欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

解应用题教学反思

时间:2023-02-16 08:37:00 其他范文 收藏本文 下载本文

下面是小编整理的解应用题教学反思,本文共18篇,希望能帮助到大家!

解应用题教学反思

篇1:解应用题教学反思

解应用题教学反思

加强题意内化的教学重点应该放在如何提高学生把应用题中的各种信息进行筛选,压缩成以数量关系为核心的若干临时信息组块的能力。故列方程解应用题的教学除了教授一般方法例如解题步骤之外,在学生掌握了一定的知识之后,宜加强以下几个方面的工作。

(一)正确理解,牢固掌握应用题中惯用名词术语的意义及常用的等量关系,形成良好的知识结构。

(二)加强文字语言和数学语言的互化练习,借此提高外部言语内化的信息转换能力。

(三)加强分析题中关键词句和非关键词句的练习,借此提高对题目信息筛选、压缩的'能力,控制内化前后信息“质的一致性”。

(四)加强整体把握题意的综合能力训练,借此提高对题目内在逻辑的理解以及对题意的知觉水平。

(五)加强对题目矛盾条件的觉察能力的培养,借此提高内化过程中思维的监控水平。

还可以进行把复合问题分解为几个简单问题,把同一题目的已知条件和问题的位置互换重新编题等等练习。

总之,教师除了应该向学生讲清列方程解应用题的一般步骤、基本方法,诸如通过译式法、列表法、线示法、图示法等各种方法,从可直接言传的角度向学生展示解方程应用题的过程,使学生能仿此形式解决问题,表述问题;还应该间接地,从改善学生审题过程的心理品质出发,培养学生正确进行题意内化的能力,从而更有效地解决列方程解应用题的教学难点,努力实现以培养人的发展为宗旨的教学方针。

篇2:《解比例应用题》教学反思的

本课时教学解比例应用题。是在学生理解比例的意义和性质,成正、反比例的量的基础上进行教学的,是比和比例知识的综合应用。教学解比例应用题的关键是使学生能够正确找出两种相关联的量,判断它们是成哪种比例关系,然后根据正比例或反比例的意义列出等式或方程。

因此,在教学这部分内容时,先进行一些判断练习。如给出一些数量,然后提出下面的问题启发学生思考:(1)有哪三种量?(2)其中哪一种量是固定不变的?(3)哪两种量是变化着的?这两种量是按怎样的规律变化的?这两种量成什么比例?在学生能比较熟练地进行判断的基础上进行新授教学。教学例5时,先让学生弄清题目的条件和问题,让他们先用以前学过的方法解答。然后学生自己分析题中有哪些量?它们之间是不是相关联?是不是成比例?成什么比例?在此基础上学生自己可以独立应用比例的知识来解答。在用比例的知识解答例5时,设所求问题为未知数x,根据正比例的意义用两对对应数值列出等式,最后解比例求出未知数x。紧接着出示变式练习,让学生列式解,进一步巩固用比例解答正比例关系的应用题的解题思路和解题方法。

教学6时,让学生参照例5的学习方法自主学习例6,这样做可以使学生有目的'、有计划、有步骤地独立学习,从中不仅可以使学生发现规律,也有利于培养学生的分析、判断、概括等思维能力,以及独立学习的能力。然后让学生做课堂检测题,要求学生直接用比例知识解答,以有利于巩固本课时所学的内容,提高学生解答应用题的能力。

最后师生共同总结出应用比例知识解答应用题的一般方法:先判断两种相关联的量成什么比例关系,再找出相关联量的对应数值,然后根据正、反比例的意义列出等式解答。这样做不仅使学生理解和掌握用比例知识解答应用题的解题思路和解题方法,还能进一步培养学生应用知识进行分析、推理的能力,发展学生的思维。

篇3:《用一元一次方程解应用题》的教学反思

利用一元一次方程解应用题是数学教学中的一个重点,而对于学生来说却是学习的一个难点。七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。在教学中我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。针对学生在学习过程中不重视分析等量关系的`现象,在教学过程中我要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系。在课堂练习的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,通过一元一次方程应用题的教学,学生能够比较正确的理解和掌握解应用题的方法,初步养成正确思考问题的良好习惯。

通过这节课的教学和反思,总结以下几条:

一、认真审题,重视应用题数量关系的分析。

审题是正确解题的前提,学生往往对审题拘于形式,拿到题目就把题中数字简单组合,导致错误。应用题是有情节、有具体内容和问题的,所以首先要加强学生“说”的培养,理解题意。有些应用题的叙述较为抽象、冗长,可引导学生将题目的叙述进行简化,抓住主要矛盾,说出应用题的已知条件和问题。其次要加强关键词句的观察,理解题意。有时候仅一字之差,题目的数量关系就不同,解法也有差异。

二、加强解题思路训练,提高解题能力。

教学不仅要使学生学到知识,还要重视学生获得知识的思维过程。所以在应用题教学中要以指导思考方法为重点,让学生掌握解答应用题的基本规律,形成正确的解题思路。在教学中摸清学生对应用题的思维脉络,了解思维会从哪里起步,向哪个方向发展,将会在哪里受阻,以便点拨帮助学生克服障碍,及时引导学生向预定的目标前进。此外,多进行改变问题,改变条件的训练,使学生排除解题的固定摸式,以培养学生思维的灵活性。

肖逸琳

篇4:《应用题》教学反思

《应用题》教学反思

1、教师创造性地处理教材是实施创新教育的关键。本环节中我将原例题中的问题省掉,不出现题目的问题;就这么一改,一个与学生实际水平相适应的开放性问题产生了,一个与“问题解决”教学要求相符的探索性问题便设计出来了,也就是这样小小的一改,给学生提供了一种良好的创新环境,教学过程便发生了质的变化。学生可以自由地、多角度地进行思考,有旧知的回顾与应用、有新知的.猜想与探索,教师一没有“牵牛”,二没有“放羊”,学生创新能力的培养得到了有效的保证。

