这次小编在这里给大家整理了分数乘法例8教案 (人教新课标六年级上册),本文共14篇,供大家阅读参考。

篇1:分数乘法例8教案 (人教新课标六年级上册)
例8教学设计
教学内容:解决求比一个数多﹙少﹚几分之几的数是多少的实际问题。
教学目标:1、进一步掌握分数乘法解决问题的思路和方法,学会运用分数乘法的意义解答稍复杂的实际问题。
重难点:弄清数量关系,找准单位1。
教具学具:PPT 课件
教学时间:一课时
教学过程:
一、精彩导入
二、展示目标
1、进一步掌握分数乘法解决问题的思路和方法,学会运用分数乘法的意义解答稍复杂的实际问题。
三、自学提示
1、自学第13页的例9。
2、认真阅读理解例题,分析出解题策略,列出关系式。列式解答并验证。
3、时间6分钟。
四、学生独学
看一看
学生按要有独学例9。
人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75次,婴儿每分钟心跳的次数比青少年多 。婴儿每分钟心跳多少次?
阅读与理解
青少年每分钟心跳约﹏次。
婴儿每分钟心跳的次数比青少年多 ,夺得部分是﹏﹏的 。
要求的是﹏﹏每分钟心跳的次数。
分析与解答
青少年:
婴儿:
75+75×
75×﹙1+ ﹚
做一做
教材p15页做一做内容
学生2人板演。其他学生独立完成做一做。
五、议一议
1、对做一做的更正。对子或小组进行。
2、引导讨论:为什么这样做?
六、当堂训练
1完成教材练习三第4、5、6、7题。
七、知识拓展
选学P15页:你知道吗?
篇2:《分数乘分数》导学案 (人教新课标六年级上册)
2-2 <<分数乘分数>>
学生___________班级_______家长签字____________日期________
【学习目标】1、理解分数乘分数的意义,掌握分数乘以分数的计算法则。
2、发展观察推理能力。 3、善于交流合作,对学习有兴趣。
【学习重难点】1、重点是理解一个数乘分数的意义,掌握分数乘分数的计算方法。
2、难点是推导算理,总结法则。
【学习过程】
一、复习导入: 1、计算并说出方法 × = × = × =
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、这节课我们来学习分数乘以分数的意义和计算方法。
二、探索新知:
(一)、观察P10例题3主题图,自主探究以下问题:
1、工作效率、工作时间、工作总量之间的关系是什么?____________________________
根据此关系列式解决“ 小时粉刷这面墙的几分之几?”________________________
2、动手操作,把一张纸张看作一面墙,先涂出1小时粉刷的面积,即这面墙的 ,再涂出 小时粉刷的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
3、根据涂色结果得出 × = ,由此推导出计算方法: × = =
4、自主完成P10“想一想”和P13练习二第5题。看谁做得即对又快。组长检查核对。
5、归纳总结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用___________________________________
(二)、自学书本P11例题4
1、根据“速度×时间=路程”的数量关系列出算式:___________________________
2、独立计算,交流方法,明确分数乘分数也可以先约分再乘。明确约分的书写格式。
3、想一想分数乘分数怎样约分?分数乘整数怎样约分?
三、知识应用: 独立完成P11“做一做”,组长检查核对,提出质疑。
四、层级训练: 1、巩固训练:完成练习二第3、6、9题。
2、拓展提高:练习二第7、8、10题。
五、总结梳理:
回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(写出你的发现或见解)
篇3:课题:《分数乘分数》 教案教学设计(人教新课标六年级上册)
编制人:蔡 娜 时间: . 08 .20
NO.2-2
班级 姓名 小组 小组评价
学习目标:
1、理解分数乘分数的意义。掌握分数乘分数的计算方法,并能运用计算
方法进行正确计算。
2、掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:分数乘分数的意义。
难点:分数乘分数的算理。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的意义,掌握分数乘分数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本P10页
2、计算
4/9× 4 = 7/15×5= 8×9/20=
3、我能辩对错。(对的打“ ” ,错的打“ ” )
1)、求1/6的5倍和求5个1/6的和列式都是1/6×5。 ( )
2)、分数乘整数是求几个加数的和的简便运算。 ( )
3)、4/21×3=4×3/21=4/7 ( )
4)、2根1/4米长的铁丝比1根1米长的铁丝长。 ( )
二、合作探究:
例1、工人师傅每小时粉刷这面墙的1/5,1/4小时粉刷这面墙的几分之几?3/4小时粉刷多少呢?
