欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

利润应用题及答案

时间:2025-11-22 08:08:49 其他范文 收藏本文 下载本文

下面是小编为大家整理的利润应用题及答案,本文共8篇,供大家参考借鉴,希望可以帮助您。

篇1:利润应用题及答案

关于利润应用题及答案

关于利润应用题及答案

【含义】这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。

【数量关系】利润=售价-进货价

利润率=(售价-进货价)÷进货价×100%

售价=进货价×(1+利润率)

亏损=进货价-售价

亏损率=(进货价-售价)÷进货价×100%

【解题思路和方法】  简单的题目可以直接利用公式,复杂的题目变通后利用公式。

例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?

解 设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了

1-(1+10%)×(1-10%)=1%

答:二月份比原价下降了1%。

例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?

解  要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为  52÷80%÷(1+30%)=50(元)

可以看出该店是盈利的,盈利率为(52-50)÷50=4%

答:该店是盈利的,盈利率是4%。

例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的'86%。问剩下的作业本出售时按定价打了多少折扣?

解 :问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即

0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)

剩下的作业本每册盈利  7.20÷〔1200×(1-80%)〕=0.03(元)

又可知   (0.25+0.03)÷〔0.25×(1+40%)〕=80%

答:剩下的作业本是按原定价的八折出售的。

例4 :某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。

解 :设乙店的进货价为1,则甲店的进货价为 :1-10%=0.9

甲店定价为 :0.9×(1+30%)=1.17

乙店定价为 : 1×(1+20%)=1.20

由此可得  乙店进货价为  6÷(1.20-1.17)=200(元)

乙店定价为    200×1.2=240(元)

答:乙店的定价是240元。

篇2:利润问题的应用题及答案

关于利润问题的应用题及答案

摘要:为大家提供了关于利润问题的'应用题带答案。利润计算,希望大家在复习时能够合理的使用。

利润计算

1、甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%

的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品

的成本。

2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原

来出售这件商品的利润率。

1.解答:200×(1+20%)÷90%-200=16

(27.7-16)÷(30%-20%)÷90%=130

2.解答:设原来的利润率为x,

1+x%=(1-6.4%)×(1+x%+8%)

x=17%

篇3:利润类应用题

利润类应用题

列方程解应用题的一般步骤(解题思路)

(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).

(2)设——设出未知数:根据提问,巧设未知数.

(3)列——列出方程:设出 未知数后,表示出有关 的含字母的式子,然后利用已找出的等量关系列出方程.

(4)解——解方程:解所列的方程,求出未知数的值.

(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意 带上单位)

【典例探究】

例1:(荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )

A.120元 B.100元 C.80元 D.60元

分析:可设进价为X元件,根据:售价+进价=利润 ,列方程。

解:设该商品的'进价为x元/件,

依题意得:(x+20)=200×0.5,解得:x=80.∴该商品的进价为80元/件.故选C.

A. 562.5元 B. 875元 C. 550元 D. 750元

【突破必记】

【巩固练习】

1. 一件衣服以22 0元出售,可获利10%,则这件衣服的进价是( )

A .110元 B .180元 C .198元 D .200元

2. 某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么, 此商品是按几折销售的?

3. 某商场将某种DVD产品按进 价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?

4. 某商店因换季销售打折商品,若按定价的6折出售,将赔20元,若按定价的8折出售,将赚15元,则该商品应定价多少元?成本为多少元?

5. 某玩具店两 款进价不同的智力拼图都卖了80元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家玩具店是赔了还是赚了?赔了或 赚了多少元?

6. 某商品的进价为800元,出售时 标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折?

7. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样两件共获利157元,则甲、乙两件服装的成本各是多少元?

8. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或者不盈不亏?

篇4:简单应用题及答案

简单应用题大全及答案

1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块.两人原来各有多少钱?书多少钱?

设丽丽有x元钱 家家有y元钱 得出:

3/5x=2/3y

2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)

解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?

8除4/5=10(km/)

4/5除8=0.1(kg)

3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

30÷1/2=60千米 1÷60=1/60小时

4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?