2、关注学生独特的体验《数学课程标准》把数学活动水平的过程性目标定位在“经历、体验、探索”,可见在创新教育的大前提下,我们只有充分发挥学生的主体作用,让学生置身于一定的情境中,经历之,感受之,考察之,不仅要用“脑”去学习,而且要调用各种感官去体验、感受。由于学生的个体差异,在数学探究活动中,学生会有不同的感受和体验,对问题也会出现不同的理解和看法,如,同样是说明“这个乡造林任务完成得相当好”,不同的同学有不同的想法。这些都是学生积极投身和亲历探究实践之后所获得的,我们更应该珍视。

3、体现教师主导,学生整个过程我的言语不多,遇到问题能让学生解决的尽量让学生自己解决。我只是一个组织者、引导者和参与者。学生所学知识不是我的生硬灌输,而是学生在自身知识结构的基础上,在我的“无形”帮助下自然悟到。"这样处理达到了事半功倍的效果,不但很好地完成了例题的教学,而且将例题后要求改变问题的题目也自然地得以解决。

篇5:应用题教学反思

一年级数学教学中是很重要的内容之一是图文应用题,这类应用题是学习文字应用题的基础。在图文应用题教学中,引导学生理解画面意思在课堂教学中特别重要。下面谈谈我是如何进行图文应用题教学的:

1、教学要直观明了。

由于一年级的学生识字少,以形象思维为主,对直观、操作感兴趣,因此教学必须运用好直观手段,帮助学生去感知、理解画面意思。例如我在教学过程中,通过出示小鹿图,让学生仔细观察,要求学生用三句话完整说出题意,通过观察、口述,使学生弄清图中的已知条件和要求的数量,再此基础上去进行列式计算。并总结出解题4个步骤:一看题目,二想方法,三列式计算,四检查。教会学生找单位名称和回答问题,因为课本每一道例题都没写单位和回答问题,这样对以后学习应用题是不利的,要很长时间来训练,到不如在开始学习时应用题时就要求学生有完整的解答。

2、应用题教学应重视算理、理解含义。

应用题启蒙教学应当重视算理,揭示算法的含义,避免教学加减法应用题时,让学生硬搬“求一共用加法”和“还剩用减法”这一模式。怎么使学生的思维更加灵活呢,比如在刚刚进行图画应用题的教学时,我利用教具进行操作使学生明白把两个数合在一起是用加法计算和从一个数里去掉一部分求另一部分用减法。在教学中每道题我都要求学生说一说为什么用加法、为什么用减法计算,逐步强化算理,培养了学生的思维、分析能力

3、数学语言训练

图文应用题要有数学语言训练,如:人教版下册61页求一包数学书和一包语文书一共有多少本?就是把35和30合起来,所以用加法计算。又如72页例3:小雪比小磊多得几朵?就是求12比8多几?所以用减法计算。把问题转化为数学语言表达,学生理解题意较为好一些。

篇6:应用题教学反思

一、注重方法的教学。

在进行计算教学时,应用题以情境的形式出现,解决问题的同时,掌握计算方法。教学时在适当的时候,我渗透一些应用题分类的思想,归纳解法,分析思路。

二、注重应用题的基础知识的积累。

数学应用题历来都是教学的难题。数学解题能力不能很快提高,原因有多种。回顾以往的教学经验,发现这些学生连一些基本的数量关系都不明确,甚至数量关系之间张冠李戴在教学时,我注重让学生学会审题,学会分析数量关系在全班交流、小组交流、同桌互说,梳理数量关系。这样不但积累学生的解题的基础知识,对提高学生的解题能力是有很大帮助的。

三、注重应用题教学方法的探索。

针对应用题的教学:注重学生自身的学习探索体验。因而应用题的教学,应该放开手,让学生自己去探索,去发现,得出自己的见解。哪怕结果是错误的。这也是学生自我学习的体验。也是有收获的。探索过程,也是经历错误的过程。是由错到正确的探索经历过程。所以我们要容忍学生的错误探索。更重要的是我们该如何引导学生去探索知识,而不是我们去传授知识。所以教学方法的探索是我们要去做的工作。我们要学会引导学生的方法。去探索引导学生的方法。如:激趣、引导、解惑、提示、复习引入、尝试探究、参与、操作、理解、诱发、情境、悬念、连锁、对照、甚至进行“猜”的思考等等都是引导学生探索的方法。

四、注重反复练习,巩固提高应用题的解题能力。

尊重科学,遵循科学规律,实事求是的做。科学的安排练习。关键把握好度。可以通过很多的形式进行。通过解题探索,激发学习兴趣的同时,提高认识、巩固知识。

篇7:应用题教学反思

应用题教学改革是当前数学课程改革的重要内容之一。在新的课程理念下应该怎样进行应用题教学?这是每一位教师所面临的`实际问题。在应用题的教学中,应该增强应用题教学内容的开放性,培养学生的应用意识。开放应用题的教学内容,就是要改变传统应用题教学内容脱离学生的生活实际,呈现方式单一,条件答案唯一的状况,让学生感受到应用题生动、有趣、有用,激发学生解决问题的愿望。

本节课主要是教学连乘应用题,连乘应用题有两种解法。教材根据连乘应用题数量关系的特点,根据不同的已知条件找出要解答的问题,较好地理解连乘应用题的数量关系,学会解答方法。纵观整堂课的教学过程,我认为本课有以下几方面的特点:

