪些知识?
2、哪些是你学得很精彩的?哪些知识你还有遗憾?
二、比和比例的意义
1、什么是比?
2、什么是比例?比例的基本性质是什么?
3、比和比例有什么联系和区别?
指名口答,出示表格填空。
意义 项数 基本性质 举例
比
比例
三、解比例
1、什么叫解比例?
2、解比例是解方程吗?解方程也是解比例吗?为什么?
3、解比例。
完成课文“整理与复习”第2题。
过程要求:
(1) 学生独立练习活动。
(2) 说一说解比例的步骤,每一步运算的根据是什么?
(3) 请学生上台板书。新课标第一网
(4) 师生共同评价,并强调书写格式。
四、正(反)比例的意义
1、什么叫成正比例的量和正比例关系?
2、什么叫成反比例的量和反比例关系?
3、比较正、反比例的相同点和不同点。
相同点 不同点 关系式
正比例
反比例
4、你是如何判断两种量是否成正比例或反比例的?
学生通过交流,概括出“一找、二想、三判断”。
一找:哪两种上关联的量。
二想:两种相关联的量的变化情况,写出关系式。
三判断:联系关系式,看商一定还是积一定,判断成什么比例。
5、完成课文“整理与复习”第3题。
过程要求:
按复习中概括“一找二想三判断”三步骤进行练习。
(1)找出两种相关联的量。
(2)说一说两种量的变化情况,写出关系式。
(3)这里哪一种量一定,两种量成什么比例。
五、巩固练习
1、判断下列关系式中,两种变化的量成不成比例?若成比例,成什么比例?
(1)被除数÷除数=商 (2)被除数÷除数=商
(3)因数×因数=积 (4)因数×因数=积
2、完成课文练习十第1~3题。
六、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
www.xkb1.com
篇12:第四课时:用百分数解决问题(一) 教案教学设计(人教新课标六年级上册)
教学内容:“求一个数是另一个数的百分之几”的应用题。课本第85、86页的内容及练习二十的第1~10题。
教学目标:
1.是学生会解决简单的发芽率、成活率等问题。
2.培养学生解决生活中有关百分数的实际问题的能力。
重点难点:
1.灵活解决实际问题。
2.正确理解发芽率、成活率的意义。
教学用具:实物投影。
教学过程:
一、学前导入:
1.出示复习题:六年级有学生160人,已达到国家体育锻炼标准的有120人,占六年级学生人数的几分之几?
(回顾分数中求一个数是另一个数的几分之几的方法。)
二、展示学习目标:
1.学会掌握“求一个数是另一个数的百分之几”应用题方法。
2.学会解决生活中有关百分数问题。
三、自学指导:
出示例1的第(1)题。
说明:达标率是指达标学生的人数占学生总人数的百分之几。
思考:1.与复习题相比,什么没有变?问题有何变化?
2.如何求达标率?
明确:1.条件没有变,单位“1”没有变,只是把几分之几换成百分之几。
2.和分数求一个数是另一个数的几分之几的方法一样。(老师引导)
即:求达标率要用达标的人数除以学生总人数,在吧结果化成百分数。
通常用下面的公式计算:达标率=达标人数/总人数×100﹪100
(学生演示计算)
120/160×100﹪=0.75×100%=75%
答:六年级学生的达标率是75%。
(提醒:算式后面不要忘记乘100%,因为达标率是一个百分率。)
四、讨论发现:
出示例1的第(2)题。
1.读题,说说什么是发芽率?
2.如何求发芽率?
3.你能说出一些百分率的例字吗?举例说明。
明确:
1.(多叫几名学生说明)归纳:发芽率就是求发芽的种子数占实验种子数的百分之几。
2.发芽率=发芽的种子数/种子总数×100%
板书演示:78/80×100%=0.975×100%=97.5%
46/50×100%=0.92×100%=92%
19/20×100%=0.95×100%=95﹪
3.小麦的出粉率、一批树木的成活率、学生的出勤率等等。
五、巩固练习:
完成课本第87~89页练习二十的第1~10题。
六、作业安排:
练习二十第1、2、3题。
篇13:第五课时:用百分数解决问题(二) 教案教学设计(人教新课标六年级上册)
教学内容:“求一个数比另一个数多或少百分之几”应用题。课本第90页例2。
教学目标:
1.在学习解答一个数是另一个数的百分之几应用题的基础上,学习求一个数比另一个数多或少百分之几的应用题。
2.掌握分析方法,提高解题能力。
重点难点:
掌握“求一个数比另一个数多或少百分之几”应用题的分析方法,能够正确地列式计算。
教学用具:实物投影。
教学过程:
一、学前导入:
1.解答“求一个数是另一个数的百分之几”的应用题,关键是什么?
