以下是小编为大家准备的黑豆糯米酒加工工艺分析论文,本文共13篇,仅供参考,大家一起来看看吧。

篇1:黑豆糯米酒加工工艺分析论文
黑豆又名橹豆、黑大豆等,味甘性平,具有消肿下气、润肺燥热、活血利水、祛风除痹、补血安神、明目健脾、补肾益阴、解毒等作用。李时珍在《本草纲目》中有记载:“常食黑豆,可百病不生。”黑豆具有高蛋白、低热量的特性,营养丰富,含有蛋白质、脂肪、维生素、微量元素等多种营养成分,同时又具有多种生物活性物质,如黑豆色素、黑豆多糖、卵磷脂、皂苷和异黄酮等[1]。现在黑豆被人们视为药食两用的佳品,被开发成各种营养保健食品,如黑豆面包、黑豆挂面、黑豆发酵茶饮、黑豆发酵醋饮等[2]。目前已开发的黑豆酒主要是通过白酒、黄酒对黑豆进行浸提、调配生产[3],还缺乏对黑豆发酵酒产品的开发研究。米酒是中国的传统食品,以糯米加酒曲酿制而成,口味香甜醇美,营养成分易于人体吸收,能刺激消化腺的分泌,增进食欲,有助消化。黑豆与谷类是相宜食物,所含氨基酸可以互补,使营养更加全面。目前保健型米酒加工工艺主要有调配型[4,5]和混合发酵型[6,7],采用混合发酵工艺,在发酵过程中可使黑豆中的游离型大豆异黄酮、蛋白质等营养成分含量有所提高[8]。用黑豆和糯米混合发酵制成黑豆米酒,不仅可以增加米酒的色香味,而且可以提高米酒的营养价值和保健功效。本试验以黑豆和糯米为主要原料,采用2种工艺流程酿制黑豆糯米酒,设计正交试验考察甜酒曲添加量、黑豆添加量、发酵时间对黑豆糯米酒感官评价的影响,优化黑豆糯米酒加工工艺,以期为黑豆糯米酒的开发提供参考。
1材料与方法
1.1材料糯米(市售)、黑豆(市售)、甜酒曲(湖北安琪生物集团有限公司,配料为根霉菌和米粉)。1.2仪器BIC-250型人工气候箱(上海博迅实业有限公司医疗设备厂)、hr2101型食物料理机(飞利浦公司)、AUY220型电子天平(日本岛津公司)、蒸锅、一次性塑料杯、保鲜膜等。1.3工艺流程1.3.1工艺1黑豆糯米酒制作工艺1如下所示:糯米→浸泡→蒸熟→冷却→加酒曲→拌匀→发酵→过滤→酒液↑黑豆→洗净→炒熟→冷却→磨粉1.3.2工艺2黑豆糯米酒制作工艺2如下所示[9]:糯米→浸泡→蒸熟→冷却→加酒曲→拌匀→发酵→过滤→酒液↑黑豆→洗净→煮熟→打浆→过滤得豆汁1.4操作方法1.4.1糯米的处理筛选无虫蛀、无霉变的优质糯米,清洗干净后用水浸泡至米粒充分吸水,可手捻成粉,内无夹心,夏季水温达到22℃,需浸泡18h,冬季水温较低时,可适当延长浸泡时间至符合要求。将浸泡好的糯米倒入铺有纱布的蒸锅中,沸水蒸30~35min,至饭粒饱满柔软无硬心。停火30min后出锅,将糯米饭打散晾凉后,称取50g糯米饭到一次性塑料杯中[10,11]。1.4.2黑豆的处理筛选出颜色乌黑、颗粒饱满的优质黑豆,洗净备用。在工艺1中,将黑豆放于干锅中翻炒至皮裂出香,晾凉后磨成粉,按试验设计比例添加到糯米饭中。在工艺2中,按1∶10的比例加水浸泡黑豆10h,榨汁过滤得到黑豆汁,煮开撇去浮沫,晾凉,按试验设计比例添加到糯米饭中。1.4.3拌酒曲按正交试验设计,称取一定量的甜酒曲,加适量凉开水溶解后,添加到糯米饭中,拌匀。凉开水的用量以使糯米饭松散不粘连为宜,在工艺1中,黑豆粉吸水性强,凉开水用量稍多。在工艺2中,黑豆汁中含水,凉开水用量稍小。最后再在米饭的中央掏个洞搭窝,以增加米饭和空气的接触面积,并且方便观察出酒量。1.4.4发酵将杯子用保鲜膜封口,封口处扎橡皮筋扎口密封,移入培养箱中发酵,温度设定为30℃,相对湿度为95%。1.4.5成品用纱布滤去酒糟,取酒液作为成品。1.5品评方法参照GB/T27588-露酒标准,按照外观色泽、香气、滋味和风格口感指标建立评分标准,如表1所示。由10人组成评分团对样品进行品尝,参照黑豆糯米酒感官评分标准进行评分,取平均值。1.2仪器BIC-250型人工气候箱(上海博迅实业有限公司医疗设备厂)、hr2101型食物料理机(飞利浦公司)、AUY220型电子天平(日本岛津公司)、蒸锅、一次性塑料杯、保鲜膜等。1.3工艺流程1.3.1工艺1黑豆糯米酒制作工艺1如下所示:糯米→浸泡→蒸熟→冷却→加酒曲→拌匀→发酵→过滤→酒液↑黑豆→洗净→炒熟→冷却→磨粉1.3.2工艺2黑豆糯米酒制作工艺2如下所示[9]:糯米→浸泡→蒸熟→冷却→加酒曲→拌匀→发酵→过滤→酒液↑黑豆→洗净→煮熟→打浆→过滤得豆汁1.4操作方法1.4.1糯米的处理筛选无虫蛀、无霉变的优质糯米,清洗干净后用水浸泡至米粒充分吸水,可手捻成粉,内无夹心,夏季水温达到22℃,需浸泡18h,冬季水温较低时,可适当延长浸泡时间至符合要求。将浸泡好的糯米倒入铺有纱布的蒸锅中,沸水蒸30~35min,至饭粒饱满柔软无硬心。停火30min后出锅,将糯米饭打散晾凉后,称取50g糯米饭到一次性塑料杯中[10,11]。1.4.2黑豆的处理筛选出颜色乌黑、颗粒饱满的优质黑豆,洗净备用。在工艺1中,将黑豆放于干锅中翻炒至皮裂出香,晾凉后磨成粉,按试验设计比例添加到糯米饭中。在工艺2中,按1∶10的比例加水浸泡黑豆10h,榨汁过滤得到黑豆汁,煮开撇去浮沫,晾凉,按试验设计比例添加到糯米饭中。1.4.3拌酒曲按正交试验设计,称取一定量的甜酒曲,加适量凉开水溶解后,添加到糯米饭中,拌匀。凉开水的'用量以使糯米饭松散不粘连为宜,在工艺1中,黑豆粉吸水性强,凉开水用量稍多。在工艺2中,黑豆汁中含水,凉开水用量稍小。最后再在米饭的中央掏个洞搭窝,以增加米饭和空气的接触面积,并且方便观察出酒量。1.4.4发酵将杯子用保鲜膜封口,封口处扎橡皮筋扎口密封,移入培养箱中发酵,温度设定为30℃,相对湿度为95%。1.4.5成品用纱布滤去酒糟,取酒液作为成品。1.5品评方法参照GB/T27588-2011露酒标准,按照外观色泽、香气、滋味和风格口感指标建立评分标准,如表1所示。由10人组成评分团对样品进行品尝,参照黑豆糯米酒感官评分标准进行评分,取平均值。1.6正交试验影响黑豆糯米酒风味的主要因素有黑豆粉添加量、甜酒曲添加量和发酵时间。针对这3个因素,以黑豆糯米酒感官评分为考察指标进行正交试验,各因素和水平见表2。
2结果与分析
2.1工艺流程比较从2种工艺流程的特点和产品的感官评定方面进行比较,结果表明,2种工艺生产的黑豆糯米酒都能达到糯米酒的基本要求,各有优劣。工艺1生产的黑豆糯米酒,在发酵24h之后酒味渐浓,黑豆利用完全,但过滤要求高,易残留黑豆粉粒。该糯米酒呈浅红褐色,口味丰富,既有黑豆味和炒香味,又有糯米酒的甜鲜味,口感较好,但易残留黑豆粉粒,不够澄清透亮。工艺2生产的黑豆糯米酒,在发酵24h后酒味更浓,出酒较快,黑豆特色不明显,过滤要求不高。该糯米酒呈乳白色,无沉淀,较透亮,黑豆味不明显,甜鲜爽口。从充分利用黑豆的角度考虑,选择工艺1为较优的黑豆糯米酒加工工艺。2.2正交试验结果由表3可知,各因素对黑豆糯米酒品质的影响大小顺序为C>B>A,即发酵时间影响最大,其次是黑豆粉添加量,甜酒曲添加量的影响最小。最优工艺组合为A2B3C3,即甜酒曲添加量为0.6%,黑豆粉添加量为6%,发酵时间为72h。方差分析结果(表4)表明,发酵时间对黑豆糯米酒的品质有显著影响。2.3产品品质分析参照绿色食品米酒标准NY/T1885-、发酵酒及其配制酒食品安全国家标准GB2758-分析所制得的黑豆糯米酒的品质,各项指标均符合标准。感官指标:因添加黑豆而色泽粉红,鲜亮无沉淀,无杂质;清香柔和,有浓郁的黑豆独特味道和糯米酒香甜味,无异味;酸甜可口,风格独特。理化指标:总糖(以葡萄糖计)为8.0g/100g、蛋白质为0.2g/100g、总酸(以乳酸计)为0.65g/100g、酒精度(20℃)为11%。卫生指标:菌落总数<50个/CFU/g;大肠菌群没有检出;致病菌(沙门氏菌、志贺氏菌、金黄色葡萄球菌和溶血性链球菌)没有检出。
3小结
通过正交试验确定了黑豆糯米酒生产的最佳工艺条件为酒曲添加量0.6%,黑豆粉添加量6%,发酵时间72h。黑豆糯米酒不仅增加了米酒的色香味,而且提高了米酒的营养价值和保健功效。产品兼有黑豆和米酒的风味,酸甜爽口,营养丰富,风格独特。
篇2:线切割加工工艺论文
摘 要:要加工出合乎要求的工件,必须对线切割加工的各种工艺问题进行深入的探讨。
关键词: 加工 工艺
有了好的机床、好的控制系统、好的高频电源及程序,也不一定就能加工出合乎要求的工件,还必须重视线切割加工时的工艺技术和技巧。只有工艺合理,才能高效率地加工出高质量的工件,因此,必须对线切割加工的各种工艺问题进行深入的探讨。
1 加工流程
数控电火花线切割加工,一般是作为工件加工中的精加工工序,即按照图样的要求,最后使工件达到图形形状尺寸、精度、表面粗糙度等各项工艺指标。因此做好加工前的准备,安排加工工艺路线,合理选择设定参数,是完成工件加工的一个重要环节。电火花线切割加工流程如图1所示。