1、创造性的使用教材,创设情境

心理研究表明,当学习内容越接近学生的生活背景,学生自觉接纳的程度就越高,越有兴趣。为此教师要学会创造性地处理教材,应用题的选材要从学生的生活及学习背景出发,要注意收集相关的数学信息材料,扩展或替换教材的例题和习题,让学生从中体会数学就在我们的身边,它是真实的有用的,这是培养学生应用意识的条件之一本节课中,新授部分:同学门告诉你们一个好消息,学校为了丰富我们的课余生活,想为你们购买一些体育用品,你们高兴吗?我们看一看学校要为我们买什么呢?(足球)出示图(有三箱足球、每箱有6个、每个50元)问:从画面中你发现了哪些数学信息?接着请学生根据这些信息思考:你能提出哪些数学问题?学生积极性很高,有的提出用一步解答的问题,这就解决了连乘应用题两种解法的第一步。有的提出了用两步解答的问题;这样再根据第一步求出的数量与题目中的第三个条件,就不难求出题目的结果了。

这就为学生在学习连乘应用题时,采用综合思路,从寻找有联系的条件出发确定中间问题做了准备,而且有利于学生对不同解法的理解,由学生喜欢的信息编写相应的应用题,使学生深刻的领会数学与现实之间的联系:数学源于生活,最终应用于生活。

教材里两种解法都采用综合法思路引导学生分析推理。第一种解法是引导学生根据两个有关生活费的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。第二种解法是先引导学生根据另外两个联系的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。让学生用综合法思路来分析数量关系,有利于学生找出不同的中间问题,理解两种解法所表示的不同的数量关系,明确两种解题方法的区别,便于学生掌握分析和解答的方法。

2、学生自主的探究与合作交流相结合

本课,我不是引着学生逐字逐句分析并解答应用题的,取而代之的是学生自主的探究和合作交流,“你自己试一试,然后小组讨论,你教一教不会的同学。”学生的思维和方法得到了充分的展示。连乘应用题出现了几种不同的方法,而且学生普遍能讲出道理来,学生真正成为学习的主人,积极的参与教学的每一个环节,努力的探索解决问题的方法,大胆的发表自己的观点。在课堂上以小组活动为主体,创造了一种和谐的、民主和学习氛围。每个问题的提出,先是由学生独立思考,再到两人商讨,然后小组交流,把时空有限的课堂变为人人参与、个个思考的无限空间。

3、教师的角色发生了变化

教师不再是一个简单的知识传授者,而是一个成功的组织者和引导者、设计者。面对学生对数学不感兴趣,感到数学枯燥无味、抽象难学的现状。变“简单的求钢笔的价钱”为解决“学生身边的体育用品”中的实际问题,教学内容贴近学生生活,为学生喜闻乐见,调动了学生学习积极性。教学过程中,教师通过扶--半扶半放--放,师生交流,生生交流。使全体学生都有所得。

4、突出学生主体地位,发展学生创新思维

应用题教学理当重视数量关系的分析与解题思路的梳理。本节课在分析应用题时,让学生从情景中发现问题、提出问题并解决问题。提出问题和解决问题的过程是学生思维的过程,教师在课堂上给学生留有充足的时间和空间,让学生去议论、去争辩、去探索。例如:如何购买钢笔等。这样教学不仅使学生的主体地位得到了充分的体现,也使学生的创新思维得到的发展。

5、练习设计开放,展示数学的应用价值

教学本节课时打破了传统的“巩固练习”的常规,设计了具有开放性、灵活性、多变性的生活情景,学生可以根据题目所提供的材料,去选择、去优化,寻找解决问题的最佳策略。这样教学不仅给学生萌发求异思维创造了一个广阔的空间,而且也使学生切实地体验到数学的应用价值,从而增强了学生学习数学的动力和信心。

篇8:浅谈列一元一次方程解应用题的教学

浅谈列一元一次方程解应用题的教学

浅谈列一元一次方程解应用题的教学

摘要: 本文分析出七年级学生学“列一元一次方程解应用题”难的原因,指出突破的方法,教会学生根据实际问题巧设未知数的方法。

关键词: 一元一次方程解应用题难点突破技巧

列一元一次方程解应用题,既是七年级上学期数学的重点,又是教师教学的难点,并且是运用初中数学知识解决实际问题的重要素材,它对于培养及提高学生的思维能力和分析能力具有重要的意义。那么,怎样才能使七年级的学生学好“列一元一次方程解应用题”呢?

在教学中,教师要理论联系实际,结合学生的实际来解决问题。用代数法处理一些实际问题对于七年级的学生来说确实有点难度,究其原因是以前很少接触,这一点主要表现在以下四个方面:

1.学生不习惯利用代数法来处理问题,还停留在小学的算术解法上;

2.抓不住相等关系。有些应用题中“能够表达应用题全部含义的相等关系”比较隐蔽,从题目字面上较难找出来,需要认真分析关键词语,细心揣摩,有时还要借助图形分析才能找出,这确实对七年级的学生来说,难度比较大,所以他们时常感到无从下手;

3.即使找出相等关系,也不能顺利地列出代数式及方程;

4.当问题中含有不只一个未知量时,由于审题、分析能力较差,不知道该选择哪一个未知量作为未知数才简单。

通过这几年的实际教学经验,笔者就此谈谈自己在教学中突破这些的方法。

一、要让学生感觉到代数解法的优越性

初列方程,对学生来说确实不适应,这就要求教师在教学中运用例题对算术法和代数法作比较,找出两种方法的特点,让学生认识到代数解法的优点,反复训练,使学生逐渐体会到代数法的妙处。

例如:把一些图书分给某个班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少学生?

算术法:(20+25)/(4-3)=45(人)

这对一般学生来说,是很难做到的。

代数法分析:设这个班有x名学生,共分出3x本,加上剩余20本,这批书共有(3x+20)本,每人分4本,需要4x本,减去缺的25本,这些书共有(4x-25)本。

等量关系:第一种分法书的总量=第二种分法书的总量

解:设这个班有x名学生,根据题意得

3x+20=4x-25

解得:x=45.