(找应用题中的标准量,也就是单位“1”,哪个量是标准量,哪个量就作除数。)
2.出示复习题:一个乡去年原计划造林12公顷,实际造林14公顷,实际造林时原计划的百分之几?
(若将问题变为“实际造林比原计划增加了百分之几”应该怎样解答呢?)
进入课题。
二、展示学习目标:
学会掌握解答求一个数比另一个数多或少百分之几应用题的方法。
三、讨论发现:
出示例2.
1.读题观察例2与复习题有什么异同?
2.“求实际造林比原计划多的公顷数占原计划的百分之几“是哪两个量在比较。哪个量是单位“1”?
3.你有几种解法呢?
明确:
1.复习题求的是实际造林时原计划的百分之几,例2是求实际造林比原计划增加百分之几。
2.增加的÷原计划的(单位“1”)
3.(学生板书演示)
①(14-12)÷12=2÷12≈0.167=16.7%
答:实际造林比原计划增加了16.7%
②老师提示:把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。
14÷12≈1.167=116.7%
116.7%-100%=16.7%
老师说明:在实际生活中,人们常用“增加百分之几”“减少百分之几”“节约百分之几”……来表达增加、减少的幅度。
四、实践练习:
将例2中的问题改为“原计划造林比实际少百分之几”
思考:
1.根据问题分析,哪两个量在比较?把哪个量看作单位“1”?
2.如何列式计算?
明确:
(学生分组讨论,板书演示。)
1.是原计划造林比实际造林少的公顷数和实际造林数比较,把实际造林的公顷数看作单位“1”,先求出原计划造林比实际造林少的公顷数,再求出原计划造林比实际少百分之几。
2.(14-12)÷14或14÷14-12÷14
五、巩固练习:
完成第90页“做一做”。
六、作业安排:
课本第91页第1、2、3题。
篇14:第六课时:用百分数解决问题(三) 教案教学设计(人教新课标六年级上册)
教学内容:“求比一个数多百分之几的数是多少”的应用题。课本第93页例3。
教学目标:
1.理解并掌握“求一个数的百分之几是多少”的数量关系,正确解答“求一个数的百分之几是多少”的实际问题。
2.正确分析题目中的数量关系,提高解决实际问题的能力。
重点难点:
1.学会掌握求一个数的百分之几是多少的数量关系。
2.正确分析解答求一个数的百分之几是多少的实际问题。
教学用具:实物投影。
教学过程:
一、学前导入:
出示复习题:一堆煤重2500吨,用去3/5,用去了多少吨?
学生分析题中数量关系和单位“1”并列式计算。
明确:把煤的总吨数看作单位“1”,求用去多少吨就是求单位“1”的几分之几是多少。即:2500×3/5=1500(吨)
若将3/5改成60%则求一个数的百分之几是多少和球一个数的几分之几是多少的应用题思路一样。
进入课题。
二、展示学习目标:
学会掌握“求比一个数多百分之几的数是多少”的应用题的方法。
三、讨论发现㈠:
出示例3:学校图书室圆又图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
1.题中已知什么?哪个量是单位“1”?
2.分析题中的数量关系并列式计算。
明确:
1.已知原有图书册数,把原来图书的册数看作单位“1”。
2.(多名学生回答并板书演示)
方法(一):原来的册数+增加的册数=现在的册数
1400×12%=168(册)
1400+168=1568(册)
方法(二):1400×(1+12%)
=1400×112%
=1568(册)
答:现在图书室友1568册图书。
四:讨论发现㈡:
例题中的两种解法有什么异同?