2 分析零件图
主要分析被加工零件是否适合采用数控线切割机床加工,明确加工要求。其次对工件上已加工表面进行分析,确定哪些面可以作为工艺基准、采用什么方法定位。分析零件的形状和材料热处理后的状态,考虑在加工过程中是否发生变形。由于线切割加工往往是最后一道工序,如果发生变形往往难以祢补,应在加工中采取措施,从而制定出合理的切割路线。
3 确定毛胚
(1)工件材料的选择是由图样设计时确定的,工件应在回火后才能使用,而且回火要两次以上或者采用高温回火。另外,加工前要进行消磁处理及去除表面氧化皮和锈斑等。
(2)加工路线的选择,在加工中,必须注意以下几点:
(a)避免从工件端面开始加工,应从穿丝孔开始加工;
(b)加工的路线距离端面(侧面)应大于5mm;
(c)加工路线开始应从离开工件夹具的方向进行加工,最后再转向工件夹具的方向。
(d)在一块毛坯上要切出2个以上零件时,不应连续一次切割出来,而应从不同预孔开始加工。
4 工艺基准的准备
为保证将工件正确、可靠地装夹在机床或夹具上,必须预加工出相应的基准,并尽量使定位基准与设计基准重合。
5 穿丝孔加工
凹形类封闭形工件在切割前必须具有穿丝孔,以保证工件的完整性。凸形类工件的切割也有必要加工穿丝孔。由于坯件材料在切断时,会破坏材料内部应力的平衡状态而造成材料的变形,影响加工精度,严重时甚至造成夹丝、断丝。如图3所示。因此还要考虑到穿丝孔的位置和大小等因素。
为了保证孔径尺寸精度,穿丝孔可采用钻绞、钻镗或钻车等较精密的机械加工方法。
(1)穿丝孔位置选在工件待切割型孔的中心时,操作加工较方便。选在靠近待切割型孔的边角处时,切割无用轨迹最短。选在已知坐标尺寸的交点处时,有利于尺寸的推算。因此,要根据实际情况妥善选取穿丝孔位置。
(2)穿丝孔的大小要适宜,一般不宜太大,以钻或镗孔工艺简便为宜。如果穿丝孔很小,不但增加钻孔困难,而且不便穿丝。太大也会增加工艺上的困难,一般选用直径范围为3~10mm。
6 电极丝的选择
常用电极丝有钼丝、钨丝、黄铜丝和包芯丝等。钨丝抗拉强度高,直径在 0.03~0.1mm范围内,一般用于各种窄缝的精加工,但价格昂贵。钼丝抗拉强度高,适于快速走丝加工,我国快速走丝机床大都选用钼丝作电极丝,直径在0.12~0.14mm范围内,切割厚度大于150毫米时,钼丝应选用直径在0.16~0.18mm范围内,要切割光洁度较高的工件时钼丝可选用直径0.12mm的。
电极丝直径的选择应根据切缝宽窄、工件厚度和拐角尺寸大小来选择。若加工带尖角、窄缝的小型模具宜选用较细的电极丝;若加工大厚度工件或大电流切割时应选较粗的电极丝。
7 工件的装夹方式的确定
线切割加工机床的工作台比较简单,一般在通用夹具上采用压板固定工件。为了适应各种形状的工件加工,机床还可以使用旋转夹具和专用夹具。工件装夹的形式与精度对机床的加工质量及加工范围有着明显的影响。常见工件的装夹方法有:悬臂支撑方式,两端支撑方式装夹,桥式支撑方式装夹,板式支撑方式装夹
8 工件找正
工件位置的校正:在工件安装到机床工作台上后,在进行夹紧前,应先进行工件的平行度校正,即将工件的水平方向调整到指定角度,一般为工件的侧面与机床运动的坐标轴平行。工件位置校正的方法有:拉表法,划线法,固定基面靠定法。
9 电极丝找正
为了准确地切割出符合精度要求的工件,电极丝必须垂直于工件的装夹基面或工作台定位面。常用的电极丝垂直度校正有利用找正器校正和利用校直仪校正两种方法。
10 机床检查与调整.
加工前,特别是加工精密工件之前,要对机床进行检查与调整。
(1)检查纵横方向拖板丝杆副间隙。由于频繁往复运动,纵横方向拖板丝杆副的配合间隙会发生变化。因此在加工微精工件前,要认真检查与调整,符合相应精度标准后,再开始加工。
(2)检查导轨。加工前,应仔细检查导轨V形槽是否受损。因导轨与电极丝间的电腐蚀以及滑动摩擦等,容易使导轨V形槽出现沟槽,如图6所示,这不但会引起电极丝产生抖动,也易被卡断,所以要经常检查和更换。另外,应注意去除堆积在V形槽内的电蚀产物。
(3)检查保持器。电极丝导向定位采用保持器或辅助导轮时,必须经常检查其工作面是否出现沟槽。如果出现沟槽,应调换保持器工作台面位置或更换辅助导轮。
11 机床的精度检测
(1) 几何精度及其检测
几何精度又称为静态精度,它综合反映机床关键零部件经组装后的综合几何形状误差。
(2) 数控精度及其检测
是检测机床各坐标轴在数控系统的控制下所能达到的位置精度,根据实测的定位精度数值,可判断零件加工后所能达到的精度。 (3) 工作精度检验
又称为动态精度,是在放电加工的情况下,对机床的几何精度和数控精度的一项综合考核。
12 加工准备
在加工工件前,我们还要对一系列的操作进行加工前的准备,这样才能加工出合格的工件。
12.1 加工程序的编制
编制程序单可以分为人工编程和自动编程两类。人工编程通常只常适用于简单图形的编程,对于要加工形状复杂或具有非圆曲线的零件时,一般常用自动编程,利用CAXA线切割XP软件绘制图形,生成轨迹后再生成代码程序再传输,但是生成代码后一定要校核代码,仔细检查图形尺寸。
12.2 工作液的选择与配制
工作液作为线切割机加工脉冲放电介质和冷却液,对加工的工艺指标影响甚大。它主要由基础油、爆炸剂、清洁剂、润滑剂、防锈剂等组成。主要作用是消除电离,冷却放电区,清除放电产物。把配好的工作液倒入工作液箱,并接好出水管。
12.3 脉冲电源的选用
(1)加工材料在40毫米以下,选用矩形脉冲切割时电压选择开关“2”放在第一档(70V),脉宽选择开关“4”可放在第二档,然后根据不同厚度调节“3”的大小。
(2)加工材料在40毫米~80毫米时,选用矩形脉冲切割,电压选择开关“2”放在第二档或第三档,脉宽选择开关“4”放在第三档,然后根据不同厚度调节“3”的大小。
(3)加工材料在80毫米~110毫米时,选用矩形脉冲切割,电压选择开关“2”放在第三档或第四档(空载85V~100V),脉宽选择开关“4”可放在第三档或第四档,然后根据不同的厚度调节“3”的大小。
(4)加工材料在110毫米以上,选用矩形脉冲切割,电压选择开关“2”放在第四档或第五档,脉宽选择开关“4”放在第四档或第五档,然后根据不同厚度调节“3”的大小。
(5)加工光洁度要求高的工件时,即Ra≤2.5时,可用分组脉冲切割,加工工件厚度H≤40毫米时,电压选择开关“2”放在第二档或第三档,脉宽选择开关“4”放在第一档,“5”放在“-1”位置。使用分组脉冲切割时,变频的跟踪调节很重要,因为分组脉冲的能量较小,调节得过快容易发生短路,所以一般计算机高频自动档放在“1”位置,然后变频的细调微旋转一个角度即可[7]。
12.4 电参数的确定
(1)要求切割速度高时。当脉冲电源的空载电压高、短路电流大、脉冲宽度大时,则切割速度高。但是切割速度和表面粗糙度的要求是相互矛盾的两个指标,所以,必须在满足表面粗糙度的前提下再追求高的切割速度,且切割速度还是受到间隙消电离的限制。
(2)要求表面粗糙度好时。若切割的工件厚度在80mm以内,则选用分组波的脉冲电源为好,它与同样能量的矩形波脉冲电源相比,在相同的切割速度条件下,可以获得较好的表面粗糙度。无论是矩形波还是分组波,其单个脉冲能量小,则Ra值小。亦即脉冲宽度小、脉冲间隔适当、峰值电压低、峰值电流小时,表面粗糙度较好。
(3)要求电极丝损耗小时。多选用前阶梯脉冲波形或脉冲前沿上升缓慢的波形,由于这种波形电流的上升率低,故可以减小电极丝损耗。
(4)要求切割厚工件时。选用矩形波、高电压、大电流、大脉冲宽度和大的脉冲间隔可充分消电离,从而保证加工的稳定性。
12.5 速度参数的选择
(1)进给速度。工作台进给速度太快,容易产生短路和断丝;工件台进给速度太慢,加工表面的腰鼓量就会加大,但表面粗糙度较小。正式加工时,一般将试切的进给速度下降10%~20%,以防止短路和断丝。
(2)走丝速度。应尽量快一些,这有利于减少因电极丝损耗对加工精度的影响。尤其是对厚工件的加工,由于电极丝的损耗,会使加工面产生锥度。一般走丝速度是根据工件厚度和切割速度来确定的。
13 线切割加工
正确的安装工件、选择和配制好工作液、正确的选择电参数、速度参数等之后,就开始对工件进行加工了。
13.1 输入程序
将编制好的加工程序,利用键盘或其他输入设备输入到数控装置中。同时在加工之前,应将间隙量输入到数控系统中。对于较复杂的程序,要进行空机校验。
13.2 正式切割加工
经过以上各方面的调整准备工作,可以正式加工。将防护板安装好,按加工顺序操作。
参考文献:
[1] 单岩,夏天.数控线切割加工[M].机械工业出版社,7月第1版第1次.
[2] 周晓宏.线切割机床及数控冲床操作与编程培训教程.中国劳动社会保障出版社,8月第1版.
[3] 蒋建强.电火花线切割加工工艺分析及编程实例[D]. 苏州经贸职业技术学院.