答:这个班有45名学生。

二、教会学生自己寻找相等关系

列方程解应用题一般有五步:弄清题意,找出能够表示应用题全部含义的相等关系,设出未知数进而列出方程,解这个方程,答。其中最关键的一步是正确找出“能够表示应用题全部含义的相等关系”.

在应用题中,相等关系主要有两类:一类是题目给出条件的等量关系,如教材中的“等积变形”问题,“行程”问题等,可按事物发展的顺序来找等量关系。

如:将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

这是一个典型的等积变形问题,不管锻压前还是锻压后,总有下面的等量关系:

锻压前的体积=锻压后的体积

另一类是可在事物之间的内在联系中找到相等关系,如“工作问题”D“浓度问题”等就要在问题的内在联系中去找等量关系。

如:要把150克浓度为95%的硫酸溶液加水稀释成35%的稀硫酸溶液,需要加多少水?

这一问题中,由于是在原来的.硫酸溶液中又加入一部分水,虽说总重量和浓度都变了,但是纯硫酸(溶质)的重量却没有变,于是即有下面的相等关系:

加水前纯硫酸的重量=加水后纯硫酸的重量

三、列方程解应用题常用的分析方法

1.代数式法

用代数式将题目中的数量及数量之间的关系表示出来,找到相等关系,列出方程。如:“数字”问题,“和、差、倍、分”问题等多运用这种方法。

2.图示法

有些问题可以用示意图表示出题目中的条件及它们之间的关系,这类问题可以通过画出图形,可由图中有关基本量的内在联系找到相等关系,列出方程,如行程问题、等积问题多运用这种方法。

3.表格法

我们可将题目中有关数量及其关系填在设计的表格中,然后根据表格逐层分析,由各量之间的内在联系找到相等关系,列出方程,如“日历中的方程”问题、“浓度配比”问题及其它条件较多的题目多运用这种方法。

四、指导学生掌握设未知数的技巧和方法

应用题中,如果未知量特别多时,我们若能巧妙地设未知数,可以给列方程带来很大方便。设未知数是列方程解应用题的第一步,对含有多个未知量而又只允许设一个未知数的问题时,选择适当的未知量设为未知数直接关系到列方程的难易程度。一般来说,有两种设法:一种是直接设法,就是题目怎样问,就怎样设。这种方法主要用于简单的问题中,如:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约5厘米,大约几周后树苗长高到1米?这个问题就宜采用直接设法;另一种是间接设法。有些问题,若采用直接设法,会给列方程增加麻烦,就采用间接设法。如一个两位数,各位上的数字之和是7,若把它们十位上的数字与个位上的数字对换,所得的两位数比原来的两位数大27,求这个两位数?此问题就应选用间接设法。

总之,列方程解应用题虽然是七年级教学中的一个难点,但是,只要我们认真分析,具体问题具体对待,就一定能掌握列一元一次方程解应用题的方法和技巧。

篇9:应用比例解应用题教学设计

《比例的应用》教学反思

比例的应用这部分教材包括正、反比例两个例题,它的知识在一定的程度上含有辨证的思想,让学生明白在某个前提不变的情况下,相关联的两个量的变化与这个前提之间因果的关系。在教学本课时,我通过引导学生认真分析,讨论题中不变量、变量中的比例关系,找出等量关系列出方程,从而使学生掌握用比例解答的基本方法。

充分利用学生的知识基本把新旧方法进行对比。同时也让学生充分了解比例在实际问题中的作用和运用。

课堂上我采用了以旧知引路——学生自主探索——小组合作学习的形式进行。通过设置两个表格,给于学生几个问题作为提示,通过问题带领学生,让学生在形象的数字中寻找成正比例和反比例的量,建立等式,然后去感悟这个比例式成立的依据进行自学,探究新知,而且通过以前学习的方法:旧知与正、反比例解法的联系与区别。给学生充分交流的机会与思考的空间。

课堂上,我抛砖引玉,引导学生分析出题中有行驶路程和行驶时间的这两种量,关系是:路程÷时间=速度,题中的“照这样的速度”就说明速度一定,因此路程和时间成正比例关系.教师:“运用前面我们掌握的比例知识,同学们会解答吗?你准备用哪方面的知识解答?”学生:“准备用正比例解答,因为题中的条件符合正比例的要求。”……一石激起千层浪,学生的学习是互动的;交流是踊跃的,成功的。

练习题的设计能紧密结合学生生活实际,尽量设计一些引起学生兴趣,对学生有吸引力的题目,来激发学生兴趣,提高练习的积极性,克服老教材中那种对学生没有吸引力的叙述、说法,从而加深了学生对新课的认识。

当然,本课还有不足之处:如不能充分让学生用数学语言表达,弄清题目的真正题意,虽照本宣科会做题,对于基本思路还是模糊的,其义还是不明,达不到较高的教学目标。在以后的教学过程中,会注意对做题思路方面继续努力。

《比例的应用》教学反思

本节课教学设计主要抓住比例解答应用题的特征进行的。首先进行复习,一是两种相关联的量成什么比例关系,二是根据条件提出问题。在新课的教学中,设问:用比例解首先要找到什么,(两种相关联的量)判断什么,(这两种相关联的量成什么比例)正比例相对应两个数的什么一定,(商一定)等。然后通过“练”达到巩固和提高。