小结:分数乘分数的意义:
例2、4/5千克的1/2是多少千克? 7/12小时的4/7是多少小时?
小结:分数乘分数的计算方法:
例3、0.5×1/7= 21/3×1/5=
小结:1、分数乘分数的计算方法也适用于小数乘分数,先把小数化成( ),然后按( )的方法进行计算。
2、分数乘分数,这里的分数也可以是带分数,计算时先把带分数化成( ),然后按( )的方法进行计算。
三、学以致用:xkb1.com
1、想一想、填一填
1)、2/3×1/4表示( );
5/6×2/3表示( );
2)、分数乘分数,应该 ( )乘( ),( )乘( ),能约分的可以( )再乘。
3)、一根木棒长7/8米,它的2/7是( )米。
4)、一个长方形的宽是3/7米,长是宽的2倍,这个长方形的面积是( )平方米。
2、计算
7页
3、列式计算
1)、2/5千克的3/4是多少千克? 2)、 24的5/12的1/5是多少?
4、动手画一画
1)、用线段图表表1/2千米1/4。 2)、用图形表示1/3千克的一半
5、解决问题新课标第一网
1)、要修一条长3/4千米的公路,第一天修了全长1/8,第一天修了多少千米?
2)、一个正方形的边长4/5分米,它的面积是多少平方分米?
篇4::《分数乘整数》 教案教学设计(人教新课标六年级上册)
编制人:蔡 娜 时间:2010 . 08 .20
课题:《分 数 乘 整 数》 NO.2-1
班级 姓名 小组 小组评价
学习目标:
1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。
2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点;分数乘整数的简便算法。
难点:分数乘整数的算理。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本P8---P9页
2、想一想,填一填
1)、5+5+5+5=( )× ( ) 表示( )个( )相加。
2)、1.2+1.2+1.2+1.2+1.2=( )×( )表示( )个( )相加。
3)、 + + =( )× ( )表示( )个( )相加。
4)、 × 4改写成加法算式是( )
3、看图填空。
1)、
( )+ ( )+ ( )= ( )
( )× ( )= ( )
2)、
( ) + ( ) + ( )+ ( )= ( )
( )× ( )= ( )
二、合作探究:新课标第一网
例1、人跑一步的距离相当于袋鼠跳一下的 。人跑3步的距离相当于袋鼠跳一下的几分之几?
小结:分数乘整数的意义:
例2、 × 5
小结:分数乘整数的计算方法:
例3、 6 × =
思考:你有什么技巧?
小结:分数乘整数的简便算法:
三、学以致用:
1、填空
1)、分数乘整数,用分数的( )和整数相乘的积作( ),( )不变。
2)、分数乘整数的意义与( )意义相同,都是求的简便计算。
3)、 × 4表示( )或表示( )
4)、 4个 的和是多少?用乘法计算可列式为( )。
2、计算
× 4 = 3 × = × 8 =
xkb1.com
3、列式计算
1)、6个 相加的和是多少? 2)、 的5倍是多少?
4、解决问题
1)、一辆汽车每分钟行 千米,这辆汽车每小时行驶多少千米?
2)、李师傅加工一个零件 小时,加工24个零件需多少个小时?
5、附加题
1)、计算
× 2 =
2)、把下面的加法算式改写成乘法算式。
篇5:课题:《分数乘分数》 教案教学设计(人教新课标六年级上册)
编制人:蔡 娜 时间: . 08 .20
NO.2-3
班级 姓名 小组 小组评价
学习目标:
1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。
2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间
的关系进行正确判断。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:分数乘分数的简便算法。
难点:因数与积的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本P11页
2、计算:
3、填空:
1)、 × 6表示( );
× 表示( );
2)、一根绳子长81米,剪去 ,还剩这根绳的 ,还剩( )米,这里是把( )看作单位“1”。
二、合作探究:
例1、蜂鸟是目前所发现的世界上最小的鸟,也是唯一能倒飞的鸟。蜂鸟每分钟可飞行 千米, 分钟飞行多少千米?
思考:你想到了几种计算方法,有什么技巧?
