【导语】以下文章小编为您整理的活塞的数控加工工艺(共5篇),供大家阅读。

篇1:活塞的数控加工工艺
活塞的数控加工工艺
活塞的数控加工工艺【1】
摘要:本文通过对活塞数控加工的装夹方案、加工顺序、刀具选择和切削用量等方面的工艺分析,探讨提高其批量生产效率的途径,对同类型的零件加工具有参考意义。
Abstract: Through the technology analysis on the clamping scheme, order processing, cutting tool selection and cutting dosage and other aspects, this paper discusses the ways to improve the efficiency of the mass production. That has reference significance for the similar parts processing.
关键词:数控;活塞;加工工艺
0 引言
数控机床是一种技术密集度及自动化程度很高的机电一体化加工设备,是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。
本文就活塞在数控机床中的加工工艺问题进行探讨,该活塞零件属新研发的产品,在论文数据库中未能搜索到相关的加工工艺方法。
活塞所用的材料为PA6(尼龙6),其机械减振能力好、加工性能好,但在机械加工中容易发生热变形,从而影响尺寸精度。
接到该批量零件加工之前,笔者曾给企业打过样板,两种不同型号(尺寸)的活塞的各一件,难点主要是最后一道工序――钻端面两对称圆柱孔(2×Ф5孔深20),由于孔与螺旋槽位置角度要求为50°、55°,当时利用分度盘装夹,直接在普通立钻上加工,过程中耗费大量的对刀调整时间,效率很低,如果是中小批量生产,该方法在现代化生产大潮中没有竞争。
鉴于此,必须探索出可以提高批量化生产效率的工艺方法。
1 活塞的数控加工工艺制订
1.1 零件图样工艺分析
如图1所示,该工件材料是PA6(尼龙6),尼龙6吸湿性强,所以加工时不能使用切削液,可使用风冷。
工件由外圆柱面、内圆柱面、圆周槽、螺旋通槽(2个)、端面圆柱孔(2个)等轮廓组成。
加工数量为1000件,属中小批量生产,前期先加工1件,送检合格后,安排批量生产。
零件的尺寸标注基准(对称轴线、大端面、各孔中心线)较统一,且无封闭尺寸;构成零件轮廓形状的各几何元素条件充分,无相互矛盾之处,有利于编程。
该零件的外圆、圆槽、内孔等部位的形状、位置尺寸公差为0.1mm或0.2mm,加工精度易保证;难点主要集中在两对称螺旋槽的加工,尺寸精度为17■■,其次是端面两对称圆柱孔(2×Ф5孔深20)与螺旋槽的位置角度50°、55°,必须设计专用夹具装夹零件,才可保证批量生产要求,该专用夹具的设计是整个零件各工序加工中的难点。
内外未标注表面粗糙度Ra为1.6μm。
1.2 装夹方案的确定
该零件的加工需使用三种夹具,四次装夹,其中外形车削部分使用传统三爪卡盘,左右调头,装夹两次。
螺旋槽的铣削采用四轴加工中心,使用包容式的气动三爪卡盘(图2)装夹,提高装卸工件的效率,减少夹紧变形。
端面两对称圆柱孔(2×Ф5孔深20)的加工采用数控铣床,设计专用夹具装夹(图3)。
该角度定位装置,共限制了工件三个不定度,X、Z轴的平移和Z轴的旋转。