(学生分组讨论)
明确:相同点式都把原来的图书册数看作单位“1”,都是用乘法计算。不同点是第一种方法用原来的图书册数加上增加的册数,算出的就是现在的图书册数;第二中方法是先求出现在的图书册数相当于原来的百分之几,再算出现在的图书册数。
五、巩固练习:
完成第93页的“做一做”。
六、作业安排:xkb1.com
课本练习二十二第1、2、3题。
篇15:第八课时:用百分数解决问题(3)/第九课时:折扣 教案教学设计(人教新课标六年级下册)
第八课时:用百分数解决问题(3)
稍复杂的“求一个数是另一个数的百分之几”
教学目标:
1、使学生掌握求稍复杂的已知一个数的百分之几是多少,求这个数的应用题的解题方法,并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+ )
二、新知探究
(一)、教学例3
1、出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
2、出示自学提纲:
(1)读题,找已知条件和问题,明确这道题是把谁看成单位“1”。
(2)思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?
(3)学生讨论后分小组交流,并独立列式计算:
3、学生汇报全班交流。
① 今年图书增加的部分是原有的12%。
② 今年图书的册数是原有的120%。
第一种:1400×12%=168(册)
1400+168=1568(册)
第二种:1400×(1+12%)
=1400×112%
=168(册)
1、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
(二)、巩固练习:完成P93“做一做”第1题。
三、当堂测评(课件出示)(每题25分)
1、(1)出示练习:
①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?
②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、教科书练习二十二的第1、3、4题。
学生独立完成,教师巡回查看,小组内订正。
四、课堂回顾
这节课你有什么收获?
设计意图:
本部分内容是“求比一个数多(少)百分之几”的应用题,这部分内容与“求比一个数多(少)几分之几”的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也会较为容易。
教学后记
第九课时:折 扣
教学目标:
1.明确折扣的含义。
2.能熟练地把折扣写成分数、百分数。
3.正确解答有关折扣的实际问题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
教学重点:会解答有关折扣的实际问题。
教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。
教学准备:多媒体课件
一、创设情境(视频播放)
。节日期间各商家打折促销的活动场面:买二送一、八折、七五折、五折……
学生分析各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)
教师讲解:打折出售,大家调查到的打折是商家常用的手段,是一个商业用语,
二、新知探究。
(一).教学折扣的含义,会把折扣改写。
1、课件出示自学提纲:
(1)什么叫折扣?
(2)几折如何用分数表示?百分数呢?
2、学生自学课本第97页的第一自然段。教师巡回了解学生的掌握情况。( “几折”是就是十分之几,也就是百分之几十)
3、练习检查自学情况。
八折:( )/10 ( )/% 七五折: ( )/10 ( )/%
六折:( )/10 ( )/% 四五折: ( )/10 ( )/%
( )折:9/10 ( )/% ( )折: ( )/10 25/%
个别学生回答,并说出是什么意思。集体订正。
4、小组长说出几折、十分之几或百分之几,组员轮流说出相应的数。教师各小组间查看。
5、讨论,找规律。
原价乘以( )%恰好是现价;现价除以原价是( )%;现价除以( )%是原价。
(二).运用折扣含义解决实际问题。
例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
1、教师提出自学问题,指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?
2 、学生试做,教师在学生中了解学习情况。
3、小组内讲评。
4、教师问:谁还有什么不懂得请提出来。并讲评。
5、学生独立完成课本97页“做一做”。
三、当堂测评(课件出示)
1、判断(20分)。
① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )
② 一件上衣现在打八折出售,就是说比原价降低10%。( )
2、练习(40分)。
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
④九二折是十分之( ),改写成百分数是( )。
3、解决问题(40分)
爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
学生独立完成,小组内讲评、得分。教师让学生说出“比原价便宜了多少钱?”理解情况。
四、课堂总结;
在节日里你能否购买打折的商品?