小结:分数乘分数的简便算法:
例2、比较大小。
思考;你发现了什么规律?
小结:当一个因数大于1时,积( )另一个因数(0除外);
当一个因数小于1时,积( )另一个因数(0除外);
当一个因数等于1时,积( )另一个因数;
三、学以致用:
1、直接写出得
2、
3、我能辩对错。(对的打“ ” ,错的打“ ” )
1)、一个数乘真分数,积小于这个数。 ( )
2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。( )
3)、X × ×X ( )
4)、分数乘法的意义与整数乘法的意义相同。 ( )
5)、如果A× =B× ,那么A大于B。 ( )
4、解决问题:
1)、一根电线第一次用去 米,第二次用去的是第一次的 ,第二次用去多少米?
2)、学校合唱队有76人,舞蹈队的人数是合唱队 ,管乐队的人数是舞蹈队的 ,学校管乐队有多少人?
篇6:《分数乘整数》导学案 (人教新课标六年级上册)
学生___________班级_______家长签字____________日期________
【学习目标】1、理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、小组合作交流,总结归纳分数乘整数的计算法则,发展抽象概括能力。
3、利用所学解决生活中简单问题,感悟到数学知识的魅力,领略到数学美。
【学习重难点】1、重点是理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、难点是总结分数乘整数的计算法则。
【学习过程】
一、复习引入: 1、算一算:①、 + + = ②、 + + =
2、想一想: 第②题我们还可以怎么计算?今天我们就来学习分数乘法。
二、探索新知: (一)、利用第②题学习分数乘法。
1、这道加法算式中,加数各是多少?_________ ;表示_____个相同加数的和,我们还可以用______方法来计算?怎么列式?______________________
+ + = ,那么 + + = ×3,所以 ×3=__________=
2、分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(二)、阅读书本第8页例题1,再用自己的话表述题意。
1、说一说“人跑一步的距离相当于袋鼠跳一下的 ”是什么意思?
☆友情小提示:就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成_______份,其中的______份就表示人跑一步的距离。
2、自己动手,画出线段图,把已知条件和问题标在线段图上?(画在反面)
3、结合自己所画的线段图,用多种方法列式计算,并思考分数乘整数应该如何计算?
4、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数______________作分子,分母________。
(三)、用你自己总结的方法,尝试计算P9例2,看一看你乘的积是不是最简分数?想一想分数乘整数有几种约分的方法?哪种方法简便?__________________________
☆友情小提示:计算前先观察分数的分母与整数是否可以约分,养成先约分再计算的
习惯,注意约分的书写格式。
三、知识应用: 独立完成P9“做一做”1-3题,组长检查核对,提出质疑。
四、层级训练: 1、巩固训练:完成P12练习二第1、2题。
2、拓展提高:P12练习二第4题。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(写出你的发现或见解)
篇7:(2)一个数乘分数 教学计划(人教新课标六年级上册)
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新课
1、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
2、相关练习:练习二第5题。xkb1.com
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式: (km)
(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。
5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。
三、练习
1、练习三第6题
(1)求2枝长多少分米,就是求2个 是多少?算式: ×2
(2)求 枝或 枝长多少分米,就是求 的 是多少,或 的 是多少。
2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)
四、作业
练习二第3、7、8、10题。
教学追记:
分数乘整数、分数乘整数这两堂课,我都注重从生活引入,并通过直观的线段图、折纸等方式让学生理解算理。课中,我能改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
(3)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1) + × (2) × - (3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
篇8:第二单元分数乘分数1 教案教学设计(人教新课标六年级上册)
主备人:王娟娟
第一课时 分数乘以整数
教学内容:第1~2页内容。
教学目标:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
重点难点:分数乘整数的计算方法
教学过程:
一、展示教学目标:1、理解分数乘以整数的意义2、掌握分数乘以整数的计算法则。
二、自学:计算下面各题:
思考: 有什么特点?应该怎样计算?