圆柱销,限制了工件Z轴旋转的不定度,保证了Ф5孔相对于螺旋槽的50°、55°角度位置,圆柱销采用的是可调可换设计,可以根据不同型号尺寸的活塞进行灵活更换和调整高度。
燕尾槽插销与端面定位板上的燕尾槽间隙配合,保证了角度定位装置的稳定性。
端面定位板是由一个大平面和一个R61的`圆弧侧面进行定位的,大平面限制了工件Z轴平移和X、Y轴旋转共三个不定度,R61的圆弧侧面限制了Y方向平移的不定度。
通过以上两个定位元件,实现活塞的完全定位。
以上两个定位元件可采用硬铝材料,方便制作。
夹具体(基础板)的尺寸根据数控铣床工件台加工范围进行设计,争取尽可能大的尺寸,满足夹具一次性装夹几个零件,提高生产率的要求。
端面定位板设计成一字排开,螺旋夹紧装置更换成气动夹紧装置,每个零件对应一个角度定位装置,装置的动力由侧向安装的气缸提供。
1.3 确定加工顺序和进给路线
加工内容包括:车两端面、车外圆柱、切槽、车内孔、铣螺旋槽、端面钻孔。
根据以上所述的加工内容,所需的加工方法有:车削、铣削、钻削。
加工顺序如下:
①粗车精车Φ90■■端。
第一步用三爪卡盘装夹,用刀尖角为R2外圆车刀加工端面、Φ90■■外圆,用Ф50钻头粗加工内孔,用内孔车刀精加工Φ54■■内孔和Φ84■■孔深10台阶。
既有外形又有内孔的位置建议采用“内外交叉”原则安排加工顺序――先粗加外形,接着粗加工内孔,再精加工外形,最后精加工内孔。
②粗车精车Φ122■■端。
第二步用三爪卡盘装夹已加工外圆Φ90■■端,为了不夹伤已加工表面,可使用Φ91的钢夹套套到Φ90■■外圆上,再使用三爪卡盘。
先用外圆刀粗精加工端面和Φ122■■外圆,接着用内孔车刀加工端面Φ45孔,最后用切槽刀(单边斜角为5°)加工宽6mm深3.5±0.1mm的槽。
③加工17■■mm的螺旋通槽。
第三步用加长杆的三爪卡盘装夹Φ122■■端,用两刃Φ17键槽铣刀加工两个螺旋通槽。
键槽铣刀可轴向进刀,轴向进给到分层深度3mm后再XY方向走刀加工。
考虑到加长杆的三爪卡盘卡爪与工件的接触长度短,所以分层以减小切削力,保证加工质量。
④加工Φ5深20的两小孔。
第四步用专用夹具装夹Φ122■■端,用Φ5麻花钻加工深20mm的两小孔。
1.4 刀具的选择和切削用量
根据以上所述的加工顺序,所需的加工方法有:车削、铣削、钻削和倒角等。
根据不同的加工方法,选择的刀具和切削参数如表1。
2 结束语
数控机床具有加工精度高、自动化生产、效率高等特点。
本文先对活塞零件图进行了分析,接着根据零件加工的内容和难点,选择合适的装夹方案,其中Φ5端面孔的加工是整个零件加工的难点,文中对该工序加工所用的专用夹具进行设计,实现多个零件的完全定位,夹紧元件采用了效率高、稳定性好的气动夹紧装置,有效地保证了加工质量,提高了加工效率。
事实证明,单件生产(打样板)和批量生产的工艺方法会有很大不同,在批量化生产中,针对某道工序设计和使用专用夹具,可以保证产品的一致性,大大缩短装卸工件的辅助时间,生产率是单件生产工艺方法的几倍,甚至十几倍。
当然,本文并未能解决该零件多次装夹,耗费时间,提高夹具设计的成本等问题。
在未来数控加工的领域里,利用多轴加工,减少装夹次数是一个发展方向。
参考文献:
[1]韩鸿鸾.数控加工工艺学[M].北京:中国劳动社会保障出版社,.
[2]钱可强.机械制图[M].北京:中国劳动社会保障出版社,.
[3]刘学强.浅谈活塞数控加工[J].内燃机与动力装置,(06).