篇3:线切割加工工艺论文
【摘要】数控电火花线切割机床可加工一般切削方法难以加工或无法加工的形状复杂的工件,应用广泛。快走丝在我国应用的比较多,本文主要以快走丝为例,根据在工作中积累的相关经验,来对线切割加工工艺方法进行研究。
数控电火花线切割机床可加工一般切削方法难以加工或无法加工的形状复杂的工件;同时电极丝材料不需比工件材料硬,所以在军工、电子、模具等行业应用广泛。
按照电极丝走丝速度不同可以把线切割机床分为快走丝和慢走丝两大类。慢走丝国外应用广泛,但成本较高。快走丝在我国应用的比较多。本文主要以快走丝为例,根据在工作中积累的相关经验,来对线切割加工工艺方法进行研究。
一、加工的准备
篇4:矿石品位与矿石加工工艺分析论文
矿石品位与矿石加工工艺分析论文
阳山庄矿位于陕西省韩城市东北方向,行政区划属韩城市龙门镇阳山庄村。矿区南距西候铁路下峪口车站约4km,108国道1km左右,西禹高速公路约2km,矿区至渭南、西安等地均有公路相通,交通十分便利。阳山庄矿矿石量达2300多万吨,储量规模较大,矿石品位与加工工艺直接影响着矿山开发的经济效益,对阳山庄矿石品位与加工工艺进行研究对今后矿石开采有着重要意义。
1矿石质量
1.1矿石矿物组成
矿石矿物的成分比较简单,金属矿物主要为磁铁矿,次为赤铁矿、褐铁矿,其它有用矿物为磷灰石,付矿物有锆石等。脉石矿物主要有角闪石、辉石、斜长石、绿混石、石英、黑云母、方解石等,多为热液充填或热液蚀变矿物。褐铁矿、赤铁矿:为磁铁矿氧化矿物,褐铁矿常在磁铁矿的裂隙或边缘呈网状产出。赤铁矿为自形~半自形粒状体,具磁铁矿假象。
1.2矿石结构构造
矿石一般是粗粒、中粒半自形粒状结构,有时也呈它形不等粒状结构。矿石构造以块状、花斑团块状构造为主,其次为网脉状。块状矿石以块状、粗脉状嵌布于裂隙中,与围岩交接线清楚,但接触面有时凹凸不平。此种矿石TFe品位一般大于40%,个别高达55-60%,但P的品位较低,一般为0.4-0.55%。花斑团块状矿石以花斑团块状产出,由角闪石、磷灰石、磁铁矿组成不规则的“花斑”,与围岩界线清楚,磁铁矿一般细到中粒。此种矿石TFe品位一般在20-40%,而P的品位相应增加,一般为0.7-1.0%。脉状矿石:磁铁矿以脉状产出、粗细相间、膨缩、尖灭再现,密集成带,两组不同期的细矿脉构成网格状,矿脉与围岩界线清楚,磁铁矿与角闪石、磷灰石密切共生,分布普遍。
1.3矿石化学成分
矿石的化学成分以铁和硅的氧化物为主,其次为:CaO、MgO、AI2O3、P2O5等,CaO含量为6.88-7.9%、MgO含量为2.32-2.7%、AI2O3含量为8.82-10.91%,微量元素有V、Ti、Ni、S、As,稀土元素含量甚微(表1)。TFe品位含量幅度较大,呈跳跃式变化,波动范围为5%左右到60%。品位变化系数为48.9%。矿石中有害杂质组份硫、砷含量均很低﹙S<0.02%、As<0.01%﹚,矿物中含晶质磷灰石较多,P2O5含量较高(组合分析P2O5品位0.81~2.37%,平均1.46%),但通过磁法选别可使铁精矿产品中的含量大幅下降。
1.4矿石风(氧)化特征
按矿石的氧化程度,将矿石划分为原生矿、氧化矿、混合矿原生矿石:TFe:Fe0﹤2.7;混合矿石:2.7﹤TFe:Fe0﹤3.5;氧化矿石:TFe:Fe0﹥3.5通过对500米标高以上样品分析,原生矿石占69.81%,混合矿石占20.13%,氧化矿石占10.06%。
1.5矿石类型和品级
矿石自然类型:本区矿石较为简单,含铁品位较低,为高磷贫铁矿石。经在0-⒊剖面500m-550m标高取样分析,矿石TFe:Fe0平均为2.658,属于原生高磷贫磁铁矿石。矿石工业类型:根据该矿床矿石的基本分析和铁物相分析,矿石中mFe的含量为15.23-31.05%,mFe占TFe的72.21-97.52%,平均为87.04%,将该矿山矿石划分为需选强磁性铁矿石。矿石品位分级:根据矿体中矿石的TFe含量,将矿石品级进行了划分。品位分级最大出现几率区间:TFe≥20%-30%占样品总数83%,块段平均品位18.20-25.81%,一般21.46%左右。
1.6矿体围岩和夹石
矿体和其顶、底板围岩之间虽然有直接的界限标志,但矿体和围岩中的磁铁矿脉相同,只是矿脉脉频和脉幅相差较大而已,另外矿体内单个磁铁矿脉之间尚有浸染状磁铁矿的存在。磁铁矿脉密集到一定程度则形成工业矿体,反之则为矿体围岩。一般矿体越深夹石越多。V号矿体内部无夹石。
2矿石加工技术性能
2.1工艺流程
采用破碎-干式预选-湿磨-湿式磁选简单工艺流程即可获得较好的选矿结果。出窿的原矿石,通过破碎-干式预选,可以抛弃TFe品位在4.45%以下,产率占36.49%的块尾矿,使球磨机的矿石加工量减少了三分之一,使湿式磁选作业的入选品位得以富集,即从TFe﹤20.55%提高到29.80%,而块尾矿中的TFe损失率仅为7.90%。块尾矿经过湿磨-湿式磁选工艺后,即可获得TFe品位66.10%的'高质量铁精矿(两件试样铁精矿中P品位分别为0.062%和0.008%,平均0.035%),湿选部分的精矿回收率达80.92%,在全流程中占74.53%,铁精矿产率在湿选部分占36.48%,在全流程中占23.17%,尾砂中TFe含量仅为8.95%。
2.2矿石可选性及磷的综合利用
阳山庄铁矿石进行了可选性试验和磷的浮选试验,经采样化验综合分析,选矿工艺流程简单,选矿指标先进合理,且已被阳山庄众多小型选矿厂的生产实践所证实,矿石属易选矿石。对尾矿中的磷进行多种方案浮选,精矿中的P2O5只达22%左右,回收率达88%;要得到28~30%以上的P2O5的磷精矿,磷回收率只能达到60~40%,将P2O5为22%的磷精矿,用盐酸浸出后可提高到32%,故磷可以综合利用。
3结论
综上分析,阳山庄铁矿矿石品位较高,选择合适的矿石加工工艺后,属易选矿石。开采的价值高,经济效益良好。
作者:闫和平杨敏 胡圣桃 单位:陕西省一九四煤田地质有限公司 旬邑虎豪黑沟煤业有限公司
篇5:数控加工工艺设计原则分析论文
摘要:工业加工一直以来都是一个融合了最新科学技术的行业。随着现代化高速发展和电子信息技术的不断成熟,数控加工在工业成产中的作用越来越大,极大地提高了工业加工的精准度和生产的统一规范化。数控加工技术近年来也朝着越来越智能化和自动化的方向发展和改进。从技术层面来看,数控加工工艺需要的技术和专业度要求都比较高,它直接决定了后面的零件加工的规范,属于零件加工的准备环节。数控加工工艺设计是需要在电子程序编制完成之前就完成设计工作,确定好数据加工的设计方案,只有这样,后续的电子程序编程才能有所依据。既然数控加工工艺设计这么重要,那它设计的合理性和科学性能有效地减少后期实际加工过程中的工作量,提高数控机床的编程效率。本文从数控加工工艺的设计原则和数控加工工艺设计的方法2个方面来进行简单的分析和阐述。
关键词:数控加工;设计原则;设计方法
数控加工工艺是在工业加工中一个比较大的进步。相比于传统的机床加工零件生产,它实现了将最新的电子数字信息技术同机械设备加工技术的科学合理结合。通过电子信息技术有效地将合理的编程指令发送给机械加工设备以完成加工控制,利用电子数控的最大优点就是它要比传统的机床加工技术更加高效,加工出来的零件参数都更加准确规范。电子数控的指令是将设计好的编程通过计算机传递给机械加工设备的,而数控加工工艺设计的方法和原则是这一设计工作最需要遵守和探究的两大方面,只有严格依据设计原则,不断地探讨和改进设计方法,编程才能发送更合理的指令给数控机床。从结果上来讲,数控加工工艺设计的好坏直接关系到零件加工最后成品的优劣,所以合理科学地完成数控加工工艺设计这一个前期准备工作就显得尤为重要。一般来讲,数控加工工艺设计中最容易出现的失误就是设计方案和编程的不全面,在设计方案和编程中没有考虑到一些容易被忽略的细节,从而导致实际加工中出现工作时间和成本的增加,甚至影响到零件加工的质量和规格[1]。
篇6:数控加工工艺设计原则分析论文
1.1数控加工工艺的基本特征
要弄清楚数控加工工艺的设计原则,首先要来探讨一下数控加工工艺的特点,从数控加工工艺的基本特征总结出数控加工工艺的设计原则。数控加工工艺是比较智能化的一道加工流程,它的加工工序比较集中,全程都是有计算机将设置好的编程变成指令操控数控机床进行加工,中途不需要人工进行手动更换刀具,因此这就需要前期的设计方案和数控编程都很完善和全面。而数控加工工艺设计是一个设计内容比较复杂的设计,数控加工工艺会涉及对于具体的零件加工内容和加工步骤的分析和设计。科学化地进行方案设计,正确地进行数控机床加工的执行编码程序。
1.2数控加工工艺的设计原则
首先,数控加工工艺的设计原则要遵循先粗后精的原则,所谓先粗后精的设计原则是根据数控加工实际加工过程的特点而决定的。因为数控加工的加工工序比较集中,可以实现先进行粗加工,然后过一段时间后再进行精加工。这样的设计原则一方面是由于这样可以提高加工效率,减少加工量和动刀的次数。另一方面,我们都知道零件在粗加工完一段时间会存在一定的形变,然后这时候再进行精加工就能提高加工零件的精度。因此,我们在数控加工工艺设计中一定要遵循先粗后精的原则。其次,对于走刀路线的设计最优也是数控加工工艺设计原则中的一个比较重要的方面。走刀路线的设计方案要遵循先近后远,走刀路径最优,动用刀具最少的原则。一般来说,走刀路径的设计一般来说都是要离刀口相对位置近的要进行先行加工,离刀口相对位置比较远的地方要后加工。这样在实际的数控机床的加工中能大大减少刀具的移动距离,提高加工的效率,减少加工时间。除了先近后远这个设计原则,走刀路径的设计原则还有一个先面后孔的设计原则。实际的机床加工零件过程中会有很多既有面又有孔的原料。这时候为了保证零件发生变形或出现切割失误,一般都要采取先进行表面切割后再进行孔内切割的走刀路径设计。遵循这两个走刀路径的设计原则,在实际的数控机床的加工过程中,会大大提高加工效率和加工精度[2]。最后,数控加工工艺设计的原则要依据数控加工工序比较集中的特征进行一次定位,加工工艺最大程度集中的原则。数控加工的最大优点就是高效和节省占地面积,加工精确,加工时间短。所以在进行数控加工工艺设计的时候一定要保障零件加工在一个数控机床内完成加工过程的'全部或者大部分。这种设计不仅可以减少数控机床的使用次数,减少加工成本和提高效率,另一方面也可以避免零件在多个数控机床间更换、装卸造成的变形和加工误差。所以在进行数控加工工艺设计的时候要遵循一次定位、集中工序的原则,把加工顺序都连接在一起。
2数控加工工艺的方法
2.1加工工序的设计科学合理设定
现代的数据加工与传统的机床加工还是存在很大的差异,无论是数控技术还是机床设备都有很高的专业性要求。实际加工过程中遇到的困难和意外可能远远高于前期的预想,所以加工工序的设计的全面和科学性就极为重要。我们在进行数控加工工序的设计时要把握整体,从整体出发,使数控机床的合理性和零件加工工艺的合理性都有一个详细的计划并制定好方案。在数控加工的过程中,很多环节都需要很严格地执行编程,比如对于零件的表面加工和对于零件的切削过程。所以在进行数控加工工艺设计的时候,一定要提前设定好完整的工艺和编程,从而实现对于数控加工的控制,最终实现以最小的加工成本实现最大的加工效率和收益。
2.2走刀路线的设计要最优
在数控加工工艺的设计中,不仅要重视工艺设计的效率,也要重视加工的质量和加工精度。所以在进行数控加工工艺设计的过程中要科学地选择最优的走刀路线,确保走刀路线的最短化。此外,在设计走刀路径的时候要实际考虑刀具的种类和特点,保证切割面的光滑无划痕。设计好刀具的切入方向和位置,选择最优的走刀路径[3]。
2.3切削方案的设计要明确
在数控加工工艺的设计中,切削方案是最重要的环节。可以说,切削方案设计的好坏与最后零件加工成品的好坏有直接的关系,因此在进行切削方案的设计时一定要明确加工过程中的切削量。借助电子数控技术,对于切削的刀具选择、切入方向和位置以及走刀路径都要考虑全面,设计出一个完善的、最优的切削方案,以实现最终编程指令的科学性,实现最终加工过程的低成本、高效率和精确度。
3结束语
总的来说,数控加工工艺的设计是计算机编程之前的准备工作。不管是手动编程还是自动编程,都要遵循科学的数控加工工艺设计原则,先粗后精,先面后孔。设计的走刀路线要最优,实现走刀路径最短,节约成本,提高效率。设计的工艺切削方案要集中且全面,实现数控加工工艺设计的科学化,满足加工编程和机床加工的实际需求。如果我们在实际的设计中遵循设计原则,不断地探讨和改进方法,最终就能保证数控加工的高质量和高效率。数控加工工艺的设计是专业度比较高的工业加工设计环节,我们在实际设计中要不断地进行设计方法的探索和丰富。
参考文献:
[1]赵博锌.基于数控加工工艺原则及方法研究[J].通讯世界,,03(12):218-219.