设计意图:
1、重视情景教学。让学生初步感知数学在生活中的广泛应用,激发求知欲。
2、以学生自学为主,培养学生自学习惯的养成。
3、当堂测评了解学生掌握情况,增强学生的自信心。
教学后记:
篇16:《用除法解决问题》教学设计 (人教新课标二年级下册)
教学内容:人教版数学第四册54~55页例2、例3,练习十二的第1、2题。
教材分析:
《一个数是另一个数的几倍》是人教版义务教育课程标准实验教材小学数学第四册第四单元《用除法解决问题》中的内容。本课教学之前,学生已经初步理解“倍”的含义和除法含义,并且学习过求一个数的几倍是多少,这些都为本课内容的学习作了知识铺垫。本课时,用除法解决“求一个数是另一个数的几倍是多少”的实际问题,安排在教学用7~9的乘法口诀求商之后,其匠心在于加深学生对除法含义的理解,让学生领会“一个数是另一个数的几倍”的含义,并学会解决求一个数是另一个数的几倍实际问题。同时,使学生了解除法计算与实际生活的联系,培养学生应用数学的意识,发展解决问题的能力。
这个传统的教学内容,新教材由浅入深安排了两个例题,例2,通过摆飞机模型的主题活动,在操作观察中让学生建立“一个数是另一个数的几倍”的概念;例3,通过观察情境图,从图中获取相关数学信息,引导分析推理,探究出“求一个数是另一个数的几倍”的一般解法。学习这部分内容,不仅有助于学生体会两个数量之间的倍数关系,学会解决求一个数是另一个的几倍的实际问题,也为今后进一步学习有关“倍”的实际问题作好了思路孕状。教学时应引导学生应用已掌握的“倍”的概念和“求一个数的几倍是多少”的先前经验学习“求一个数是另一个数的几倍是多少”的实际问题。教学中精心组织操作活动,让学生通过自身活动理解一个数是另一个数的几倍是多少的数量关系,初步体会数量之间的内在关系;通过解决实际问题,有意识地让他们经历将一个具体问题抽象为数学问题的过程,经历运用除法的含义确定算法的过程,使学生初步懂得应如何数学地思考问题,如何用数学的方法来处理有关的信息,如何合理地计算出结果。
解决问题是本单元教学的重要内容。教学时,一方面要用学具进行操作,为学生的有条理的思考提供感性材料的支持,另一方面要用现实生活中的实际问题引导学生理解问题的含义。最后通过一组有层次的练习帮助学生巩固加深。
教学设计思路:课前准备,做好铺垫 创设情境,激趣引入 学习“一个数是另一个数的几倍”的含义(学生动手操作中感知) 自主探索出“求一个数是另一个数的几倍是多少”的计算方法(小组合作交流) 引导学生自己提出“求一个数是另一个数的几倍是多少”的问题 组内交流,解决问题 巩固练习 课堂小结(小结学习内容,课堂表现)
教学目标:
1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互关系。
2、使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
3、使学生会用自己的语言表达解决问题的大致过程和结果。
4、通过动手实际操作,培养学生动手操作的能力和合作意识。
教学重点:使学生经历从实际问题中抽象出一个数是另一个数的几倍的过程,会用乘法口诀求商的技能解决实际问题。
教学难点:应用分析推理将一个数是另一个数的几倍是多少的数量关系转化为一个数里面有几个另一个数的除法含义。
教学准备:
教具:多媒体课件。
学具:每人准备(10根或15根)小棒。
课前准备:
1、教师和学生谈话,让学生说说自己的理想是什么。
2、做伸手指的游戏:
(1)教师伸几根手指,请学生伸出是老师的几倍的手指数。
(2)伸出8根手指,每2根分一份,看看能分成几份。
〔设计意图:融洽师生关系,在课前活动中复习有关求一个数的几倍是多少和除法的含义,为新内容的学习作铺垫。〕
教学过程:
一、创设情境,激趣引入
师:首先请同学们来收看一段视频。(课件播放有关国庆60周年阅兵仪式中空中梯队的视频)
师介绍飞行员刘欣:刚才大家看到的是国庆60周年阅兵式上空中梯队的精彩表演,在这些飞行员中有一名女飞行员,她的名字叫刘欣(出示刘欣的照片)。刘欣姐姐小时候就是青山区的一名学生。我们要像她一样从小树立自己的理想,并且要努力去实现它。小红的理想就是长大后能当一名飞行员。你们看,她用小棒摆了一架飞机。(将小红的图片和用小棒摆成的飞机的图片贴在黑板上)
〔设计意图:收看视频,既可以对学生进行爱国教育和理想教育,又可以很自然的引出主题,调动学生的积极性〕
二、教学例2
1、学习“一个数是另一个数的几倍”的含义。
(1)师:老师也给你们准备了一些小棒,你们想用小棒摆飞机吗?先让我们一起来看看怎么用小棒摆飞机。请你一边看一边数:几根小棒能摆一架飞机?(动画演示用5根小棒摆飞机的过程)
〔设计意图:动画演示用5根小棒摆飞机的过程,既让学生知道怎样用小棒摆飞机,避免操作过程中出现不会摆的现象,同时又能强化一倍数。〕
(2)提问:几根小棒能摆一架飞机?(指名回答;根据学生回答,教师板书:5根)
(3)师出示小丽的图片和一捆小棒(将小丽的图片贴在黑板上),问:小丽有10根小棒(板书:10根),猜一猜她能摆几架这样的飞机?(指名答)
师出示小强的图片和一捆小棒(将小强的图片贴在黑板上),问:小强有15根小棒(板书:15根),猜猜他能摆几架这样的飞机?(指名答)
〔设计意图:让学生猜小丽、小强各能摆几架这样的飞机,引导学生向几里面有几个几靠,不让学生说理由,等到学生动手操作,充感知后再来探讨。〕
师:谁想来帮小丽摆一摆?教师将小丽的10根小棒给1名学生,摆在小丽旁边画好的方框中。
师:谁想来帮小强摆一摆?教师将小强的15根小棒给1名学生,摆在小强旁边画好的方框中。
(4)师:其余的同学请拿出你们的小棒(请慢慢打开,不要弄掉了),先数一数有几根,再动手摆一摆,看你能摆几架这样的飞机?