活塞杆加工工艺方法【2】
【摘 要】俗话说车工怕杆,意思是说车工加工细长杆类零件时很不容易达到技术要求,一个是尺寸公差很难保证,另一个是杆类零件加工后是弯曲的。
往复式压缩机的活塞杆就是这种典型的细长杆类零件,尤其是采用液压连接的活塞杆,长径比较大,加工难度较大,出现弯曲杆的可能性随之增高。
如果将一根弯曲的活塞杆安装在压缩机上,那么活塞杆在往复运动中是跳动的,填料函中的密封环就会随着活塞杆的跳动而跳动,从而导致气体无法密封而大量外泄。
同时,活塞杆的跳动也将引起整台机组的振动,从而使设备无法安全运行。
因此,尺寸公差及形位公差完全合格的活塞杆是往复式压缩机正常运转的首要条件之一。
【关键词】活塞杆 加工方法 压缩机 公差
1引言
怎样才能生产出合格的活塞杆呢?下面就活塞杆产生弯曲的原因进行分析,总结出对活塞杆加工有影响的几点要素。
2切削力的分析
2.1总切削力F
在切削过程中,为了克服金属材料的变形抗力以及摩擦阻力,刀具必须受到一个作用力F,称之为总切削力。
由于总切削力的方向及大小会随着切削条件的变化而变化,故应将总切削力分解成以下几个既定方向的分切削力。
2.2主切削力Fc
主切削力Fc是总切削力沿主运动方向的分力。
在切削加工中,所消耗功最多,所以它是计算机床功率、刀杆、刀片强度以及夹具设计、选择切削用量的主要依据。
2.3给力Ff
进给力Ff是总切削力沿进给运动方向的分力。
车外圆时,它作用在进给机构上,是设计计算进给机构强度的依据。
2.4背向力Fp
背向力Fp是总切削力沿工作平面垂直方向的分力。
车外圆时,背向力使工件弯曲变形或振动,对加工表面质量影响极大,所以在加工杆类零件时应尽可能设法减少背向力Fp。
3影响切削力的因素
3.1工件材料
工件材料的硬度或强度越高,切削力越大。
工件材料的塑型或韧性越好,变形抗力和摩擦阻力大,切削力也越大。
3.2切削量
切削量取决于切削速度和进给量以及背吃刀量,切削速度是通过影响切削变形程度来影响切削力的,切削变形大,则切削力增大。
进给量和背吃刀量增大,分别使切削宽度和切削厚度增大,切削层面积也增大所以变形抗力和摩擦阻力也增大,则切削力也就随之增大。
但是两者影响程度不同,当背吃刀量增大一倍时,主切削力也增大一倍,但当进给量增大一倍时,主切削力只增大75%~90%。
3.3刀具的因素
前角增大,切削变形减少,切削力也减少,并且前角对进给力及背向力的影响比对主切削力的影响大。
主偏角与副偏角主要影响三个切削分力的大小和比例关系。
在刀具图弧半径为零时,增大主偏角可减少主切削力,同时可使背向力减少,进给力增大。
同理,增大副偏角也可使背向力减少,有利减小工艺系统的弹性变形和振动。
4选择合适的刀具角是加工活塞杆的关键
通过上面的分析,我们知道选择合适的刀具角度对活塞杆加工至关重要,减少背向力是加工细长杆类的关键,下图说明一下车刀的角度及作用。
4.1主偏角Kr
主偏角Kr是主切削平面与假定工作排平面间的夹角,其作用是改变切削力和刀头的受力情况和散热条件。
当主偏角Kr等于90°左右时,背向力趋近零,也就是说明我们在加工杆类零件时将车刀的主偏角取90°左右,对减少零件的弯曲度是有利的。
4.2副偏角K’r
副偏角K’r是副切削平面与假定平面间的夹角。
其作用是减少副切削刃与工件已加工表面间的摩擦,但是副偏角也不要取的太大,因为副偏角过大会降低刀具的强度。
4.3刀尖角εγ
刀尖角εγ是主、副切削平面间的夹角。
刀尖角的大小可以用下式计算εγ=180°-(Kr+ K’r),刀尖角的大小影响刀尖处的强度和散热面积。
4.4刃倾角λs
刃倾角λs是主切削刃与基面间的夹角。
以基面为基准,当主切削刃在选定点以后的部分位于基面之上时,规定刃倾角小于0°,当主切削刃位于基面上时,刃倾角等于0°。
4.5前角r0
前角与基面间的夹角为前角r0,以基面为基准,当前面在基面之上时,规定前角小
于0°,当前面在基面之下时,规定前角大于0°,当前面和基面重合时,前角等于0°。
增大前角能使刃口锋利,减少切削变形,减少切削力,并使切削容易排出。
但使前角增大会降低刀头强度。
4.6后角α0
后角α0是后面与切削平面间的夹角,后角能减少后面与工件之间的摩擦。
后角愈大,切削刃愈锋利,但影响刀头强度。
(如图1)
5保证活塞杆中心孔的同轴度
保证活塞杆两端中心孔的同轴度是活塞杆加工的关键所在。
因为活塞杆的加工工序较多,而中心孔是各道工序周转中的定位尺寸。
如果活塞杆两端的中心孔不在同一轴线上,那么在各道工序周转时由于装夹用力的差异,活塞杆各外圆面就会造成微小的变动,活塞杆的加工质量会降低。
6中心架的调整
为防止活塞杆加工时产生弯曲,都设置中心架,以克服背向力造成活塞杆弯曲。
需要注意中心架的夹固力的调整,使三个支承爪受力均匀,支承力大小要合适,过大会使摩擦力增大,过小时将起不到夹固的作用。
支承爪与工件接触处需要经常加油润滑,以防止拉毛工件及摩擦发热。
同时也应注意尾座顶尖的顶固力。
粗加工时可适当增大顶固力,以防工件脱落,精加工时顶固力要适当减小,以防顶弯活塞杆。
参考文献:
[1] 顾崇.《机械制造工艺学》.陕西科学技术出版社,1994年6月.