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1、 学生自学,教师巡视指导
2、 两名学生用两种不同方法板演
3、 用加法算: (块)
用乘法算: (块)
学生思考:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)
三、巩固练习。
1.第2页做一做。
2.练习一
第二课时 分数乘法
教学内容:教材第10页例3,第11页例4以及“做一做”练习二中的第3、4题
教学目标:1.理解一个数乘分数就是求一个数的几分之几是多少。2.掌握分数乘分数的计算方法,并能正确地进行计算。
重难点、关键1.重难点:分数乘分数的计算方法。
2.关键:理解一个数乘分数就是求一个数的几分之几是多少。
教学过程:
一、旧知铺垫
1.计算下面各题。
12×3/4 5/16×32 15×3/5 3/8×12
2.说一说,分数乘法的计算方法、步骤。
(1)整数与分子相乘的乘积作分子,分母不变。
(2)能约分的要先约分,再计算.
3.根据题意列出算式。
(1)一袋大米,每天用去3/4千克,3天用去多少千克?
(2)某修路队,每天修路3/2千米,5天修多少千米?
(3)一辆汽车,每小时行驶全程的3/20,4小时行驶全程的几分之几?
二、探索新知
1.教学例3。
出示题目:(出示课文插图)
问题一:1/4小时粉刷这面墙的几分之几?
(1)你想怎样列式?
学生回答,教师板书。
1/5×1/4
(2)分数乘分数怎样计算?
①1/5×1/4 表示什么?
经过讨论,使学生理解1/5×1/4 ,就是求1/5的1/4是多少,也就是说把1/5平均分成4份,取其中的一份是多少?
②画示意图分析。
③从图上可以看出,这面墙的1/5的1/4,是哪一块?它占整面墙的几分之几?
通过观察得出:这面墙的1/5的1/4,是占整面墙的1/20。
板书:1/5×1/4=1/20
④发现分数乘分数的计算方法。
引导学生观察算式和结果,看一看其中的联系。
板书:1/5×1/4=( )/( )=1/20
想一想:应该是怎样的一个计算过程呢?
学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。
1/5×1/4=(1×1)/(5×4)=1/20
然后,联系以上的算式,让学生说一说计算方法。
学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。
问题二:3/4小时粉刷多少呢?
(1)引导学生列出算式
1/5×3/4
(2)你认为计算结果是多少?
学生回答,教师板书。
1/5×3/4=1×3/5×4=3/20
(3)画示意图加以验证。
注意:画示意图时,要紧密结合1/5×3/4的意义加以分析。
(4)总结分数乘分数的计算方法。
师生共同总结,教师板书:
分数乘分数,应该分子乘分子,分母乘分母。
2.教学例4
出示教材例题,学生简要了解蜂鸟。
(1)2/3分钟能飞行多少千米?
①列出算式
3/10×2/3
②学生尝试计算,教师巡视课堂了解学生计算情况。
完成后,选择两位不同计算过程的学生上台板演。
③强调:能约分的要先约分,再计算。
(2)5分钟能飞行多少千米?
①学生独立列式解答,请一位学生上台板演。
②教师出示算式,学生判断可以不可以。
③说明分数和整数相乘时约分的方法。
强调:整数约分后的结果要写在整数的上面,并与分子相乘。
三、巩固练习
1、完成例题后“做一做”
2、完成练习二第3、4题
篇9:第二单元分数乘分数2 教案教学设计(人教新课标六年级上册)
第三课时 运算定律的应用
教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)
教学目标
1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。
2、培养学生灵活计算的能力,发展学生逻辑思维能力。
重难点、关键:运用运算定律进行简便运算。
教学过程
一、教学例5
1.观察每组的两个算式,看看它们有什么关系。
(1)1/2×1/3○1/3×1/2
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法交换律:a×b=b×a
(2)(1/4×2/3)×3/5○1/4×(2/3×3/5)
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法结合律:(a×b)×c=a×(b×c)
(3) (1/2+1/3)×1/5○1/2×1/5+1/3×1/5
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法分配律:(a+b)×c=ac+bc
2、小结。
整数乘法的运算定律对于分数乘法同样适用。
师:应用这些乘法的运算定律,可以使一些计算简便。
二、教学例6
1.计算3/5×1/6×5
(1)观察算式,说一说你有什么想法。
(2)学生独立列式计算,教师巡视检查。
(3)汇报计算过程。
(4)想一想:不改写算式,直接进行约分行不行?
通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。
(5)试一试
2/3×1/4×3
学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。
2.计算(1/10+1/4)×4
(1)观察算式,说一说你认为怎样计算比较简便。
(2)学生独立列式计算,请两位上台板演。
(3)集体评价,发现问题及时纠正。
板书:
(4)试一试
(8/9+4/27)×27
学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。
3.计算:87×3/86
(1)观察算式,说一说算式有什么特征?