[2]骆彩云.基于数控加工工艺原则及方法研究[J].南方农机,,48(14):100.
[3]杨天云.基于数控加工工艺原则及方法研究[J].科技展望,2017,27(12):74.
篇7:数控加工工艺设计及步骤分析论文
工艺设计是数控加工的重要内容,在数控加工的过程中居于重要的导向地位。如果设计人员没有合理安排数控加工的工艺设计,很容易导致数控加工过程中的错误,增大数控加工的工作量,进而造成材料、人力资源等资源的浪费。因此,合理的数控加工工艺设计是数控加工工作开展的基础。因此,数控加工工艺设计成为数控加工的首要工作,数控加工技术人员积极探索数控加工工艺的合理设计。研究数控加工工艺设计原则和步骤不仅能够优化数控加工工艺设计,而且对数控加工技术的发展有着深刻意义。
1数控加工工艺的特点
根据数控加工经验分析,大多数数控加工失误是由于计算编程不细致和工艺技术考虑不周全导致的,因此,在数控加工设计的过程中必须注重数控加工的细节,合理设计数控加工工艺的方案。并且,数控加工工艺具有内容具体、工艺技术复合性强的特点。其中内容具体主要指数控加工的工序和用具较多,需要全面考虑数控加工中每一个细致的环节。而且,数控加工的内容比较复杂,只有将每一个加工细节做好,才能够使所有复杂的环节整合起来,形成高效的数控加工。而数控加工的工艺技术复合性主要指在数控加工过程中需要采用攻丝、铰、铣等多种工具,并且,数控加工运用多种工具将各种工序集合了起来,减少了零件和夹具的使用,提高了数控加工工艺的精度和效率。另外,数控加工工艺需要做好准备工作,在程序编制之前完成自动编程或手动编程,并作好技术准备工作,合理分析数控加工过程中的技术问题,以实现数控加工设计的优化。
篇8:数控加工工艺设计及步骤分析论文
2.1数控加工的合理性
数控加工过程中的零件审核加工具有合理性的特征,在选择数控加工内容的时候需要根据工作现状选择合理的加工内容,不能将数控加工机床当作普通的工作机床。并且,在选择数控加工零件的时候,不能将零件所涉及的所有内容进行加工,而要对其中最需要进行数控加工的零件进行加工。另外,数控加工的工序较为复杂,对加工工艺的精确度要求较高,需要采用合理的加工工艺和加工内容来实现数控加工的经济性。同时,数控加工技术对不同的零件有着不同的技术要求,因此,数控加工事先分类加工零件,并为加工零件寻找最合适的数控机床,以提高数控加工生产效率。
2.2数控加工的工艺性
数控加工的工艺性具体包括数控加工的可行性和数控加工的方便性这两个方面。因此,在数控加工之前需要事先分析数控加工的工艺性。首先,数控加工人员应对数控加工设计图纸中德数据进行分析,判断数据是否符合数控加工编程。具体来说,数控加工工艺应合理分析数控加工图纸的几何元素和尺寸标注是否合理,确保数控加工数据条件的充分性;其次,数控加工人员应对图纸中的加工部位和加工工艺结构进行分析,合理掌握零件数控加工的特点。具体来说,数控加工技术人员应判断零件外形和零件内腔的类型和尺寸,尽量选择统一尺寸的零件,以减少刀具的使用,并且,数控加工人员应对零件基准定位的可靠性进行分析,采用统一的定位标准,避免数控加工过程中的位置误差;最后,数控加工人员应对零件的精确度条件进行分析,保证零件加工技术和加工环节的精确性。具体来说,技术人员应充分了解零件加工过程中的工艺路线和加工工具,采用精细工艺的手法进行数控加工。
篇9:数控加工工艺设计及步骤分析论文
3.1一次定位原则
在数控技工的过程中,要十分注重数控加工工序的集中性,最大限度地将机床加工的全部工序或大部分工序在一次加工过程中完成,以减少工件夹装次数和机床的使用数量,减少机床加工过程中的工序误差,提高数控加工生产率。并且,在数控加工中,应在一次安装之后再处理孔系加工,并采用连续换刀的方式来完成全部的孔系加工,消除加工过程中重复定位的现象。
3.2先粗后精原则
在数控加工过程中应根据零件的刚度、精度等因素来对加工工序进行划分,先进行较为粗略的加工工序,再进行较为细致的加工工序,将粗略的加工工序和细致的加工工序分开。并且,数控加工人员应再处理完全部粗略加工工序之后再对细致加工工序进行精加工。另外,数控加工应该按照由表及里的顺序进行,先进行表面的数控加工,再进行内部结构的数控加工。
3.3由远及近原则
根据加工刀点和加工部位之间的距离来计算,在加工过程中一般先加工离刀点较近的距离,以减少刀具的空间移动。并且,在车削的过程中要遵循先近后远的原则,保持半成品和坯件的刚性,进而优化其切削条件。另外,在对于镗孔和铣平面的零件加工,需要先对铣平面进行加工,再对镗孔进行加工,以避免铣平面加工过程中较大的切削力度对零件的损害,进而保证零件的功能性。
3.4最少用刀原则
在数控加工过程中为了减少数控加工的时间和数控加工的换刀次数,需要遵循最少用刀的原则,按照所用的刀具来确定加工的步骤和加工顺序。并且,数控加工技术人员需要集中同一刀具的工序进行加工,使用同一刀具来完成加工零件的编面切削部门,减少换刀时间,避免同一把刀具的多次使用。另外,在装夹过程中,数控加工人员应再加工完一种刀具工序之后,再换其他刀具进行加工。
3.5附件最少调用原则
在保证数控加工质量的基础上,数控加工人员应坚持附件最少调用原则,将涉及同一附件的程序一次性完成,并且在每次使用附件的过程中最大限度地对加工零件进行切削,减少同一附件的多次安装和调用。
3.6走刀最少原则
在保证数控加工质量的基础上,数控加工人员应坚持走刀最少原则,以节省数控加工的时间,减少数控加工过程中的资源消耗和刀具磨损。而数控加工过程中走刀路径需要根据零件的`轮廓确定,选择最合理的换刀点和起刀点,合理安排走刀路线的空间衔接,最大限度地缩短走刀行程。
3.7程序段最少原则
在数控加工工艺设计的过程中,大多数设计人员都希望运用最少的程序段来实现对数控加工零件的控制,简化数控加工程序,在保证数控加工误差的同时,保证数控编程效率,减少数控加工程序输入的时间和数控加工计算机设备的内存量。
3.8与普通工序衔接原则数控加工经常与普通工序相交叉,这就要求数控加工与普通工具能够实现良好衔接,如果数控加工和普通工序衔接不好很容易导致数控加工和普通工序之间的矛盾。因此,数控加工应坚持与普通工序衔接的原则,使每一道工序能够先后照应,以达到数控加工和普通工序的要求,保证数控加工质量。
篇10:数控加工工艺设计及步骤分析论文
4.1加工方案和加工方法的确定
首先,加工方法的选择需要保证加工零件表面的粗糙程度和林间表面的精度,合理考虑加工零件的形状和尺寸大小。例如,当加工零件尺寸较小的时候可以选择铰孔,而加工零件孔径较大则需要选择镗孔;其次,加工方案的确定需要考虑加工零件的表面加工和内部加工,充分了解零件加工的要求,根据加工零件表面的粗糙程度和精度来确定合适的加工工艺步骤。
4.2加工工序的划分
首先,数控加工需要合理划分零件加工的工序,具体来说,零件加工工序应采取集中性原则,尽可能在一次加工过程中完成大部分的加工工序,以节省加工时间,提高表面加工质量;其次,工步的划分需要充分考虑数控加工的效率和数控加工的精度,根据数控加工的精度和效率来划分加工的步骤,保证加工步骤的合理性。
4.3刀具的确定
首先,刀具的选择。数控加工需要充分考虑刀具的选择,以保证数控加工质量。为此,在编程的过程中,数控加工刀具选择应充分考虑零件的材料,根据零件材料来选择合适的刀具。在生产过程中,要根据零件的类型来选择刀具。例如,平面零件的轮廓加工通常采用立铣刀进行加工,而在切削平面的过程中多采用合金刀片类的铣刀;其次,确定切削量。数控加工过程中的切削量主要包括切削速度和切削深度。其中,切削速度主要指切削过程中的运动大小,而切削深度主要指切削过程中的背吃刀量,合理的切削量既能够保证切削工序质量,又能够减少切削时间,提高切削效率。
4.4确定对刀点和换刀点
首先,对刀点的确定。对刀点主要指切削过程中工件运动的起始点。对刀点的选择需要根据编程,选择便于数据处理的地方,以减少数控加工过程中的数据误差;其次,换刀点点的确定。换刀点主要指刀架转换的位置。数据加工人员可以随意设定换刀点,也可以根据零件特点选择固定的换刀点。
4.5加工路线的确定
首先,加工路线的确定应保证加工精度,选择最优加工路线来提高生产效率。并且,数控加工路线要根据编程的要求选择,保证编程的方便性。另外,数控加工路线选择需要充分考虑刀具的轴向运动和辅助尺寸;其次,数控加工人员应充分考虑数据加工路线的合理性,避免平面零件延长线上的切口和零件表面的切口痕迹,选择零件轮廓的交叉点作为路线的切入点,以保证零件表面和轮廓的光滑性。
参考文献:
[1]王瑾.数控加工中工程塑料零件的安装方法[J].现代制造技术与装备,(04).
[2]陈光明.数控加工中工艺路线设计原则及方法[J].组合机床与自动化加工技术,(11).
[3]钱强.如何提升机械数控加工的有效措施[J].才智,(28).
[4]曹树岭,简正豪,何苗.提高数控加工质量的工艺措施[J].山东工业技术,2016(21).