(5)小组内交流,指名汇报:你有几根小棒,摆了几架飞机?(生:有10根小棒,摆了2架;生:有15根小棒,摆了3架)
〔设计意图:教师给学生的小棒根数并不是都一样的,有的10根,有的15根,激发学生的兴趣,调动学生的积极性,让学生产生一定的认知冲突,学生会想到老师给的小棒的根数不同,摆出的飞机的架数也不相同。〕
(6)师:我们一起来看小丽的,小丽有10根小棒,摆了几架这样的飞机?(指名答)
〔设计意图:因为学生的小棒数不同,摆的飞机数也不同,必需要把学生的注意力集中到同一种情况下,宜于讲解包含关系和倍数关系的转换。〕
问:为什么10根小棒只能摆2架飞机呢?(课件出示10根小棒,小组内先相互交流,然后指名回答,上台在电子白板上圈一圈)(10根里面有2个5根)
〔设计意图:通过圈一圈的方法,让学生感知并理解10里面有2个5。〕
(7)师:小丽的和小红的比,10根里有2个5根,还可以说10根是5根的2倍。(板书:10根里面有2个5根,10根是5根的2倍)
〔设计意图:教师手指黑板上的板书,一边比划,一边讲解,帮助学生理解。〕
(8)请你在小组内说说10根和5根之间的倍数关系。(点几人说)
(9)师:用你的和小红的比,你用了几根小棒?你的是小红的几倍?你怎样想的?(根据学生回答的情况,可追问:你用了几根小棒,里面有几个5?)
生1:我用了10根小棒,10里面有2个5,10是5的2倍,我的是小红的2倍。
生2:我用了15根小棒,15里面有3个5,15是5的3倍,我的是小红的3倍。
〔设计意图:让学生在看一看、比一比、说一说的过程中进一步加深对一个数是另一数的几倍的理解,培养学生口头表达能力。〕
2、自主探索出“求一个数是另一个数的几倍是多少”的计算方法。
(1)如果不摆飞机(老师将小强的3架飞机的小棒合在一起)你能知道小强的是小红的几倍吗?
〔设计意图:不能对着摆好的飞机看,引导学生脱离图形,从形象的两个物体的关系抽象到数与数的关系。〕
(2)学生思考,回答。(15÷5=3)
师:要想知道15是5的几倍,就是求15里面(有几个5),把15( 5个5个)地分, 1个5,2个5……每份都是5,同样多,所以可以用除法来表示。
〔设计意图:在除法意义的基础上理解求一个数是另一个数的几倍可以用除法来表示。〕
3、巩固练习:
看图,说一说倍数关系:(课件出示,学生看图回答)
(1)
( )是( )的( )倍。
问:谁和谁比?(红三角形和蓝三角形比)
红三角形是蓝三角形的几倍?(指名学生回答,上台指一指)。
(2)□□□
☆☆☆☆☆☆☆☆☆☆☆☆
( )是( )的( )倍。
问:谁和谁比?(☆和□比)
能不能像上面一题一样直接看出来?你有什么办法?指名学生回答,上台圈一圈。
(3)2朵红花,6朵蓝花。(出示打乱的花图案)
问:谁和谁比?谁是谁的几倍?让学生算一算。
〔设计意图:第1小题中,红色三角形已经按蓝色三角形的个数分成了几份,可以直接看出谁是谁的几倍;第2小题中,五角星连在一起,让学生自己来按照方块的个数来分;第3小题中,红花和蓝花杂乱地摆成一堆,既不能直接看出,又不能直接圈分,让学生通过计算来解决。3道练习题的设计,按照从易到难、从直观到抽象的顺序,充分强调了谁和谁比,通过圈一圈、分一分的方法进一步理解求一个数是另一个数的几倍就是求一个数里有几个另一个数。通过有层次的练习,帮助学生对该知识点进一步进行理解、建构。〕
(二)教学例3
1、引导学生自己提出“求一个数是另一个数的几倍是多少”的问题。
师:课件出示场景图。大家看这些小朋友在干什么?(表演)再过一段时间就是“六一”儿童节了。小朋友们为了庆祝自己的节日,正忙着排练节目呢。
师:让我们解决什么问题?