原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23

求出x=28

5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

62-24=38(只)

3/5红=2/3黄

9红=10黄 红:黄=10:9

38/(10+9)=2

红:2*10=20

黄:20*9=18

6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?

原有女生:36×4/9=16(人)

原有男生:36-16=20(人)

后有总人数:20÷(1-3/5)=50(人)

后有女生:50×3/5=30(人)

来女生人数:30-16=14(人)

7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?

2.16/(1+1/11)=1.98(立方米)

8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?

现在甲乙各有

560÷2=280吨

原来甲有

280÷(1-2/9)=360吨

原来乙有

560-360=200吨

9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

原价是

200÷2/11=2200元

现价是

2200-200=元

10.一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?

全程的.

1-2/5=3/5

20+70=90千米

甲乙两地相距

90÷3/5=150千米

11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?

第一天看的占全书的

3/8-1/5=7/40

这本书共有

28÷7/40=160页

12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?

假设这批零件共有X个

1/28X=84-63

1/28X=19

X=532

所以这批零件共有532个.

13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?

15÷(7/10-1/2)=75(千克)

14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?

(106*5)/(1-(3/5))

=530/0.4

=1325(km)

15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?

男女生人数比是:4/5:3/2=8:15

男生人数:46/(8+15)*8=16人

女生人数46-16=30人

16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?

(1-1/3)/(1/5)=10/3

还要10/3个小时抄完

17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?

600/(60+75)=40/9(小时)

经过40/9小时两车可以相遇.

18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?

64×3/4=48千米

19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

第一天卖出水果总重量的3/5,则,第二天卖了2/5,

3/5-2/5=1/5,第一天比第二天多的,

30÷1/5=150千克,

算式是,

1-3/5=2/5

3/5-2/5=1/5

30÷1/5=150千克

20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?

910*4/7=(910*4)/7=520 女生

910-520=390 男生

篇5:六年级应用题答案

六年级应用题答案

应用题:工程问题

有一项工程,由三个工程队每天轮流做。原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天,已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?

答案:

根据条件可以作如下分析:有两种情况分析。

第一种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲

②乙丙甲;乙丙甲;……;乙丙甲;乙丙(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲(1/3)

三个工程队的工作效率的关系是:

甲=乙+丙×1/2=丙+甲×1/3

可以得到:丙=乙=甲×2/3,所以不符合条件。

第二种情况:

①甲乙丙;甲乙丙;……;甲乙丙;甲乙丙

②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)

③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)

可以得到:丙=甲×1/2,乙=甲×1/2÷2/3=甲×3/4

所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。

应用题:路程问题

1.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?

2.两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的.速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离。

答案

第一题

3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。

第二题

去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。

设:两地之间的距离为x;

在两地之间往返一次,上坡的路程等于下坡的路程等于x。

x/15+x/30=4

x(1/15+1/30)=4

x/10=4

x=40(千米)

两地之间的距离为40千米

应用题:人数问题

李口和向阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,李口比向阳多用车7辆,两校参加扫墓的学生各多少人?

解析:充分利用10的倍数。

两个学校共有人数比14×72=1008人少,比14×71=994人多,即共有1000人。

改租19座的中巴后,可以乘坐1000÷19=52辆……12人,即53辆车。

所以李口学校租车(53+7)÷2=30辆车,向阳学校租车30-7=23辆。

所以李口学校有学生30×19=570人,向阳学校有学生1000-570=430人。

验证一下:

如果李口少10人,还是30辆车,向阳学校有学生430+10=440人

440÷19=23辆……3人,需要24辆车,相差30-24=6辆,不符合要求。

两校参加扫墓的学生共有:14×72=1008(人)

因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;

设:李口学生数为x,则向阳学生数为1000-x

李口租19座的中巴数=x/19

向阳租19座的中巴数=(1000-x)/19

x/19-(1000-x)/19=7

2x-1000=7×19

2x=1133

李口学生数为x=570(人)

向阳学生数为1000-x=430(人)

篇6:百分率应用题及答案

百分率应用题及答案

百分率应用题及答案

1、有一台冰箱,原价元,降价后卖1600元,降了百分之几?

2、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?