篇11:中职数控加工工艺教学方法分析论文
中职数控加工工艺教学方法分析论文
[摘要]随着经济的发展,中职教育面临着新的机遇和挑战,这对中职教育的教学方法也提出了新的要求。通过对中职数控加工工艺教学方法的研究,认为可以将引导文教学法、理论实践一体化教学法、网络教学法等方法引入教学中。这些教学方法可以有效提高学生学习的自主性和主动性,将中职教学从传统的“老师为主”转变为“学生为主”,并提升教学效果。
[关键词]中职教育;数控加工工艺;教学方法
[中图分类号]G712[文献标志码]A[文章编号]2096-060323-0102-01
加入WTO以来,中国作为全球最大的加工制造业生产基地,对技能人才的需求日益旺盛。中职教育担负着培养数以亿计高素质劳动者的重要任务,处于整个教学体系中不可或缺的一环。在这样的历史时期,中职教育发展面临着新的机遇和挑战。传统填鸭式的教学方法已不能适应当前的教学需求,特别是数控加工工艺这门课程,涉及面广,数控技术和设备发展速度快,中职数控加工工艺教学方法应与时俱进,不断改进提高。笔者结合自身的教学实践和学习,总结了几个教学方法以供参考探讨。
一、引导文教学法
这种教学方法是由HerrPeterMibus发明的。这里的引导文就是工作指导性文件。学生通过引导文字,独立分析教师布置的任务和设置的问题。引导文教学实践中主要有六个步骤:
(1)咨询阶段。主要是布置任务,学生借助引导问题和引导文的帮助,独立获取完成任务所必需的知识,老师负责引导学生利用图纸、专业书籍、操作指南和表格等去搜集。
(2)计划阶段。由学生计划解决问题的方法,列出材料清单、工作清单并做出相应的操作计划。
(3)决策阶段。由学生来自主决策,除非在学生犯了很大错误的时候去指出,否则不应随便干预、评论学生的计划。
(4)实施阶段。学生独立完成计划的实施,老师不做示范,而是让学生去摸索,必要时指导老师可以提供帮助。
(5)检验阶段。先由学生自己检验,然后老师负责再次检验。
(6)评估阶段。老师和学生谈论通过此次任务获得的知识和经验,以及如何将本次的收获应用到未来的工作中去。学生是教学的主体,教师的身份更多的是学习过程中的组织者、咨询者和指导者。这种教学法和我国教学改革的方向不谋而合,在现在中职教育中应大力发展。但我们在采用引导文教学方法时应注意,引导文不能过于书面化,要便于中职学生理解。
二、理论实践一体化教学法
顾名思义,这种教学方法就是把理论学习和实践学习相结合。以往我们的教学,常常出现理论与实践相脱节,因此培养出的学生不能很好地适应企业的要求,进入工作岗位后,还要再次学习才能掌握应有的.技能。数控加工工艺课程理论性很强,学生刚一接触很难马上理解,这样容易打击他们的积极性。如果在教学中适当地加入实践环节,让学生在学习理论知识的同时,进行仿真加工,则既能加深他们对书本知识的理解,又能锻炼他们的动手能力,可以有效提升教学效果,更好地实现教学目标。能否顺利地实施一体化教学,关键因素是老师。这要求老师必须具备综合的职业能力,既有扎实的理论基础,又有丰富的实践经验。因此,中职院校要加大对教师的培养,定期组织教师进入企业或工厂进行交流。也可以聘请企业的技术骨干走进课堂指导学生。
三、网络教学法
随着信息化的普及,网络在我们的生活中扮演着越来越重要的角色。事实上,以多媒体为代表的网络教学在现代职业教育中的比重越来越大。网络教学很好地解决了书本教学平面化的问题,将复杂的机械结构立体还原,真实再现,便于学生接受和理解。利用相应的教学软件,让学生自己动手进行仿真模拟练习。同时,教学视频可以反复播放,使学生可以在课堂之外开展有针对性的自主学习,及时查漏补缺。依托网络而搭建的远程教学平台,可以让我们及时接触和了解到行业内最新的理论和技术,大大拓宽学生的视野。中职教育应以就业为导向,注重教学实践,这几种教学方法的目的就是为了提高学生的主动性和积极性,将教学的主体由教师转变为学生,使学生从“被动学”转变为“主动学”。教学的目标从满足学校的要求转变为满足学生的需要和企业的需求。同时,数控加工工艺在课程内容的设置上也要更加科学、合理,顺应当前经济发展的要求。好的教学方法很多,如何选择适合本学校、本专业的教学方法,要根据实际情况而定,综合师资力量、教学水平、学生素质、就业环境、行业发展趋势等因素进行考量。
参考文献:
[1]丁彦文.浅析中职数控加工工艺教学方法[J].科学中国人,2015(3).
[2]卢松.浅谈行为导向教学法在中职数控加工技术教学中的应用[J].新课程学习(下),(7)
[3]杜强.浅谈中职数控专业教学质量改革的方法[J].中国科技博览,(27).
[4]姜志.理实一体化教学模式探析[J].职业技术教育,(4).
篇12:汽车凸轮轴加工工艺分析
内容摘要
凸轮轴作为汽车发动机配气机构中的关键部件,其性能直接影响着发动机整体性能。因此凸轮轴的加工工艺有特殊要求,合理的加工工艺对于降低加工成本、减少生产环节以及合理布置凸轮轴生产线具有很大的现实意义。
本文针对凸轮轴的加工特点,结合工厂的实际,从前期规划开始,对凸轮轴的加工工艺进行了深入的分析、研究。建立了用数控无靠模方法。对凸轮廓形进行计算和推倒,对凸轮轮廓的加工进行了探讨并提出适用于发动机凸轮轴的加工方法。
关键词:发动机;凸轮轴;工艺分析
目 录
一、引言 .................................................................... 3 (一)汽车发动机行业的发展状况 .............................................. 3 (二)凸轮轴的性能要求 ...................................................... 3 (三)本文研究内容 .......................................................... 5
二、凸轮轴生产线前期规划 ............................................ 5
(一)产品规格 .............................................................. 5 (二)工艺设计原则及凸轮轴加工工艺分析 ...................................... 6 (三)小结 .................................................................. 7
三、凸轮轴生产线工艺分析 ............................................ 7
(一)生产线布置 ........................................... 错误!未定义书签。 (二)工艺设计 .............................................................. 7 (三)工艺分析 .............................................................. 9 (四)工艺特点 ............................................................. 10 (五)工艺难点 ............................................................. 13
四、凸轮廓形理论计算及加工控制参数 ............................. 14
(一)凸轮轴凸轮的廓形要求 ................................................. 14 (二)包络线理论 ........................................................... 16 (三)凸轮廓形坐标 ......................................................... 17
五、总结 .................................................................. 参考文献 .................................................................. 致谢 ........................................................................
篇13:汽车凸轮轴加工工艺分析
学生姓名:孟德宏 指导老师:郭小凯
一、引言
(一)汽车发动机行业的发展状况
现代汽车发动机行业的发展十分迅速,这种趋势要求各发动机厂家不仅要具有大批量生产的能力,也同时要具有小批量、多品种的生产技术。所以,在汽车发动机厂家现在已经普及了互换性、自动化生产,做到了流水线式生产线布置及工艺安排,实现了按节拍生产。辅助时间包括上料、输送、检验时间,而机加工时间则是指从夹具定位、夹紧到机加工完成,夹具松开并推出工件这段时间。
除按节拍生产以外,我国的发动机生产厂家多数采用流水线布置。生产线分为半自动生产线与全自动生产线两种形式。半自动生产线与全自动生产线的区别在于前者靠人工在工序间输送工件,而后者则实现了无人操作、输送、加工及检验全部实现自动化。全自动生产线虽然自动化程度高,质量稳定、可靠,但是投资巨大,成本太高,而我们国家人力资源丰富,人工价格偏低,所以大部分发动机生产厂家采用半自动生产线与局部全自动化生产线相结合的方式布置生产线,在保证生产节拍和产品质量的前提下,尽可能的降低产品的成本。
此外,在各种发动机的零部件的设计及生产上均采用了一些先进的形式及工艺。例如多气缸多气门的设计,从直列三缸到V型双列十二缸,从二气门到四气门、五气门。多气门的布置可以增加充气效率,便于阻止缸内气流压力。顶置式凸轮轴设计,精密加工,柔性生产,在线自动测量及自动补偿等等,这些都为机加工生产及工艺安排增加了难度,向技术人员提出了更高的要求。
人们对发动机的性能要求概括为以下几点:⑴高的动力性能。⑵高的燃料经济性。⑶高的工作可靠性和足够的使用寿命。⑷结构紧凑,外形小,重量轻。⑸高的环境性能,低排放,低消耗,低污染。尤其是最后一点,在近些年中得到很大的关注。由于发动机性能指标的不断提高,其加工精度、难度也不断增加,所以在发动机行业中,数控机床,精密加工机床,加工中心,自动生产线,成组技术等先进设备及技术都得到了广泛的普及。 (二)凸轮轴的性能要求
在汽车发动机的各个零件及机构中,配气机构是非常重要的,配气机构必须根据发动机气缸内所发生的工作过程,保证正确地打开和关闭气门。而凸轮轴是配气机构中最重要、
最关键的零件,它决定着气门的升程曲线和气门开关时刻,从而直接影响发动机的进排气量,影响发动机的动力性、经济性和排放。
发动机行业现在都采用气门顶置式配气机构,其主要原因是由于顶置式配气机构的发动机能选用较高的压缩比。其气门可以设计的比较大,混合气进入和废气排出的必经路程又比较短,因而顶置气门式发动机的容积效率比较高。另外,顶置气门式发动机燃烧室的S/V比值较小(S/V比值是燃烧室的表面积S和燃烧室的容积V之比),这样,不仅废气中未燃碳氢化合物的含量较少,而且发动机的热效率也较高,这在排放标准日益提高的今天是非常重要的。
在顶置气门式配气机构中,除通常采用挺杆、推杆和摇臂控制气门的形式外,还有采用顶置凸轮轴(SOHC)的。在顶置凸轮轴的发动机中,凸轮轴置于气缸盖上,凸轮直接作用于摇臂或者挺杆来控制气门。除单顶置凸轮轴外,还有双顶置凸轮轴(DOHC)的,其中一根凸轮轴操纵进气门,另一根控制排气门。