本教案设计主要体现在“问”与“练”字上,怎样问,练什么,怎么练,我都做了认真的思考,深入研究,特别是在设计教学过程时把学生放在首位,考虑学生已经会什么,他们现在最需要什么。学生通过什么途径来解决,是独立思考还是合作交流呢。学生在这次教学活动中能得到什么?不同学生有什么不同的收获等等问题。做到心中有数,有的放矢。因此,一节课自始至终让学生参与体验解决问题的全过程。学生根据教师的巧妙设问,和富有启发性的引导,通过自主学习和合作交流,很快学生就掌握了新课的内容。这节课既重视比例解应用题的解题方法的教学,又鼓励解决问题策略的多样化,从中发展学生的个性,课堂结构严密,学生练得多,掌握得好。当堂验收绝大多数学生全部正确,学困生都掌握得不错。

最后有一个疑问,用比例解答应用题,难度降低,正确率比较高,但是为什么学生不喜欢用这种方法,还是喜欢用算术方法解答,是因为嫌设未知数麻烦,还是其它原因呢。

篇10:应用比例解应用题教学设计

《比的应用》教学设计

翁台小学:罗仁慧 10月22日 教学目标:

知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。

过程与方法:培养学生运用知识进行分析、推理等思维能力,

情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

教学重点:掌握按比例分配应用题的结构特点和解题思路。 教学难点:正确分析解答按比例分配应用题。 教法:启发引导法,演示法 学法:观察比较,合作交流。 教学准备:多媒体课件。 教学过程:

一、复习解决下面各题: 化简

1.63 : 27 2.1.2千克 :750克 3.4千米 :800米 求下面各比的比值

1.4 : 2.8 2.99 : 66 学生独立完成,抽生板演,集体订正。

二、情景导入 学生自由讨论

1.一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?

2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。

三、新授新知 教学例2 (1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?

(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)

(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四) (4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书) 例2:稀释液平均分成的分数:1+4=5 每份是:500÷5=100(ml) 浓缩液的体积:100×1=100(ml)

水的体积:500×4=400(ml)

答:稀释液100ml,水 400ml。

这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。

师:把我们学过的比转化成分率,怎样来做?

生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成: 浓缩液的体积:500×1/5=100(ml)

水的体积:500×4/5=400(ml)

答:稀释液100ml,水 400ml。 课件显示出来,让学生进一步理解。 四:巩固提高(幻灯片出示)

做一做第

1、2题,学生独立完成,抽生板演,集体讲评。

五、全课总结

今天我们学到了什么?

六、家庭作业

教材第50页,练习十二1-3题。 教学反思:

本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。 对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。

应用比例解应用题教学设计

篇11:应用比例解应用题教学设计

教学内容:小学数学六年级上册北师大版第四单元第55页——第56页的内容“比的应用”。

教材分析:

这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

学情分析:

对于按比分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

设计理念:

《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。

教学目标:

1、能够运用比的意义,通过计算解决分配的实际问题,进一步体会比的意义,提高解决问题的能力。

2、在解决问题的过程中,培养学生的合情合理的推理能力,旧知的迁移能力,体会解决问题策略的多样性。

3、感受探索知识、合作学习的乐趣,体会比与生活的密切联系,收获积极良好的情感体验。

教学重难点:

重点:运用比的意义解决按比例分配的实际问题。

难点:通过实际操作理解按比例分配的实际意义。

教学准备:课件、小棒若干。

教学时间安排:复习2分钟,导入3分钟,新授20分钟,巩固5分钟,小结3分钟,练习7分钟。

教学过程:

一、课前组织复习旧知

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

学生自由发言,预设推断如下:

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的,女生是全班的。

3、以女生为单位“1”,男生是女生的,全班是女生的。

4、女生比男生少(或20%)。

5、男生比女生多(或25%)。追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?你的依据是什么?(请3个学生说说,把握总人数比是5:4就可以了。答案不是唯一的。)二、创设情境,导入新知

师:看来大家对比的认识还是相当清楚的。那接下来老师要同学们帮老师一个忙,我这儿有一筐橘子打算分给幼儿园的大班和小班的小朋友,你们认为应该怎么分合理?(出示课件)

同学发言。

小结:平均分不太合理,按两个班的人数比分才公平合理。师:这样吧,我们用小棒代替橘子,小组实际分一分,并记录分的过程。

师:分好了吗?能说说你们是怎样分的吗?学生交流分的方法。

师:在这次分小棒的活动中,你们有什么发现?

师:实际上以前我们学过的平均分就是按1:1进行分配的。 小结:不管我们怎么分,我们都是按3:2的比来分的,也就是我们每次分的小棒的根数比都得是3:2。三、合作探究,解决问题

师:如果我现在给你们140个橘子按3:2来分,你能求出大班和小班各可以分到多少个橘子吗?请把你的方法写下来。然后小组讨论。(出示课件)

1、师巡视辅导。

2、请不同做法的学生交流汇报。方法一:根据分数的意义。板书:3﹢2=5大班:140×3/5=84(个)小班:140×2/5=56(个)

追问:为什么要“× ”?你能不能告诉大家表示什么?(引导明确:因为大班人数占总人数的,所以它分到的橘子个数应该也要占橘子总数的。)方法二:根据比的意义,板书:140÷(3+2)=28大班:28×3=84(个)小班:28×2=56(个)

追问:为什么要“÷(3+2)”?

答:大班分84个,小班分56个,比较合理。

3、引导小结:好,还有其他做法吗?

方法一是根据比与分数的关系,看看每种物体各占总数的几分之几,再用分数的知识来解答;方法二是根据比的意义,看看一共分成几份,先平均分求出每份的具体数量,再各取所需,乘各自分得的份数。请同学们看书第55页的内容,书中还有哪些刚才我们没有探讨到的方法?(画图法、画表格法)这也是解决问题的方法,但是跟我们探讨的这两种方法比较,我们两种方法更方便。其实这就是我们这节课要学习的内容:比的应用。(出示课件,板书课题)

四、实践应用

1、师:刚才我们共同探讨解决了这样一道“按比分”的问题,觉得有困难吗?有信心独自完成一道这样的题目吗?好,请大家自己读题分析完成,有几种方法都可以把它写下来。课件出示题目—— “幼儿园阿姨要调制2200克巧克力奶,说明书上介绍了其中巧克力和奶的比是2:9,你能帮阿姨算算调制这些巧克力奶需要用多少克奶和多少克巧克力吗?”