3、有一台电视,原价1200元,降了300元,价格降了百分之几?

4、有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、

5、光明小学去年有篮球24个,今年新买了6个,今天一共有篮球多少个?今年比去年增加了百分之几?

6、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几

7、南山小学共占地8000平方米,其中绿地面积占65%,其余为教学楼和道路等,南山小学的绿地面积有多少平方米?教学楼和道路等有多少平方米?

8、商场搞打折促销,其中服装类打5折,文具类打8折。小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?

9、有一批种子的发芽率为98.5%,播种下3000粒种子,可能会有多少粒种子没发芽?

10、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?

11、实验小学六年级的女生人数占全年级的48.75%,男生占全年级人数的百分之几?如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人?

12、蔬菜基地今年生产了2.4万吨蔬菜,比去年增产了2成,去年这个蔬菜基地的产量是多少万吨?

13、504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20%,参加体育兴趣小组的有多少人?

14、王叔叔把4000元存入银行,整存整存3年,年利率为3.15%,到期有利息多少元?要缴纳利息税多少元?王叔叔的本金加利息一共多少元?(现在的`利息税为5%)

15、小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕

16、林林爸爸的总工资收入13500元,比增加了240%,林林爸爸20的工资是多少元?

答案

1、

答:降了20%。

2、

答:涨了25%。

3、

答:价格降了25%。

4、

答:价格约涨了16.7%。

5、

答:今天一共有篮球30个,今年比去年增加了25%。

6、

答: 每张门票能节省16元,相当于降价了80%。

7、

答:南山小学的绿地面积有5200平方米,学楼和道路等有2800平方米。

8、

答:实际要付256元。

9、

答:可能会有450粒种子没发芽。

10、

答:今年产了3600千克苹果。

11、

答:男生占全年级人数的51.25%,实验小学六年级人数共有480人。

12、

答:去年这个蔬菜基地的产量是2万吨。

13、

答:504班参加体育兴趣小组的有16人。

14、

答:到期有利息378元,要缴纳利息税18.9元, 王叔叔的本金加利息一共4359.1元。 15、

答:小明家七月份的电费为多少元116

篇7:体积应用题及答案

一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如下图.问这60块长方体表面积的和是多少平方米?

解答:6+(2+3+4)×2=24(平方米)

【小结】原来的正方体有六个外表面,每个面的面积是1×1=1(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的'.再考虑每锯一刀,就会得到两个1平方米的表面,1×2=2(平方米)

现在一共锯了:2+3+4=9(刀),

一共得到2×9=18(平方米)的表面.

因此,总的表面积为:6+(2+3+4)×2=24(平方米)。

这道题只要明白每锯一刀就会得到两个一平方米的表面,然后求出锯了多少刀,就可求出总的表面积。

篇8:体积应用题及答案

1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?

3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?

答案

1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

解:总差为17+10=27(块);

分配之差为7-4=3(块);

所以有少先队员27÷3=9(人)

共有砖:4×9+17=53(块).

答:这个班少先队有9个人,要搬的砖共有53块。

考点:盈亏问题,一盈一亏

2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?

解:第一次盈22人,第二次多出一个房间则是亏3+5=8(人);

总差为22+8=30(人);

两次分配之差为5人,

所以宿舍有30÷5=6(间),

新生共有3×6+22=40(人).

答:宿舍有6间,新生有40人。

考点:盈亏问题

注意点:空出一个房间,则是少了8人入住,则是亏8人

3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?

解:其中两人分4个,其余每人分2个,则多出4个“转化为”全家每人都分2个,

多出4+2×(4-2)=8个;

一人分6个,其余每人分4个,则缺少12个“转化为”全家每人都分4个,

缺少12-(6-4)=10个;

由盈亏问题基本公式可知:全家的人数有(8+10)÷(4-2)=9(人)

买来橘子2×9+8=26(个)

利润类应用题

应用题及答案

比例尺应用题及答案

勾股定理应用题及答案

五年级应用题及答案

工程应用题及答案

2年级应用题大全及答案

适合六年级应用题及答案

航行问题应用题及答案

应用题带答案

《利润应用题及答案(精选8篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档