这种单顶置凸轮轴发动机,由于没有推杆和挺杆,因而减小了配气机构的惯性力,减少了气门产成颤动的倾向,同时也减少了系统的变形量。而且这种单顶置凸轮轴发动机还有一个优点,由于运动质量小,凸轮轮廓可以设计的比较陡一些,可以使气门能够更快的打开和关闭,保持更多的时间停留在全开的位置上,改善发动机的换气,提高容积的效率,这样可提高发动机的性能,特别是高速下的性能。
由于发动机的发展趋势为多气缸多气门设计,而每一个气门的进气与排气都必须由凸轮轴上的凸轮外形控制。所以凸轮轴的发展趋势是一个凸轮轴上排列着越来越多的凸轮,如果是三缸以下的发动机,不论是两气门还是四气门,排气凸轮与进气凸轮还可以排在一根凸轮轴上。如果是四缸以上,则必须配备两根凸轮轴,其中一根凸轮轴控制进气门,另一根控制排气门。
凸轮轴是内燃机配气系统中关键的零件之一,整个配气机构是由凸轮轴驱动的,凸轮的设计对整个配气系统的性能起着决定性的作用。凸轮轴刚性差、易变形;精度高,加工难度大;因此,对于凸轮轴的设计、加工、选材、加工工艺等都提出了许多要求。其主要的技术要求如表1.1表述。
表1.1 凸轮轴的技术要求
主要项目
尺寸(mm) 表面粗糙度(μm)
圆柱度(mm)
凸轮轴表面粗糙度(mm)
中间轴颈相对于两端轴颈的跳动(mm)
相邻两轴颈的径向跳动(mm)
凸轮轴对称中心平面对正时齿轮键槽中心平面
或定位销轴线的角度偏差(′) (三)本文研究内容
支撑轴承
一般性要求 IT5~IT6
RZ0.4
5级精度
RZ0.4
0.06 0.02 ±30′
随着汽车行业的不断发展,再加上配件的需求,使得凸轮轴的需求量一直高居不下。建立一条集先进性与经济性为一体的凸轮轴生产线是非常必要的。面对国外汽车行业的冲击,我们国产汽车业应该加紧研究、建立符合中国国情的,我们自己的基础制造业,提高质量、降低成本,这样才能保住我们国产汽车的市场。
凸轮轴在发动机中的重要地位决定了国内发动机生产厂家都建有自己的凸轮轴生产线,这样可以在保证整机质量的前提下,尽可能的降低成本,提高竞争力。
本文主要围绕汽车凸轮轴生产线的工艺分析,从前期准备、工艺设计、理论计算、生产实践、和产品检测这几个方面,阐述了凸轮轴加工的一整套设计思路和方法,对发动机制造业中的零部件加工具有重要的参考作用。
二、凸轮轴生产前期规划
(一)产品规格 2.1.1零件的结构特点
凸轮轴生产线承每台发动机凸轮轴的机加工,每台发动机上使用一根凸轮轴。 材料:(FCA-3)铜铬钼合金铸铁,各主轴颈及端面的硬度HB180~240,凸轮HRC48. 2.1.2凸轮轴简图
图1
2.1.3 发动机凸轮轴主要加工内容和精度要求
(1)支承轴径
0.0150.02
前轴径前端φ32-,后端φ32-,表面粗糙度Rz3.2 -0.045-0.04
0.09中间轴径φ47.5-,表面粗糙度Rz3.2 -0.115
0.06后轴径φ48.5-,表面粗糙度Rz3.2 -0.085
(2)凸轮
0.056个凸轮基圆尺寸为φ16.7+,表面粗糙度Rz3.2。 -0.05
各凸轮基圆相对与前后轴颈的基准轴线的径向跳动允差0.03mm 各凸轮基圆相对与前后轴颈的基准轴线的平行度允差0.01mm
各凸轮对称中心线相对于键槽的相对位置偏差(相位角)±20′(见图1) 凸轮型线误差作用段±0.05mm 凸轮型线误差作用段±0.02mm
一缸凸轮轴对键槽位置112°32′±20′ (3)斜齿轮
齿数:13,螺旋角:53°(右)±1′46"公法线长度:38.611~38.806 齿形误差≤0.025;齿向误差≤0.017;齿槽对键槽的角度20°±2° (4)键槽
宽4-0.05,深3.5+0.2,对称度0.025 2.2工艺设计原则及凸轮轴加工工艺分析
(1)保证工艺具有合理的先进性,再保证节拍的基础上,吸收先进技术提高产品的竞争力。 (2)对于关键设备和技术,优先考虑国内外可靠厂家的先进设备。 (3)保证先进性与经济性相结合,再保证产品质量的前提下,降低成本 (4)充分考虑各生产缓解的安全性和操作的方便性。 (5)在投资允许的情况下,尽量考虑柔性生产。
由于凸轮轴具有细长www.wEnku1.com且形状复杂的结构特点,技术要求又高,尤其是凸轮的加工,因此其加工工艺性较差。在凸轮轴的加工过程中,有两个主要因素影响其加工精度。其一是易变形性,其二是加工难度大。 2.2.1易变形特性
从细长轴的角度来说,突出的问题就是工件本身的刚度低,切削加工时会产生较大的受力变形,其表面残余应力也会引起变形。尤其是在加工凸轮和齿轮时,这种变形会更为
显著。
凸轮轴在加工过程中的变形,不仅影响到后续工序加工中的余量分配是否均匀,而且变形过大会导致后序加工无法进行,甚至造成中途报废。凸轮轴加工后的变形,将直接影响到装配后凸轮轴的使用性能[2]。
因此,在安排其工艺过程时,必须针对工件易变形这一特点采取必要的措施。不仅要把各主要表面的粗精加工工序分开,以使粗加工时产生的变形在精加工中得到修整,半精加工中产生的变形在精加工中得到修正,还必须在加工过程中增设辅助支承以采取分段加工等措施,这是保证凸轮轴加工精度所必须解决的问题。 2.2.2加工难度大
从形状复杂的角度来说,突出的问题凸轮、齿轮这些复杂表面的加工。对于这些表面,不仅有尺寸精度要求,还有形状、位置精度要求,如采用普通的加工设备和一般表面常规加工方法,显然是根本无法保证其加工质量和精度的。
例如对于凸轮的加工,从满足使用要求的角度来说,既要求其相位角准确又要求凸轮曲线升程满足气门开启和关闭时升降过程的运动规律,但注意到凸轮曲线上的各点相对其回转中心的半径是变化的,当选用一般的靠模机床加工时,由于加工半径的变化,势必引起切削速度和切削力的变化,加之工件旋转时的惯性力和靠模弹簧张力的瞬间变化,将会使加工后的凸轮曲线产生形状误差,即曲线的升程误差,从而直接影响凸轮轴的使用性能。 2.3小结
综上所述,虽然各种方案都各有优点,但其技术的不成熟或者成本问题,都成为在国内实施的困难。考虑到成本及大批量生产,选择成熟技术和成熟的设备,使工艺方案符合经济性与合理性原则。
三、凸轮轴工艺分析
3.1工艺设计
3.1.1定位基准的选择
对于一般的轴类零件来说,其轴线即为它的设计基准。发动机凸轮轴遵循这一设计基准,由于凸轮轴各表面的加工难以在一次装夹中完成,因此,减小工件在多次装夹中的'定位误差,就成为保证凸轮轴加工精度的关键。本文采用两顶尖孔作为轴类零件的定位基准,这不仅避免了工件在多次装夹中因定位基准的转换而引起的定位误差,也可作为后续工序的定位基准,即符合“基准统一”原则。
这种方法不仅使工件的装夹方便、可靠。简化了工艺规程的制定工作,使各工序所使
用的夹具结构相同或相近,从而减少了设计、制造夹具的时间和费用,而且有可能在一次装夹中加工出更多表面。这对于大量生产来说,不仅便于采用高效专用机床和设备以提高生产效率,而且也使得所加工的各表面之间具有较高的相互位置精度。 3.1.2加工阶段的划分与工序顺序的安排 (一)加工阶段的划分
由于凸轮轴的加工精度较高,整个加工不可能在一个工序内全不完成。为了利于逐步地达到加工要求,所以把整个工艺过程划分为三个阶段,以完成各个不同加工阶段的目的和任务。
发动机凸轮轴的加工的三个阶段:
(1) 粗加工阶段包括车各支承轴颈、齿轮外圆轴颈和粗磨凸轮。该阶段要求机床刚
性好,切削用量选择尽可能大,以便以提高生产率切除大部分加工余量。
(2) 半精加工是精车各支承轴颈和精磨齿轮外圆轴颈。该阶段主要为支承轴颈齿轮
的加工做准备。
(3) 精加工包括精磨各支承轴颈、止推面和凸轮以及斜齿轮加工。该阶段加工余量
和切削量小,加工精度高。
工艺编排:首先以φ32和φ48.5的毛坯面为定位基准,然后以大端外圆的端面作轴向定位,具体每序的定位基准和夹紧位置,见表3-1发动机凸轮轴生产工艺简介。 (二)工序顺序的安排
加工顺序的安排与零件的质量要求有关,工序安排是否合理,对于凸轮轴加工质量、生产率和经济性都有很大影响。对于各支承轴颈是按粗车――精车――精磨加工的,对于是按凸轮粗磨――精磨加工的,对于斜齿轮是按粗车――精车――精磨――滚齿加工的。各表面的加工顺序按从粗到精、且主要表面与次要表面的加工工序相互交叉进行,从整体上说,符合“先粗后精”的加工原则。 3.1.3凸轮形面的加工
在凸轮轴的加工中,最重要同时难度最大的是凸轮形面的加工。该形面的加工方法目前主要有车削和磨削两种。
凸轮形面的粗加工目前在国内主要是凸轮轴车床车削加工,也有采用铣削加工和磨削加工的。如采用双靠模凸轮轴磨床,机床有两套靠模,当砂轮直径在一定范围内时,使用第一个靠模来工作。当砂轮磨损到一定程度时,靠模自动转换,使用第二个靠模来工作[4]。该磨床通过对砂轮直径的控制来提高凸轮外形的精度,不仅提高了凸轮形面的加工精度,
发动机凸轮轴毛坯采用精铸的方法制造,毛坯精度较高,切削量小,故采用磨削的加工工艺,简化了凸轮形面的加工。凸轮形面的加工采用磨削的方法,在凸轮磨床上完成粗磨及精磨的加工。工件安装在两顶尖之间并以键槽做轴向定位,在支承轴颈处安装辅助支承保证凸轮形面的加工精度。发动机凸轮轴形面的加工所采用的凸轮轴磨床是立方氮化硼磨床,该磨床能迅速地变换磨削的凸轮形状,超过一般仿珩磨的生产率。机床具有较大的刚度,能承受大的工作负也使砂轮的利用更经济、合理。荷。由于立方氮化硼(CBN)砂轮的使用寿命高,因此,砂轮的直径变化所造成的凸轮形状误差显著减小,也大大提高了凸轮形面的磨削精度。 3.2工艺分析
表3.1发动机凸轮轴生产工艺简介
工序号 工序内容
铣端面,打中10 心孔
夹紧位置
φ52.5外圆V2(成活尺寸φ
48.5) φ52.5外
圆
φ36外圆V2(成活尺寸φ32)
φ36外圆
φ52.5端面V1
定位基准
备注 专机
20
粗车主轴颈
φ37.5外圆V1(成活尺寸φ
37.2) 两端中心孔V4
φ37.5外
圆 φ37.5外
圆
半自动液压仿形车床
30
车削主轴颈并切槽
φ37.5外圆V1 两端中心孔V4
半自动液压仿形车床
40
φ48.9外圆V2(成活尺寸φ
两端螺孔钻、48.5) φ48.9外扩、攻丝、修圆
φ32.4外圆V(成活尺寸φ32) 2
中心孔 φ32.4外
圆
φ52.5端面V1
大端外圆磨削
前轴颈磨削
两端中心孔V1 φ37.5外圆V1 两端中心孔V4
φ37.5外
圆 φ37.5外
专机
50
半自动端面外圆磨床
60
CNC磨床
φ37.5外圆V圆 1
中间轴颈、后
70
轴颈及推力两端中心孔V4 φ32外圆
CNC磨床
部端面磨削 φ32外圆V1 φ48.5外圆V2 80
铣键槽
φ32外圆V2 φ48.5外专机
φ30端面V圆φ32外
1 圆
角向90°V1
两端中心孔V4
90
粗磨凸轮(靠
φ22外圆
凸轮磨床
磨)
键V1 卡盘V1
φ30端面V1
100
精磨凸轮(无φ22外圆
凸轮磨床
靠磨)
两端中心孔V2
键V1
φ30端面V3
120
滚齿
两端中心孔Vφ22外圆
2
键V1
130
清洗
φ30与1IN之间非加工面V2 无夹紧
φ31与3EX之间非加工面V2
3.3工艺特点
发动机凸轮轴工艺特点:
(1) 毛坯硬度高 (冷激区HRC45 非冷激区HB229~302) (2) 生产节拍 1.75分钟
(3) 轮轴数控车床用于支撑轴颈的粗加工 (4) 凸轮部分在铸造时冷激,不需加工后淬火
(5) 凸轮采用粗、精磨加工,以磨代车,凸轮轮廓直接磨削 (6) 凸轮精加工采用全数控无靠磨磨削
(7) 加工中主要定位基准中心孔采用打孔后修磨,保证加工质量 工艺先进性分析:
1)磨削密集型工艺-外圆、轴颈、端面及凸轮均采用磨削方法[5]