独立完成,师巡视辅导。学生上台展示汇报。

2、师:非常棒,但一直做同类型的题目没意思。现在我把题型改一改,看看有谁大家被考倒。请看题,师读题:“幼儿园图书室有图书若干本,按3:2分给大班和小班后,大班小朋友分到了60本,你能帮小班小朋友算算他们能分到多少本吗?”怎么样,谁发现了它和前面题目不一样的地方?能解决吗?好,你能想到几种解题方法,都请你写出来。

师巡视辅导:有句俗话说“三个臭皮匠,抵个诸葛亮”,已经写好的同学不妨把你的做法在小组里和其他同学交流一下,通过思维碰撞,说不定你能得到更多灵感哦。先请一个小组的同学上来把你们的解法写出来。预设方法如下:

(1)60÷3×2=40(本)(2)60÷ × 2=40(本)(3)60× =40(本)(4)60÷ =40(本)

小结:解决生活中的实际问题时,同学们只要认真分析数量关系,就可以找出多种解题方法。

五、拓展延伸(课件出示题目)

1、一座水库按2:3放养鲢鱼和鲤鱼,一共可以放养鱼苗25000尾。其中鲢鱼和鲤鱼的鱼苗各应放养多少尾?

2、一种喷洒果树的药水,农药和水的质量比是1:150。现有3千克农药,需要加多少千克的水?

六、评价总结,促进发展

师:这节课我们利用比的知识解决了许多问题,解决问题关键是讲究实效,所以我们要选择最佳方法也是自己最适合的方法解决问题。

那么学习了“比的应用”,你有什么想法吗?(自由发言)比在我们生活中的应用非常广泛,比如在建筑业、农业、医药等方面都需要非常精确应用比的知识,所以同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

七、巩固新知

完成课本第56页:

1、独立试做:试一试。

2、独立试做练一练的1—3题。

篇12:应用比例解应用题教学设计

教学目标:

1、了解比在生活中的广泛应用。

2、掌握按比分配的解题思路。

3、学会灵活地解决生活中的实际问题。

教学方法:

分析、推理、合作交流,让学生自主探索知识。

教学重点:

学会用比的应用知识解决生活中的实际问题。

教学难点:

学会自主探索解决问题的方法。

教学流程:

一、导入新课

学生展示收集的物品,体会比在生活中应用很广泛。

师:看来,比在生活中应用很广泛,这节课我们来学习《比的应用》。

二、探索新知

1、读题,理解题意。

出示课件,观察老师收集的物品,齐读什么叫稀释液,谈谈自己的理解。

出示例题,齐读,你知道了哪些数学信息?

2、做实验。

师:500ml的稀释液是如何按1:4的比配制成的呢?我们通过下面的实验来了解一下。把水和浓缩液配制在一起,仔细观察看有什么变化?

师:1份的浓缩液和4份的水制成的液体叫什么?你知道500ml的稀释液是几份吗?你是怎么想的?如果按1:3配制呢?按1:5配制呢?

3、画线段图。

师生一起在线段图上表示浓缩液、水和稀释液之间的关系。让生上台指出各部分表示什么。

师:1份的浓缩液和4份的水合起来是几份?板书:1+4=5?把稀释液看出单位“1”,平均分成5份,浓缩液还能怎样表示?水呢?板书:

4、解决问题。

生独立完成,找生板演,同桌交流,最后集体汇报(注意对应关系)。

5、归纳方法。

方法一,先求每份是多少,再求几份是多少。

方法二,把1:4转化成分数,根据求一个数的几分之几是多少用乘法计算来解决。

6、检验。

师:这道题我们做的对不对呢?如何检验?

三、巩固练习。

1、我们按1:10的比把白米醋加水配制成一瓶550ml的稀释液,加热沸腾后给教室消毒,其中需要醋和水各多少毫升?

2、适用范围、稀释比例(原液:水)、作用时间(分钟)、使用方法

一般物体表面

1:200

10—30

对各类清洁物体表面擦拭、浸泡、冲洗消毒。

1:100

10—30

对各类非清洁物体表面擦拭、浸泡、冲洗、喷洒消毒。

果蔬

1:250

10

将果蔬洗净后再消毒;消毒后用生活饮用水将残留消毒液洗净。

织物

1:125

20

消毒时将织物全部浸没在消毒液中,消毒后用生活饮用水将残留消毒液洗净。

排泄物

1:4

>120

按照1份消毒液、2份排泄物混合搅拌后静置120分钟以上。

周末小明清洗苹果,需要配置502ml的稀释液,需要消毒液和水各多少毫升?