〔设计意图:从问题入手,引导学生寻找解决问题的必要数学信息。〕
生:唱歌的人数是跳舞的几倍?
师:需要知道什么?(唱歌的人数和跳舞的人数)(根据学生回答,在唱歌的和跳舞的下面分别写出人数)
问:“求唱歌的人数是跳舞的几倍”也就是求35是7的几倍。怎么求?
2、组内交流,汇报。 35÷7=5
强调: 35是7的5倍。“倍”指的是两个数量的一种关系,不是指具体的物体的数量,得数后面不写单位。
(让学生口答,答:唱歌的人数是跳舞的5倍) 〔设计意图:培养学生完整答题的习惯。〕
3、巩固练习:
(1)例3后面的“做一做”
师:在课堂上大家认真学习,在课余时间要注意锻炼身体。你们看看这些小朋友们在做什么?①请大家仔细看画面,说说你知道了哪些数学信息?
生:踢球的有18人。
除了直接告诉我们的数学信息外,我们能不能通过看一看、数一数的方法得到更多数学信息?
〔设计意图:引导学生掌握更多收集数学信息的方法。〕
生:跑步的有9人。 生:练武术的有3人。(根据学生的回答,课件显示相关数据)
②独立解答第(1)题。
③解答第(2)题,引导学生提出用不同方法进行计算的问题。
(2)完成练习十二1、2(独立完成,面批面改。)
三、总结
1、这节课你有什么收获?(根据学生回答,揭示课题。课题没有写成“用除法解决问题”,避免学生在没理解题意的情况下,直接套用除法。)
2、夸夸你的同学,说说他这节课哪方面表现得很棒?
师:大家表现得都很好。只要我们用心观察,就会发现,其实我们的生活中到处都有数学。老师建议大家课后也去找一找生活中的“谁是谁的几倍”好吗?
篇17:百分数和复习(一) 教案教学设计(人教新课标六年级下册)
吴兴区学校 (幼儿园)具体课时备课表(成熟型教师用)
单元(章)主题 任课教师与班级
本课(节)课题 整理和复习(一) 第 课时 / 共 课时
教学目标(含重点、难点)
及设置依据 1.通过复习进一步理解百分数的意义,掌握百分数的写法。
2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
难点:百分数意义的理解
教学准备 多媒体课件。
教 学 过 程
内容与环节预设 个人二度备课 课后反思
一、基本练习
1.完成下面表格。
内容与环节预设 个人二度备课 课后反思
小数 0.16
分数
百分数 24.5% 0.9%
2.只列式,不计算。
(1)40占50的几分之几? (2)50是40的百分之几?
(3)5比8少百分之几? (4)8比5多百分之几?
二、知识梳理
1.百分数和分数在意义上有什么不同?百分数写法有什么特点?
2.说一说百分数和小数互化的方法,百分数和分数互化的方法?
3.求一个数是另一个数的百分之几的应用题用什么方法解答?
如:甲数是200,乙数是150。
(1) 甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。
(2) 乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。
(3) 甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。
(4) 乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。
三、深化练习:
1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?
2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百
内容与环节预设 个人二度备课 课后反思
分之几?
四、小结:这节课复习了什么?