凸轮的外圆、轴颈、端面及凸轮的粗精加工均采用磨削方法。凸轮传统的粗加工方法是采用靠模车床及液压仿形凸轮铣床,大量生产的凸轮轴毛坯均采用精锻或精铸成形,其毛坯精度高,加工余量小,采用以磨代车的新工艺,极大的简化了凸轮形面的加工。同时,高速磨削及金刚石滚轮连续修整工艺,保证了其生产效率及产品的质量。 2)凸轮采用数控无靠模磨削
长期以来,凸轮轴磨床采用靠模,滚轮摆动仿形机构,典型的设备如日平-兰迪斯SCAM-R型凸轮磨床。靠模凸轮机构摆动工作台凸轮轴磨床,在磨削中存在着一系列的加工缺陷,而采用数控凸轮磨削的新工艺,取消了靠模,完全靠CNC控制获得精密的凸轮轮廓,同时工件无级变速旋转,并采用CBN砂轮加工凸轮轴,从根本上解决了传统凸轮磨床的缺陷,不仅摆脱了靠模精度对凸轮精度的影响,而且砂轮的磨损不影响加工精度。同时,由于这种工艺具有较好的柔性,为以后的产品改进、更新以及多品种的凸轮轴共线生产提供了保证。
3)凸轮轴支撑轴颈的磨削
凸轮轴支撑轴颈的加工尺寸与精度如图2所示。采用数控多砂轮磨削,可以高效率地磨削凸轮轴支撑轴颈,加工出的轴颈具有较高的圆柱度和较小的径向跳动。同时数控磨削可以运用在线检测技术,对零件的加工部位尺寸进行监控,并把对砂轮的自动修整数据反馈给数控系统,来控制砂轮的补偿,确保加工部位的尺寸。
4)采用立方氮化硼(CBN)砂轮磨削
由于采用了无靠模数控凸轮磨床,所以整个凸轮轮廓(包括基圆、缓冲段、作用段)的磨削均由X轴即砂轮架和C轴即主轴的相对旋转运动完成,其动作为同步动作,所以凸轮磨削过程中砂轮于工件接触表面不同且不均匀,缓冲段及作用段接触面积大于基圆,由此造成加工余量不均匀,缓冲段和作用段加工余量大于基圆,故产生法向切削力的变化。另一特点为砂轮磨削过程中接触点(磨削点)与工件及砂轮二者中心线不在一条直线上,而是在上下移动,故易产生升程误差,也可能在缓冲段及作用段表面产生横纹。这一特点要求砂轮直径较小。
根据以上特点决定,选用陶瓷结合剂的立方氮化硼(CBN)砂轮磨削凸轮。砂轮转速为5700转/分,属于高速磨削,生产率高,耐用度高。CBN砂轮有较好的热导性,工件磨削的温度低,可减少磨削时的烧伤、裂纹和热损现象,与普通的砂轮相比,具有砂轮使用寿命长,更换砂轮和修整砂轮时间短,能提高工件的疲劳强度和耐磨强性等优点。
由于使用了CBN砂轮,砂轮直径有单晶刚玉的φ600mm减少到现在的φ250mm,且使用寿命长,CBN砂轮的CBN层厚度为3mm,每100件修磨一次,每次修磨量为0.01mm,一片砂轮的修磨次数为300次,可计算得出一片砂轮的理论加工工件数为300?100=30000件。且工件的粗糙度及凸轮升程均能很好的满足工艺要求。 5)毛坯材料为冷激合金铸铁
凸轮轴是气门机构的驱动元件,它的凸轮不仅要有合理的形状,而且要求表面耐磨,能在长期使用中基本保持设计给出的合理形状。所以对凸轮轴的材料要求比较高。尤其凸轮表面与摇臂之间是一对运动的摩擦表面,凸轮轴的材料必须保证其工作可靠性和耐久性。
最后决定采用冷激合金铸铁,即在凸轮轴铸模的凸轮尖端处放一块加速铁水冷却的铁块,使凸轮尖端迅速冷却,形成桃尖硬化层,其主要金属基体为菜氏体,可以提高其硬度,并达到工艺要求:凸轮140°以内HRC35以上,30°以内HRC48以上,如图3所示。这样凸轮外形完全用磨削加工。
°
°
图3凸轮外形硬度分布图
铸铁凸轮存在摩擦系数仅为0.15~0.20,而强度很低的石墨,在摩擦过程中会脱落于接触处成为润滑剂,且石墨脱落后留下的孔穴又会成为绝好的储油槽,使临界油膜容易保持住。铸铁的导热性大且不留加工余量,而凸轮工作表面只留1.5mm左右的磨削余量。
因为凸轮轴转速低,载荷轻,润滑又良好,而铸铁本身也是一种良好的轴承材料,所以不用衬套,把凸轮轴直接装入缸盖凸轮轴孔中。采用冷激铸铁,工艺简单且成本低,激冷用外冷铁可由我单位生产,反复使用近百次后可作为返回料入炉,所以生产工序简单,并可以大幅度提高耐磨性。 3.4工艺难点
3.6.1主轴颈粗糙度的保证
凸轮轴生产的难点是主轴颈的粗糙度达不到图纸的要求,图纸要求为Rz3.2,实际加工情况为Rz≤5.2,这就给验证带来了很多麻烦。
根据实际情况,首先通过改变机床的切削用量,把机床规定好的切削用量彻底改变,一组一组的数据进行试验,最终结果还是不好。最后在保证砂轮不变的情况下,改变金刚石修整器的修磨速度F,修整量μ,来提高工件的粗糙度。通过反复试验,得出几组比较好的数据。
μ=0.08 F30 Rz=2.66Z~3.79Z μ=0.04 F15 Rz=2.50Z~3.50Z μ=0.06 F30 Rz=2.60Z~3.66Z μ=0.04 F35 Rz=2.00Z~3.20Z
通过比较,决定选用μ=0.04,F30这组数据,磨5个工件修整一次,粗糙度<3.2Z。 3.6.2轴颈夹痕
1)轴颈夹痕:凸轮轴线120序凸轮磨削时用键槽定位,φ22外圆夹紧。三爪长期使用造成φ22外圆上由三个光亮带,粗糙度合格。
该凸轮磨床在设备验收时即有光亮带夹痕存在,据了解目前凸轮桃子磨削工艺大多采用腱槽角向定位三爪夹紧工件小端外圆,中心架支撑轴径向表面来完成磨削过程,此方案势必要产生夹痕。该工艺丰田汽发,一汽大众均采用,新产品1SZ凸轮轴从外观看也采用此加工工艺加工的。此工艺方案可继续使用。
2)彻底消除夹痕工艺的近一步探讨:采用倒序加工的方法,先磨桃子,后磨小端外圆。 a)使用这种方法,涉及变动的部分:凸轮磨改三爪、中心架。键槽铣床改定位块、量验具工艺尺寸链重新计算,改所有工艺文件。
b)引发的质量问题:由于凸轮磨床的中心架支撑轴颈是精车表面,对凸轮磨削精度和升程曲线会造成很大的影响。由于磨小端外圆与铣键槽定位基准不统一,会对键槽对称度造成很大的影响。
c)抛光小端外圆,需要增加投入。该方案没有必要。
3)结论:轻微夹痕对发动机性能无影响,没必要增加投入。装工件时键槽尽量放在夹具的驱动键槽位置,以免驱动键槽转动时,划伤加工表面。
四、凸轮廓形理论计算及加工控制参数
4.1凸轮轴凸轮的廓形要求
气门运动的加速度和减速度都是凸轮轮廓的函数。发动机的凸轮轴凸轮轮廓如图4所示,主要包括进气段C(开启弧)、排气段E(关闭弧)、缓冲段B、缓冲段C、基圆A、顶弧D。
发动机凸轮轴的凸轮廓形是以凸轮与φ10滚珠对滚时二者中心距离y1,y2表示的,如图5,图纸给出表列函数y1=f1(φ),y=f2 (φ)表4―1为凸轮轴升程表。
图4凸轮轮廓图
4.1.1凸轮升程数据
1)从动件半径(mm):设定从动件半径,用来轮廓计算和测定。
2)凸轮基圆直径(mm):设定凸轮基圆直径,可以用此数据微调凸轮尺寸,因为没有凸轮的长径尺寸。
3)角度升程值(mm/deg):以凸轮顶点转180为0,只输入有增量的两个角度之间(90
~
270)的增量数据,每隔1进行设定(机内密化系统),最后制成升程表[7]。
表4-1凸轮轴凸轮升程表
φ
φ
φ
0 28.387 28.387 41 22.580 24.302 82 21.722 21.865 1 28.384 28.384 42 22.497 24.149 83 21.715 21.855 2 28.375 28.375 43 22.422 24.000 84 21.710 21.846 3 28.359 28.261 44 22.353 23.855 85 21.706 21.837 4 28.337 28.341 45 22.292 23.714 86 21.703 21.827 5 28.307 28.315 46 22.237 23.578 87 21.701 21.818 6 28.271 28.285 47 22.188 23.447 88 21.808 21.808 7 28.226 28.249 48 22.145 23.322 89 21.799 21.799 8 28.173 28.208 49 22.108 23.202 90 21.789 21.789 9 28.112 28.162 50 22.077 23.087 91 21.780 21.780 10 28.040 28.111 51 22.049 22.979 92 21.771 21.771 11 27.958 28.054 52 22.027 22.876 93 21.761 21.761 12 27.864 27.993 53 22.007 22.779 94 21.752 21.752 13 27.757 27.927 54 21.992 22.689 95 21.742 21.742 14 27.634 27.856 55 21.979 22.604 96 21.733 21.733 15 27.492 27.780 56 21.968 22.525 97 21.725 21.725 16 27.327 27.699 57 21.958 22.453 98 21.718 21.718 17 27.133 27.613 58 21.949 22.386 99 21.713 21.713 18 26.907 27.522 59 21.939 22.325 100 21.708 21.708 19 26.657 27.426 60 21.930 22.270 101 21.704 21.704 20 26.395 27.326 61 21.920 22.220 102 21.702 21.702 21 26.129 27.220 62 21.911 22.175 103 21.700 21.700 22 25.865 27.109 63 21.901 22.136 23 25.606 26.993 64 21.891 22.102 24 25.355 26.872 65 21.882 22.072 25 25.113 26.746 66 21.872 22.046 26 24.881 26.616 67 21.863 22.025 27 24.659 26.480 68 21.853 22.006 28 24.447 26.340 69 21.843 21.991 29 24.245 26.196 70 21.834 21.979 30 24.054 26.048 71 21.824 21.968 31 23.873 25.896 72 21.825 21.959 32 23.702 25.741 73 21.8058 21.949 33 23.542 25.583 74 21.795 21.940 34 23.390 25.423 75 21.786 21.930 35 23.248 25.262 76 21.776 21.921 36 23.115 25.100 77 21.766 21.912 37 22.992 24.938 78 21.757 21.902 38 22.876 24.776 79 21.747 21.893
39 40 22.770 24.616 80 22.671 24.458 81 21.738 21.884 21.729 21.874
由于在升程段廓形圆形滚珠与廓形的切点D1,D2都不在滚珠与凸轮的连心线上,而磨床砂轮必须磨出D1,D2点来,它的半径又远远大于滚珠半径,所以必须通过计算得出凸轮廓形(D1,D2)坐标,再换算成砂轮中心的坐标,作为磨床砂轮横向进给的依据。 4.2包络线理论
设想凸轮不转,滚柱回绕凸轮旋转,则滚柱外形形成一个圆的曲线族,凸轮廓形实际是它的内包络线。以H表示滚柱与凸轮轴心距,则H=f(?),以fR为滚柱半径,则圆的一般方程为:
(X-Hcos?)+(Y-Hsin?)=Rr
2
2
2
因为H也是?的函数,此式可写成隐函数形式f(x,y,?)=0,这里?为参变量,改变?值可得不同的方程式,如图6。
dydx
??f? ??x????f? ?y????