(2)你认为应该怎样算比较简便?
(学生先独立思考,然后在小组中交流。
(3)反馈交流结果
板书:
三、巩固练习:完成练习三的1、2、4、5题
第四课时 求一个数的几分之几是多少
教学内容:
解决”求一个数的几分之几是多少”的问题.(课文第17页的例1 “做一做” , 练习四的第1-4题
教学目标:使学生能根据一个数乘分数的意义,理解"求一个数的几分之几是多少"的问题的数量的关系.
使学生掌握解决"求一个数的几分之几是多少"问题的方法,并能解决有关的问题.
重难点:
掌握"求一个数的几分之几是多少"的解答方法.
教学过程:
一、展示学习目标,学生明确本节课的学习目标
二、展示学习指导:
学生讨论完成下列题目:列式
1、20的2倍是多少?
2、15的2/3是多少?
3、100的1/10是多少?
4、30的3/2倍是多少?
通过交流,使学生明确两点
第一:一个数乘分数,表示求一个数的几分之几是多少
第二:"求一个数的几分之几是多少"与"求一个数的几倍是多少"是一样的道理,用乘法计算.
板书:求一个数的几倍是多少,一个数×几倍
求一个数的几分之几是多少,一个数×几/几
三、教学例1
出示例题:2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界的均耕地面积的2/5。
我国人均面积是多少平方米?
1、分析题中数量关系。
2、题中哪一句话告知我们数量关系?
3、题里的“2/5”表示什么?(把世界人均面积平均分成5份,我国人均面积占其中的2份)
4、画线段图表示
1、引导提问:求我国人均面积就是求什么?(世界人均面积的2/5)
板书: 我国人均面积等于世界人均面积的2/5
我国人均面积==世界人均面积×2/5
我国人均面积==2500×2/5
2、列式解答
学生尝试独立列式解答,教师巡视,请一位学生上台板演
2500×2/5=1000(平方米)
答:略
2.做一做
一头鲸长28米,一个人身高是鲸体长的2/35。这个人身高多少米?
过程要求:
1、学生独立思考,列式解答
2、同伴交流思维过程和结果
3、汇报解答过程
4、关系式:人的身高是鲸体长的2/35
5、算式:28×2/35=56/35(米)
四、当堂练习
完成练习四的第1-5题
篇10:分数乘整数 教案教学设计(人教新课标六年级下册)
学习
内容
学习
目
标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
重难
点及
突破
措施 教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
课前
准备
导学案设计 个性化设计
预
习
学
案 1、(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2. + + 这题我们还可以怎么计算?
3、分数乘整数怎样计算?在计算过程中要注意什么?
自
主
乐
学
合
作
交
流 1、小组合作完成
(1) + + 这道加法算式中,加数各是多少?(都是 )w ww.xkb 1.com
(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。
2、小组合作学习例2
(1)看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )
(3)结合以上两题,你能不能总结出分数乘整数的计算法则?
3、学习例2
(1)独立计算 ×6
(2)根据计算结果,观察讨论:乘得的积不是最简分数?应该怎么办?
(3)通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,A、B哪一种方法更简便?
检
测
反
馈 一、填空
1、 + + =( )×( )=( ) + + + =( )×( )=( )=( )
2、 + + + +……+ =( )×( )=( )=( )
120个
3、 ×4表示( )。
4、 平方米=( )平方分米 时=( )分 千米=( )米
二、计算
×5 ×6 ×5
×10 ×8 ×12
15个 的和是多少? 的9倍是多少?
课
外
拓
展 练习二第1、2、4题
教
学
反
思
审核人:
篇11:-上学期六年级数学教案(2)分数乘分数 (人教新课标六年级上册)
主备人:孙菲
教学内容:
教材第10页的内容及练习二的第3、5、6题。
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:
理解分数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:
推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、口头列式。
强调:求一个数的几分之几是多少,要用乘法计算。
二、教学实施
1、教学例3
(1)出示条件和问题:
每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?
(2)提问:通过已知条件和问题,你知道了什么?
引导学生说出:每小时粉刷 是工作效率, 小时是工作时间,这道题是求工作总量。
(3)根据公式“工作效率×工作时间=工作总量”,
学生列式: ×
2、探究计算方法。
(1)提问: × 等于多少?(学生可能会说出得 。)
追问:你是怎么算的?