[2] 张帆.《机械精度设计与检测》. 陕西科学技术出版社,5月.
[3] 李益民.《机械制造工艺设计简明手册》. 机械工业出版社,10月.
[4] 艾兴.《切削用量简明手册》. 机械工业出版社,3月.
[5] 徐鸿本.《机床夹具设计手册》. 辽宁科学技术出版社,10月.
[6] 杨黎明.《机床夹具设计手册》.国防工业出版社.
篇2:数控车削加工工艺
摘要:数控车床的使用的目的是加工出合格的零件,但合格零件的加工必须要依靠制定合理的加工工艺。本文针对当前数控车床使用者的工艺分析的不合理来进行对比,讲述合理的工艺分析的顺序问题。
关键词:数控车床 车削加工工艺 工艺分析
一、问题的提出
数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。
数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。主要内容包括以下几个方面:
(一)选择确定零件的数控车削加工内容;(二)对零件图进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。
但是分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。设计不合理将直接导致零件的形位公差达不到要求,导致产生次品。
二、分析问题
数控车床的`使用者的操作水平较高,能够独立解决很多操作难题,但理论水平不是很高,这是造成工艺分析顺序不合理的主要原因, 造成工艺分析顺序不合理的另一个原因是企业的工量具设备不足。
三、解决问题
笔者认为合理的工艺分析步骤应该是:
(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择; (六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。 本文主要对二、三、四、五三个步骤进行详细的阐述。
(一)零件图分析
零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。
1.选择基准
零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。
2.节点坐标计算
在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。
3.精度和技术要求分析
对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。
(二)工序、工步的设计
1.工序划分的原则
(1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。 为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。
(2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。
2.确定加工顺序
(1)先粗后精。按照粗车半精车精车的顺序进行,逐步提高加工精度。
(2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。
(3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。
(4)基面先行。作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。
(三)夹具和刀具的选择
1.工件的装夹与定位
数控车削加工中尽可能一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。操作时应合理选择 。
2.刀具选择
刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。
(四)切削用量选择
数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f )。
切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。