板书
设计
整理和复习(一) 个人二度备课: 课后反思:
作业布置或设计 P104第1、2、3题。
课后反思:
教后整体反思
篇18:第五单元百分数 教案教学设计(人教新课标六年级下册)
单元目标:
1、理解百分数的意义,了解它在实际中的应用,会正确地读、写百分数。
2、能够进行小数、分数和百分数的互化。
3、理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。
4、在理解、分析数量关系的基础上,使学生能正确地解答有关百分数的问题。
单元重点:
百分数的意义,求一个数是另一个数的百分之几的应用题。
单元难点:
比较复杂的百分数应用题。
1、百分数的意义和写法
教学目标:
1、结合学生生活实际,借助学生的生活经验,使学生理解和掌握百分数的概念,知道百分数与分数之间的区别,会正确读、写百分数,会解释日常生活中常见的百分数。
2、在理解百分数的意义的过程中,培养学生的分析比较能力和抽象概括能力。
3、通过搜集学习材料并进行一系列的讨论和研究,使学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。
教学重点:理解和掌握百分数的意义。
教学难点:正确理解百分数和分数的区别。
教学过程:
一、复习。
1.回答:(1)7米是10米的几分之几?
(2)51千克是100千克的几分之几?
2.说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。
(1)一张桌子的高度是 米。
(2)一张桌子的高度是长度的 。
(引导学生说出: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。)
二、新授
1、教师举几个百分数的例子:这次半期考,全班同学的及格率为100%,优秀率超过了50%;体检的结果显示,我校的近视人数占全校总人数的64%……像100%、50%、64%这样的数叫做“百分数”。
2、同学们能举出几个百分数的例子吗?说说在生活中你们还在哪些地方见到百分数?
3、举例说说百分数表示什么,并归纳出百分数的意义。(表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。)
4、讨论百分数和分数的联系及区别:分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。
5、教学百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如: 百分之九十 写作:90%;
百分之六十四 写作:64%;
百分之一百零八点五 写作:108.5%。
(写百分号时,两个圆圈要写得小一些,以免和数字混淆)
6、教学百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。
三、练习
1、完成P78“做一做”第二题:读出下面的分数。
2、完成P78“做一做”第一题:直接在书上的横线上写出对应的百分数。
3、P79练习十九第4题:读出或写出报栏中的百分数。
4、“做一做”第四题:学生根据自己的理解,说说分数和百分数在意义上有何不同。
四、布置作业
练习十九第1~3题。
教学追记:
本堂课,我从三个层次入手。第一层:联系生活实际引出百分数;第二层:理解百分数的具体含义;第三层:教学百分数的读写。三个层次,思路清晰,教学层次明显。其中,我把教学重点放在理解百分数的具体含义上,并及时与分数做了比较,教学结构较为严谨。
篇19:百分数和复习(二) 教案教学设计(人教新课标六年级下册)
吴兴区学校 (幼儿园)具体课时备课表(成熟型教师用)
单元(章)主题 任课教师与班级
本课(节)课题 整理和复习(二) 第 课时 / 共 课时
教学目标(含重点、难点)
及设置依据 1.通过复习使学生进一步理解“求一个数的百分之几是多少”和已知一个数的几分之几是多少,求这个数的应用题的数量关系,能正确熟练地进行解答。
2.能正确熟练地解答有关税款、税后利息等实际应用问题。
重点:理解“求一个数的百分之几是多少”和“已知一个数的几分之几是多少,求这个数”的应用题。
难点:利用百分数的意义灵活的解决生活中的实际问题。
教学准备 多媒体课件。
教 学 过 程
内容与环节预设 个人二度备课 课后反思
一、基本练习(只列式不计算)
(1) 10万元的5%是多少? (2)一个数的80%是100,求这个数。
(3)500减少20%后是多少? (4)1000元增加2%后是多少?
(5)100比某数多10%,求某数?
内容与环节预设 个人二度备课 课后反思
二、知识梳理
1.某校男生人数比女生少10%。
①谁是单位“1”。
②男生人数是女生人数的百分之几?
③已知女生有500人,求男生有多少人?
④已知男生有450人,求女生有多少人?
2.把③、④两题进行比较,然后小结。
3.105页第1题,课本105页第4题,。
二、税款的计算方法,利息的计算公式。
1.复习税款的计算方法。
2.复习利息的计算公式:利息=本金×利率×时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)
3.什么利息不纳税?利息与税后利息有什么不一样?
三、巩固与深化练习
1.课本104页的第4题。
2.课本105页的第6题。
四、小结:这节课你有什么收获?
板书
设计 整理和复习(二) 个人二度备课: 课后反思:
作业布置或设计 课本105页练习二十四第2、3、5题 课后反思:
教后整体反思
★第六课时:用百分数解决问题(三) 教案教学设计(人教新课标六年级上册)
文档为doc格式