学生可能只是说出结果,但不能清楚地说出算理。
(2)理解算理。
提问: × 表示什么意思呢?(求 的 是多少。)
老师:请同学们拿出一张纸,用它表示这面墙,涂出它的 。
学生动手折纸。
老师:涂色部分占这张纸的几分之几?( )
提问: 的 怎样表示?
启发:再折一折,把5份中的1份再平均分成几份?(4份)
学生再动手折纸,用不同的颜色表示出 的 。
提问: 的 占这张纸的几分之几?
板书: 的 是 。
一、 总结算法。新课标第一网
提问: × = 应该怎样计算?
引导:分母5和分母4相乘的积作新分母,分子1和分子1相乘的积作新分子。
板书:
× = = 。
问题:用这种方法我们再来计算一下 小时粉刷多少呢?
让学生用前面的方法涂色、推导、计算,自主解决问题。
提问: × 等于多少?表示什么意思?
( 乘 表示 的 是 。)
追问:你是怎样算的?
质疑:分数乘分数应该怎样计算?
归纳:分数乘分数,用分母与分母相乘的积作分母,分子与分子相乘的积作分子。
三、练习:
做练习二第5题。
四、作业:
做练习二第3、6题。五、课堂小结分数乘分数的意义和计算方法。
(1)意义:分数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
篇12:第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备: 多媒体课件
教学过程:
一、复习引入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究
1、课件出示教学目标
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件
教学过程:
一、旧知铺垫
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新知探究
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)
(1) + × (2) × -
(3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测
练习三的第一题,第三题。
(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用
了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图
体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。
教学后记
篇13:分数除法 备课资料(人教新课标六年级上册)
(3)分数混合运算
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教学过程:
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78-3.12)]×(41.2―39)
二、新授
1、教学例4
(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。
(2)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
2、巩固练习:P34“做一做”
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。
(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷ × ;B、可以先求装完的 有多少千克,综合算式是240× ÷ 。
四、布置作业
练习九第5-9题。
教学追记:
本堂课虽是应用题形式的例题,但实为分数混合运算的计算课,因而在课初始,我便从复习整数及小数的运算顺序入手,重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练习加强计算的训练。
2、解决问题
(1)已知一个数的几分之几是多少求这个数的应用题
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学:难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、复习
1、出示复习题:
根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× =体内水分的重量
4、指名口头列式计算。
二、新授
1、教学例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。 小明的体重× =体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)
2、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸:
小明:
爸爸的体重× =小明的体重
①方程解:解:设爸爸的体重是χ千克。 ②算术解: 35÷ =75(千克)
χ=35
χ=35÷
χ=75
3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、练习
1、练习十第1-3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)
2、练习十第6题(引导学生先求出单位“1”--爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)
四、总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
教学追记:
本堂课我设计了“题目--线段图--等量关系式--解决问题”这样四个环节来教学例题的第(1)个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。
篇14:分数除法 备课资料(人教新课标六年级上册)
第三单元 分数除法
单元目标:
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
单元重点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。
单元难点:
一个数除以分数的计算法则的推导。
1、 分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × × × ×6 ×
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。
×3= (千克) ÷3= (千克) ÷3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= = ,每份就是2个 。
B、 ÷2= × = ,每份就是 的 。
(4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
(2)一个数除以分数
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教学过程:
一、复习
1、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)
2、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
二、新授
1、默读例3,理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷ 如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)
(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求 小时走了多少千米,也就是求2个 ,算式:2×
再求3个 小时走了多少千米,算式:2× ×3
(5) 综合整个计算过程:2÷ =2× ×3=2×
2、小结出计算法则:从上面这个推算过程,我们发现--整数除以,分数等于用整数乘这个分数的倒数。
3、计算 ÷ ,探索分数除以分数的计算方法
(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
(2)学生用自己的方法来验证结果是否正确。
4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、练习
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
教学追记:
虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义。针对新教材的特点,对于分数除法的意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的理
解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,根据操作计算方法。于是学生们有的模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。
★第二单元分数乘分数1 教案教学设计(人教新课标六年级上册)
★上学期六年级数学教案(2)分数连成应用题 (人教新课标六年级上册)
文档为doc格式