一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。
精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min )可根据切削速度υ(mm/min)由公式 S=υ1000/πD(D为工件或刀/具直径 mm)计算得出,也可以查表或根据实践经验确定。
三、结 语
数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。
参考文献:
[1]《数控车削加工工艺性分析》.周鹏.《消费导刊·理论版》 第1期
篇3:数控加工工艺守则
数控加工除遵守普通加工通用工艺守则的有关规定外,还应遵守表“数控加工工艺守则”的规定,
数控加工工艺守则
,
表
篇4:数控加工中车削工艺
数控加工中车削工艺
【摘 要】数控机床的加工工艺与普通机床的加工艺虽有诸多相同之处,但也有许多不同之处。
为此,分析了数控车削的加工工艺。
数控机床产生20世纪40年代,随着科学技术和社会生产的发展,机械产品的形状和结构不断改进,对零件的加工质量要求越来越高,零件的形状越来越复杂,传统的机械加工方法已无法达到零件加工的要求,迫切需要新的加工方法。
数控车床又称为CNC(computer numerical control)车床,即用计算机数字控制的车床,是国内使用量最大、覆盖面最广的一种数控机床。
CNC车床能加工各种形状不同的轴类、盘类即其它回转体零件。
【关键词】数控车床;车削加工;工艺分析
0.前言
数控机床作为一种使用广泛、典型的机电一体化产品,综合应用了微电子技术、计算机技术、自动控制、精密测量和机床结构等方面的最新成就,是一种高效的自动化机床。
随着科学技术的不断发展,迄今,国际上又出现了以一台或多台加工中心、车削中心为主体,再配以工件自动装卸和监控检查装置的柔韧性制造系统FMS、计算机集成制造系统CIMS和无人化工厂FA。
由于数控机床极高效率、高精度和高柔韧性于一身,很好的代表了机床的主要发展方向。
时代和社会生产力的不断发展,要求数控系统与数控机床向更高的水平与层次迈进(高精度化、运动高速化、高柔韧性化、智能化)。
1.零件图纸分析
1.1零件的特征
拿到图纸首先了解零件的材料;然后从图纸中看出该零件轮廓是由哪些部分构成的,最后分析这些部分包括哪些加工。
1.2数值计算
生活中,我们对几何信息的认知有多种方法,常用的有数形结合法(解析法)。
但有时面对复杂的图形,解析法会带来繁重的数学计算。
CAD作为一套专业的绘图软件,它强大的信息处理功能为图形中繁杂点的计算带来了可能。
我们在操作界面中绘制图形后就可以打开状态栏中的捕捉、对象捕捉按钮,在绘图区捕捉相关的点。
同时,在状态栏中就可以看到这些点的坐标。
2.工件定位与装夹的分析
2.1加工精度要求
明确加工图纸上数值所示的加工精度要求。
2.2定位基准的选择
定位基准选择原则有以下4种:
(1)基准重合原则(2)基准统一原则(3)便于装夹原则(4)便于对刀原则。
根据定位基准选择原则,避免不重合误差,便于编程,以工序的设计基准作为定位基准。
2.3装夹方式
夹具的作用是保证工件在机床上的正确位置和牢固的安装,即定位和夹紧,从而使数控加工顺序进行,保证工件的位置精度,同时也保证工件坐标系能够建立在正确的位置上。
车削加工的工件一般是回转体,对于回转体零件,一般选择三爪自定心卡盘。
2.4工艺过程制定
由于每个零件结构形状不同,各表面的技术要求也有所不同,故加工时,其定位方式则各有差异。
一般加工外形时,以内形定位;加工内形时又以外形定位。
因而可根据定位方式的不同来划分工序。
3.切削用量分析
3.1切削用量
切削用量包括切削速度,背吃刀量和进给量.对于不同的加工方法需要选择不同的切削用量。
粗加工时一般以加工效率为主通常选择较大的背吃刀量和进给量,采用较小的切削速度 。
精加工时通常选择较小的背吃刀量和进给量采用较高的切削速度。
3.2主轴转速的确定
主轴的转速是由切削刃上选定点相对于工件的`主运动的线速度。
主运动速度:n=1000Vc/πd 单位为r/min
4.数控车床对刀分析