四、全课总结

谈收获,图片欣赏。

篇13:应用比例解应用题教学设计

一、教材分析

《比例的应用》为全日制聋校数学第十五册第一单元的第三部分内容,这一部分的教学内容从构建上更注重学生技能的养成和知识的运用。把通过三个相关联的量求第四个量的运算,用方程的方法呈现为比例的形式,这样从视觉上更附和了聋生的认识特点,同时也把复杂的等量关系更清晰的更简单的体现在比例的内容里。让学生轻松的理解比例就是在等号两边表示两组相等的比。这样的方法也是比例应用题的一大特点。同时更有助于学生从理论知识到技能操作的转变,使新课程理念融入于特教课堂。

二、教学方法

情趣导入法、总结法、问题导入法及指导法。

三、教学目标

1、知识目标:理解应用题中比例的意义,并根据比例的性质解决应用问题。

2、能力目标:

①通过对应用题中已知条件与未知条件的分析并确定数量关系,培养学生逻辑思维能力和分析解决问题的能力

②通过求解的`过程,培养学生的运算能力。

3、情感目标:培养学生的数学兴趣,激发自主探索的求知欲。

4、缺陷补偿:通过对问题的分析,积累语言发展思维。重点:利用比例的意义确定等量关系。难点:数量间的运算关系。

四、教学流程:

1、兴趣入题

“同学们有没有想过毕业后未来的生活呢?现在我请大家为自己的将来设想一下,你准备做什么呢?”。

2、初探新知

出示根据学生的理想加工的题例。

董健昕同学经营一服装店,卖3件衣服可以盈利150元,按这样的收入计算,每月卖出80件可以盈利多少元?

让学生运用“三步”解题法,分析问题。

1看

已知条件包括:3件、盈利150元、80件求知条件:盈利多少元?

2找

从名数看包括四种数量:件数、盈利总额、件数、盈利总额。且四种数量是两两重复的。

确定数量关系:总额与件数间的关系是除法,进一步确定比例关系,总额:件数=总额:件数。

等号左边的总额为150元,件数为3件,等号的右边总额为?,件数为80件。

3解

解:设盈利?元。 150:3=?:80 3?=150×80?=150×80÷3?=4000答:可以盈利4000元。

巩固方法:

出示文本中的例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

让邻座的学生间进行比较分析,确定数量及数量间的关系并求解。

即时小结:

比例的形式就是:比=比,应用题中的比例即为:左边的数量关系等于右边数量关系。如何利用比例来解应用题就是看是否有两两相对的数量,并确定对应的数量间是否存在正、反比例关系。让学生从抽象到直观的掌握方法。

课业布置:

紧扣学生的理想出示题例二:职业课上,每天做8面国旗,要10天完成,如果每天做10面要几天完成呢?

板书设计:

比例的应用

1看:(已知:3件、盈利150元、80件)(未知:盈利?元?)2找:(总额:件数=总额:件数)3解

解:设盈利?元。 150:3=?:80 3?=150×80?=4000答:可以盈利4000元。

篇14:应用比例解应用题教学设计

教学内容:比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。

情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的能力。

教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。

教学过程:

一、导入(略)

二、探索新知

1、教学比例尺的意义

(1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)

(2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。

(3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。

2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。

(1)、说一说方法。

(2)、改写图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000

3、教学根据比例尺求图上距离或实际距离。教学例2出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程

解:设地铁1号线的实际距离为Xcm。 10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。

三、布置作业

完成《练习册》第19页的练习。

篇15:创编故事情节解应用题

创编故事情节解应用题

对于小学三、四年级的学生来讲,利用假设法解答鸡兔同笼这类应用题难度较大。其实,在教学中我们只需引导学生发挥想象,将那叙述单调令人乏味的应用题创编成一个个有趣的故事情节(甚至是离奇荒诞的故事),在故事情节中根据某一结果,去探究产生这个结果的原因,即可轻松解答出应用题。

如在一个笼子里关着一些鸡和一些兔,它们共有30个头,72条腿。问鸡兔各几只?可这样引导想象:“自己就是电影里的哈利波特,手里拿着一根魔棒。对着这些鸡兔挥一挥魔棒,此时,这30只鸡兔就发生了变化:所有的鸡飞起来了――都飞在空中,所有的兔都举起两只前腿站立起来。”

同学们笑了起来,感觉有趣,听得很认真。于是,我抓住时机问学生:“同学们,你们能计算出此时站立在地上的腿有几只吗?”学生很快知道72减去在空中的2×30只腿就是站立在地上的腿数,有12条。

“这是谁的腿呢?”

“兔子的。”学生很快明白,“原来就是12÷2=6只,鸡有24只。”

就这么简单!学生们兴奋不已:这解题竟这么有趣!我告诉学生,只要你们展开想象,编一编故事情节,再加以推理,就能解答这类应用题。对于这个题你们也可以试着编一个故事情节来解答。学生的思维被调动起来,纷纷展开想象,像写作文一样编起故事来。其中一个是这样想的:“假如我是哈利波特,我就让所有鸡的两只翅膀变成两只脚,这时站立在地上的脚就有4×30=120只,多出的120-72=48只就是鸡新长的脚(即翅膀),所以鸡有48÷2=24只,于是兔有6只。”另一位学生所编的则是:“假如我是屠宰场的老板,我就将30只动物每只砍掉两只脚去卖,这样未砍的脚当然就是兔子的,所以兔子就有v72C2×30w÷v4-2w=6只。”

为了进一步培养学生的想象力,我又布置了两个题:①有44名学生去公园划船,一共坐了10只船,其中大船每只坐6人,小船每只坐4人。问呢大船小船各几只?②蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,苍蝇有6只脚1对翅膀。现在这三种虫一共有18只,它们共有118只脚和20对翅膀。问每种虫各有几只?

学生的学习兴趣非常高,一边讨论,一边认真思考,很快,有学生编好了故事情节:“我想象的.是:同学们正在高兴地划船,突然,有几个同学掉到水里去了,同学们把他们全救了起来,让他们几个上岸休息,其余的仍然划船。事后发现了一个怪现象:落水的全是大船上的同学,并且每只船上都有2人落水。”

“我知道了,”另一学生抢着说,“落水的同学有44-4×10=4人,当然大船就有2只,小船就有8只。”多么巧的思路哇!