=-
还可以进一步写作:
?f
?+?=0 (4.1)
?xd??yd?
dx
?f
dy
包络线既与曲线族相切,其上各点应与曲线族上各切点斜率相等,故也应满足公式(4.1)。
曲线族方程f(x,y,?)=0的全微分为:
df=
?f?x
dx+
?f?y
dy+
?f??
d?=0
即:
?f?x
dx+
?f?y
dy+
?f??
d?=0 (4.2)
包络线上各点既是曲线族里的点,其斜率又应满足公式(4.1),将(4.1)、(4.2)式联立,可得:
?f??
=0 即包络线方程,解此式得出以?表示得x、y值,即包络线上的各点坐标[8]
。4.3凸轮廓形坐标
滚柱曲线族方程的隐函数形式
(X-Hcos?)2
+(Y-Hsin?)2
-R2
r=0
将此式对?微分后使
?f??
=0
解出x、y值为
x=Hco?s±
Rf
? Hsi?
n-dH?co?s?
?1+
d??
Hco?s+
dH
??si?n??d???
x?? H?sin?-dH?cos???d?+H?H
y=
?d??
d? H?cos?+d
Hd?sin?
?
由于求曲线族的内包络线,故式(4.4)中正负号应取负号。 计算中微分
dHd以差分代替,即表列函数中若Hn对应于?n,则取
?
dH=
Hn+1-Hn-1
d?
?n+1-?
n-1
表4.2为C语言编程计算凸轮轴y1、y2两面的坐标值为XD、YD
(4.3)
(4.4)
(4.5)
表4-2 凸轮轴y1、y2两面的坐标值XD、YD
φ
Xn
Yn
φ
Xn
Yn
φ
Xn
Yn
φ
Xn
Yn
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 23.382 23.367 23.341 23.305 23.258 23.203 23.138 23.061 22.977 22.885 22.783 22.676 22.565 22.455 22.350 22.311 22.151 21.987 21.847 21.577 21.258 20.909 20.541 20.162 19.779 0.348 0.690 1.031 1.367 1.700 2.027 2.342 2.660 2.959 3.246 3.525 3.785 4.024 4.411 4.234 4.477 4.651 4.848 4.973 5.208 5.469 5.745 6.027 6.313 6.599 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 10.702 10.420 10.137 9.868 9.603 9.341 9.088 8.831 8.573 8.312 8.050 7.790 7.517 7.248 6.977 6.704 6.435 6.153 5.875 5.596 5.315 5.039 4.750 4.466 4.186 13.255 13.450 13.642 13.821 13.992 14.156 14.309 14.457 14.601 14.740 14.875 15.001 15.128 15.249 15.364 15.475 15.578 15.681 15.778 15.868 15.955 16.034 16.111 16.183 16.248 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 23.382 23.366 23.341 23.306 23.259 23.023 23.138 23.063 22.978 22.884 22.780 22.665 22.543 22.412 22.273 22.124 21.968 21.803 21.627 21.446 21.260 21.064 20.806 20.650 20.429 0.348 0.700 1.051 1.397 1.751 2.103 2.449 2.797 3.142 3.480 3.819 4.159 1.490 4.818 5.141 5.459 5.772 6.080 6.386 6.683 6.969 7.252 7.530 7.800 8.064 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 12.055 11.694 11.339 10.991 10.632 10.280 9.933 9.582 9.237 8.898 8.553 8.209 7.876 7.549 7.215 6.894 6.577 6.254 5.949 5.648 5.359 5.074 4.789 4.502 4.208 13.457 13.616 13.772 13.922 14.076 14.226 14.518 14.661 14.661 14.799 14.937 15.075 15.205 15.331 15.457 15.576 15.689 15.802 15.906 16.003 16.092 16.174 16.251 16.323 16.391
26 27 28 19.396 19.015 18.638 6.883 7.162 7.438 77 78 79 3.894 3.607 3.319
16.310 26 20.205 16.366 27 19.975 16.417 28 19.732
8.324 8.572 8.820 77 78 79 3.926 3.636 3.339 16.452 16.508 16.562
表4-3凸轮的Hc、φc值
Y1
Y2
φc
1.561 3.169 4.778 6.435 8.092 9.798 11.599 13.356 15.256 17.251 19.296 21.484 23.857 26.504 29.460 33.699 26.587 39.238 42.699 44.568 45.900 46.880 47.610 48.158 48.596 48.959 49.288 49.582 49.795 49.795
Hc
φc
54.642 55.205 55.765 56.514 57.326 58.200 59.201 60.202 61.202 62.603 63.203 64.267 65.205 66.205 67.206 68.206 69.271 70.208 71.208 72.209 73.209 74.274 75.211 76.211 77.276 78.213 79.213 80.214 81.151 82.023 Hc
φc
1.561 3.076 4.591 6.154 7.624 9.095 10.615 12.089 13.565 15.090 16.571 18.007 19.492 20.980 22.472 23.966 25.464 26.966 28.425 29.935 31.497 33.016 34.540 36.069 37.557 39.096 40.642 42.100 43.563 45.033 Hc
65.159 φc
63.823 64.134 63.823 64.134 64.888 65.476 65.844 66.141 66.491 66.894 67.229 67.557 68.512 68.953 69.517 70.142 70.703 71.451 72.263 73.200 74.201 75.202 76.202 77.139 78.203 79.204 80.141 81.205 82.206 Hc
148.382 148.368 148.342 148.305 148.256 148.194 148.114 148.021 147.905 147.764 147.598 147.395 147.146 146.829 146.425 145.746 145.199 144.683 143.930 143.502 143.195 142.970 142.805 142.685 142.592 142.517 142.452 142.396 142.356 142.326 141.999 141.988 141.980 141.970 141.961 141.952 141.943 141.933 141.924 141.914 141.905 141.895 141.885 141.876 141.866 141.857 141.847 141.837 141.828 141.818 141.809 141.799 141.789 141.780 141.770 141.760 141.751 141.741 1141.73 141.725 148.382 148.369 148.348 148.316 148.278 148.180 148.119 148.052 147.974 147.891 147.804 147.706 147.602 147.490 147.370 147.243 147.109 146.972 146.824 146.662 146.498 146.326 146.146 145.965 145.772 145.570 145.375 145.173 144.966 148.234 142.299 142.270 142.239 142.205 142.184 142.162 142.138 142.120 142.101 142.081 142.066 142.053 142.038 142.023 142.011 142.000 141.988 141.980 141.971 141.962 141.953 141.943 141.934 141.924 141.916 141.906 141.896 141.888 141.878 141.868
五、总结
汽车发动机制造业目前竞争激烈,建立符合中国国情和工厂实际的零部件加工生产线,制定合适的加工工艺,并选用可靠经济的设备,对降低产品成本,保证产品质量,提高竞争力有很大的现实意义。
凸轮轴作为汽车发动机的关键部件之一,其性能与质量直接影响发动机整机性能。本文针对夏利汽车凸轮轴的加工特点,结合工厂实际,在建立一条集先进性与经济性统一的凸轮轴生产线的过程中,从前期规划开始,对凸轮轴的加工工艺、设备和检测进行了深入研究。在本篇论文里,根据产品要求,制定合理的凸轮轴生产线节拍、平面布置和工艺路线。主要解决了以下问题:
1.根据凸轮轴加工特点,优化选择了加工设备。
2.详细分析了凸轮轴的加工特点和加工难点,优化设计了合理的加工工艺,保证了加工质量。
3.利用包络线理论,对凸轮轮廓的加工原理进行计算及推导,并计算出相应的砂轮中心坐标及设备主轴转速配置,为生产加工,提供控制参数。
4.提出了关于凸轮升程测量的新方法:测量数据定位法及其数据评价。并使之应用于凸轮轴的测量中,保证了产品的质量。
作者在实际生产中结合理论知识总结出本论文,所以,论文中的知识与结论对凸轮轴的实际生产有非常重要的参考价值。
参考文献
[1]杨昂岳.梁术.汽车发动机主要零部件技术水平及发展动向[J];汽车工业研究;1994年06期;46-51.
[2]韦于.凸轮轴实测数据光顺处理[J].广西:微车情报网,1999.
[3]W?H?克劳斯汽车发动机设计[M] 北京:人民交通出版社,1986,123~15.
[4]吉林工业大学内燃机教研室内燃机理论与设计下册[M] 北京.机械工业出版社1980,209~258.
[5]刘永福.凸轮评定公差标准问题探讨[M].北京精密制造与自动化.2002,15~17.
[6]赵新.多参数在线检测设备的温度补偿机理[M].天津.天内科技.2002,21~25.
[7]哈尔滨工业大学机械制造教研室机械制造工艺理论基础[M].北京.机械工业出版社.1993,44~511.
[8]王先逵.机械制造工艺学[M].北京清华大学.1995,5~86.
[9]谢存嬉等.机电一体化生产系统设计[M].北京.机械出版社.1999.
[10]吴天林等.机械加工系统自动化[M].北京兵器工业出版社.1999.
[11]何七荣,潘展,徐琳;凸轮轴型面简易数控磨削技术[J];新技术新工艺;2004年12期;40.
致谢
三年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。三年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。 伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的老师。我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,树立了宏伟的学术目标,领会了基本的思考方式,从论文题目的选定到论文写作的指导,经由您悉心的点拨,再经思考后的领悟,常常让我有“山重水复疑无路,柳暗花明又一村”。
感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意!
另外,感谢学校给予我这样一次机会,能够独立地完成一个课题,并在这个过程当中,给予我们各种方便,使我们在即将离校的最后一段时间里,能够更多学习一些实践应用知识,增强了我们实践操作和动手应用能力,提高了独立思考的能力。再一次对我的母校表示感谢。
23
文档为doc格式