4.1刀位点
在进行数控加工的编程时,往往将整个刀具浓缩视为一个点,那就是刀位点,它是在刀具上用于表现刀具位置的参照点。
对刀操作就是要测定出程序起点处刀具刀位点相对机床原点以及工件原点的坐标位置。
在对刀时,常用的仪器有:对刀测头、千分表或对刀瞄准仪等。
对刀点可以设置在零件、夹具上或机床上面(尽可能设置在零件的设计基准或工艺基准上)。
4.2 待加工毛坯的对刀
试切端面:将两端面已经加工好的待加工毛坯装夹到主轴上,在工件的伸出端安装Z 轴向设定器。
快移刀具接近到Z 轴向设定器,改用增量方式控制刀具工进,至到指示灯亮时停止动作,保持 Z轴 向不动,取出轴向设定器。
然后在机床操作面板上调出刀具补偿菜单栏中刀偏表,在相关的试切长度填空栏中键入有关数值(当前刀具刀位点相对于程序原点的距离)。
试切外圆:快速将刀具刀位点移动刀毛坯端面角附近,然后用增量方式调节X、Z 轴向进给至刀位点刚好切到毛坯外表面,再用MDI方式运行进行外圆车削。
同时保持X轴轴向坐标不变,退出刀具。
用游标卡尺测量出试切外圆直径。
然后在刀偏表中键入试切直径。
4.3刀偏值的测定
刀偏值就是各刀具相对于基准刀具的几何补偿。
用点动或步进方式操作移动刀具,使基准刀具刀位点对准工件的基准点,然后进行X轴 Z轴坐标清零,退刀。
换置刀具,再用点动或步进方式使该刀具刀位点对准工件上的同以一基准点,此时屏幕上显示的坐标既是该刀号刀具的几何偏置△Xj,△Zj。
同理,可依次测定出其它刀具相对于基准刀具的几何偏置。
在相应的刀偏表中依次键入选用刀具刀位点的几何补偿。
5.总结
近年来,在国外的数控系统与伺服系统制造技术突飞猛进的大背景下,通过大量的技术引进,我国现代制造工业在飞速发展(数控技术得到广泛的应用)。
同时,我们还要看清现阶段中国数控业与世界先进水平的差距。
我国只有拥有完全自主知识产权上的数控核心技术,才能实现真正意义上的“世界工厂”和“制造大国”乃至“工业强国”。
这使国人不得不开始重新思索中国数控在未来的发展之路。
【参考文献】
[1]赵长明.数控加工工艺及设备.北京:高等教育出版社..
[2]夏凤芳.数控机床.北京:高等教育出版社..
[3]袁哲俊.金属切削刀具.上海:上海科学技术出版社.1993.
[4]蔡兰,王霄.数控加工工艺学.化学工业出版社.2005.
[5]王爱玲.数控机床加工工艺.北京:机械工业出版社..
[6]刘靖华.数控加工技术.高等教育出版社.2003.
[7]徐宏海.数控加工工艺.化学工业出版社..
篇5:数控车削加工工艺论文
数控车削加工工艺论文
数控车削加工工艺论文【1】
摘要:数控车削加工工艺是目前数控机床这种高效率设备必须重视的一个首要问题,现代数控加工工艺是影响机床效率的关键所在,与普通机床的加工工艺相比较存在着很多不同之处,科学合理的加工工艺是本文探讨的主题,改善工艺技术的不合理性,加大对加工工艺的重视力度是未来的发展趋势,本文就数控车削加工工艺进行了具体的分析,并提出了科学合理的改进建议。
关键词:数控机床 加工工艺 分析
在科技超速发展的社会中,数控机床的各项技术也在突飞猛进的前进着,现代化的技术水平要求我们必须不断地随着社会的脚步发展,运用科学的理论与扎实的实际相结合起来,去对数控技术进行改进,使我国数控车削加工技术位于世界领先状态。
数控车削加工工艺科学的分析是保障数控车削加工零件顺利完成的前提条件,分析的内容包括切削用量及确定零件的选择、设计工序及工步、优化并计算加工的轨迹、图纸的加工工艺分析、选择设计工具及夹具、加工工艺技术文件的编制。
由此可见,数控加工工艺性分析是整个零件加工的方法和技术手段结合体。
本文就数控车削加工工艺进行了具体的分析,并提出了科学合理的改进建议。
1 数控车削加工工艺具体的分析
1.1 零件图的具体分析
(1)数控车削工艺首先要考虑的就是零件图的合理性。
主要在三方面进行分析,即零件图上的尺寸标注方法是否适和数控机床的加工要求、分析节点坐标的计算和分析被加工零件的精度与技术程度要求。
(2)零件图上的尺寸标注方法是否适和数控机床的加工要求,这决定了加工零件的合理性,同一基准下直接给出标注尺寸,可以使设计、工艺、测量的基准和编程原点统一起来。
这样就可以避免不必要的麻烦,使各种编程计算得到简单化。