在此类教学中,当学生难以创编故事情节时,教者要作适当的点拨启发引导学生展开想象。第②题因难度教大,学生一时难以下手,这时我说了一句:“假如你就是一个动物解剖专家,手拿一把解剖刀,把每条虫都切掉6只脚……”话未说完,就有学生站起来,抢着说:“哦,我知道了,因为蜻蜓与苍蝇都有6只脚,所以都切掉6只脚以后,就只有蜘蛛还有2只脚了,所以蜘蛛有(118-18×6)÷2=5只。接下来,我就切翅膀了,每只切一对翅膀,那

就只有蜻蜓还有翅膀,还有20-(18-5)×1=7对翅膀,所以蜻蜓有7只,于是就可算出苍蝇有6只。”

想象是创新的翅膀,只要我们在解题教学中,通过有意识地训练学生创编故事情节,培养学生的想象力,既能让他们对数学保持兴趣,又能提高学生的解题能力。

篇16:解应用题的教案设计

解应用题的教案设计

解应用题的教案设计

教学内容

教科书118页例6及“做一做”。练习二十九1~5题。

一、素质教育目标

(一)知识教学点

1.使学生初步学会分析“已知有两个数的和与差,和两个数的倍数关系,求两个数各是多少”的应用题的数系,正确列出方程进行解答。

2.指导学生设末知数,表示两个数之间的关系。

3.训练学生分析这类应用题的数量关系。

(二)能力训练点

1.会解答所列方程形如ax bx=c的应用题。

2.会正确找出应用题的等量关系。

3.会进行检验。

(三)德育渗透点

1.培养学生认真学习的好习惯。

2.渗透不同事物之间既有联系又有区别的观点。

(四)美育渗透点

通过题目中的等量关系,使学生感受到人民的卓越智慧,体会到源于生活。

二、学法指导

1.引导学生分析题意,找出等量关系。

2.指导学生试算,利用已有经验进行体验。

三、教学重点

用方程解答“和倍”“差倍”应用题的方法。

四、教学难点

分析应用题等量关系,设末知数。

教学过程设计

(一)复习准备

1.列方程并求出方程的解。

(1)x的5倍与x的3倍的和是40;

(2)某数的4倍比它的6倍少24。

2.根据下面的条件,找出数量间的相等关系。

(1)大米与面粉重量的和是1000千克;(大米的重量+面粉的重量=重量和。)

(2)每支钢笔比每支圆珠笔贵3.8元;(每支钢笔的价钱-每支圆珠笔的价钱=贵的价钱。)

(3)已看的页数比剩下的页数少76页。(剩下的页数-已看的页数=少的页数。)

3.用含有字母的式子表示。

(1)学校科技组有女生x人,男生人数是女生的.3倍,男生有人,男生女生一共有()人,男生比女生多()人;

(2)果园里苹果树的棵数是梨树的2倍,梨树有x棵,苹果树有()棵,苹果树和梨树一共有()棵,梨树比苹果树少()棵。

4.解答:果园里有桃树45棵,杏树的棵数是桃树的3倍。两种树一共有多少棵?

(1)学生审题画图,独立解答。

(2)学生解答后讲解:

解法1:

列式:45+45×3=45+135=180(棵)

解法2:

列式:45×(3+1)=45×4=180(棵)

答:两种树一共有180棵。

(二)学习新课

1.改变上题的条件和问题,使之成为例6。

果园里桃树和杏树一共有180棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?

(1)学生审题,将复习题的图改为例6。

(2)思考:

①这道题求什么?与以前学习的应用题有什么不同?(有两个未知数。)

②怎样设未知数呢?

如果设桃树有x棵,那么杏树就有3x棵;

比较哪种设法比较简便?为什么?

易解。

将线段图中的问号改为x或3x。

(3)根据哪个条件找数量间的相等关系?

根据桃树和杏树一共有180棵,找等量关系。

(4)列方程,解方程,

解:设桃树有x棵。或:

(5)检验,答题。

教师:检验时,可以把得数代入题目,看是否符合已知条件。

学生进行检验。

①看桃树和杏树一共的棵数是否是180棵,

45+135=180(棵)

②看杏树棵数是否是桃树的3倍,

135÷45=3

答:桃树有45棵,杏树有135棵。

2.试做:

果园里杏树比桃树多90棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?

(1)思考:

此题与例6相比,哪些地方相同?哪些地方不同?数量关系是怎样的?(倍数关系相同,不同点是把两种树的和改成了两种树的差。)

数量关系为:

(2)试做:

检验:

①135-45=90;

②135÷45=3。

答:桃树有45棵,杏树有135棵。

3.小结:

思考讨论:

(1)我们今天学习的应用题有什么特点?(今天学习的应用题,都是已知两种数量的倍数关系以及它们的和或差,求这两种数量各是多少。)

(2)这样的应用题,我们是怎样解答的?(一般根据倍数关系,设一倍数为x,另一个数用含有字母的式子表示;再根据这两种量的和或差,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后还要把得数代入题目中去,看是否符合已知条件。)

篇17:解比例应用题含答案

第一题

某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?

解答

甲、乙、丙三人工作效率的比=

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

第二题

有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的.盐水中盐与水重量的比是多少?

解答

正确的解答是:1∶8=2∶16,2+16=18;

1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31

答:在混合后的盐水中盐与水重量的比是5∶31。

篇18:解比例应用题含答案

(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(3在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(4) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(9)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)

(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)

(11)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)

(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)

(13)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)

(14)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)

(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)

(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(比例解)

(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)

(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?(用比例方法解)

(19)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)

(20)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)

(21)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天就完成,每天要多运多少车?(用比例方法解)

《百分数应用题》教学反思

图画应用题教学反思

《连乘应用题》教学反思

圆应用题教学反思

《分数应用题》教学反思

解比例教学反思

解比例教学反思

《解比例》教学反思

《图文应用题》的教学反思

分数除法应用题教学反思

《解应用题教学反思(共18篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档