(3)分析节点坐标的计算,在对零件进行加工中包括手工编程与自动编程,在手工编程时要计算出每个节点坐标,在自动编程时则要定义所有几何元素。
所以,在进行分析零件图时,要分析节点坐标的计算。
(4)分析被加工零件的精度与技术程度要求,想要选择出零件合理地加工方法、装夹方式及切削用量等等,必须分析出零件具体尺寸加上高超的技术水平。
充分考虑各种可能性,做好假如达不到预想效果时的补救措施,在既定目标下完成好各个环节,并及时根据实际情况变换切削速度,任何情况下都要保证工作质量,事实就是,不掩盖事实。
1.2 分析加工中如何选择夹具与刀具
装夹的最低次数是提高加工效率的表现,同时要确保精准的加工质量。
零件本身的外圆柱面是轴类零件的定位基准,套类零件则是内孔为基准,合理选择夹具非常重要;刀具选择也有技巧可循,寿命越长的刀具越能承受越多的切削用量,直径越大的刀具寿命越长。
尖形、圆弧形和成型车刀是最常用的刀具。
1.3 工序的科学划分
(1)保持精度原则和提高生产效率原则是数控机床加工时的两种划分原则。
保持精度也就是工序要尽量集中,粗、细在完成过程中应该分开进行,这样就会降低热及切削刀变形对工件的位置、尺寸精度等得影响,保证工件的形状要求;提高生产效率的原则,也就是在操作过程中提高成功率,减少换刀次数,节省时间,也应该减少空行程。
(2)加工顺序遵循先粗后精、先近后远、内外交叉和基面先行的原则。
提高加工精度是要逐步完成的,切削条件的改善至关重要。
2 数控车削加工工艺现存的问题
(1)数控加工操作人员的理论水平受限,从事多年的数控车削加工人员积累了丰富的实践经验,但目前科技及各方面的飞速发展,操作者的理论知识水平并没有完全适应整个社会的发展水平。
因此,导致了一些新技术没能及时的运用到实践中去,这样也就是阻碍了我国整个数控领域的发展水平。
(2)数控企业的投资相对不足影响加工工艺的发展,在我国很多数控加工企业为了得到更多的利润,投入的就相对不足,工量具的设备不足也导致了在实际操作中的障碍出现,在加工的工程中出现问题零件,没有合适的工具而不能及时的补救零件,降低了工作的效率。
3 具体的改进措施
(1)企业加大对现有技术人员的培训力度,制定出具体的进修计划,大力培养在职技术人员的理论水平,从而提高工作效率;同时积极引进高学历技术人员,通过他们先进的理念及时的对现有的'数控车削加工工艺进行科学的分析调整,使数控车削加工工艺适应社会的发展状态,不落后于其他企业或国家。
(2)企业高管要把眼光放远,加大投资力度,保证企业的顺利发展。
只要坚持原则,投入越多回报越大,这是一个正常的发展规律,运用科学、先进的理论进行数控车削的加工工艺分析,与实际的操作结合起来,肯定会为企业带来更多的效益。
4 结语
数控车削加工工艺作为数控机床这种高效率设备的必要条件,其科学合理的程度显得尤为重要,分析这种加工工艺必须具备高素质的头脑,掌握数控机床的操作技巧、特点及性能,在编程前也要进行详细的分析,制定科学合理的加工工艺,这样就会把数控机床的高性能、高自动化和高精度的特点发挥出来,使最合理的加工方案得到最丰厚的回报,为企业带来巨大的效益,为国家创造更大的价值。
参考文献
[1] 康战,聂凤明,刘劲松,等.单点金刚石精密数控车削加工技术及发展前景分析[J].光学技术,2010,2.
[2] 王宝雨,张康生,刘晋平,等.斜轧球类件轧辊的数控车削加工及误差分析[J].北京科技大学学报,2001,02.
[3] 周国柱,王文平.数控车削自动编程中的工艺路线自动生成[J].中国机械工程,1995,01.
数控车削加工精度控制【2】
摘要:数控车削加工技术已广泛应用于机械制造行业,如何高效、合理、按质、按量完成工件的加工,每个从事该行业的工程技术人员或多或少都有自己的经验。
现以广州数控设备厂生产的GSK980TB系列机床为例,介绍几例数控车削加工精度控制技巧。
关键词: 数控车削 控制 尺寸精度 技巧
机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。
它们之间的差异称为加工误差。
加工误差的大小反映了加工精度的高低。
误差越大加工精度越低,误差越小加工精度越高。
文档为doc格式