欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

CAD教程第6章-机械制图直线与点投影知识

时间:2022-06-02 01:40:53 其他范文 收藏本文 下载本文

以下是小编为大家准备的CAD教程第6章-机械制图直线与点投影知识,本文共7篇,欢迎大家前来参阅。

CAD教程第6章-机械制图直线与点投影知识

篇1:CAD教程第6章-机械制图直线与点投影知识

正投影的基本知识

一、投影法的基本知识1 .投影的形成原理,

CAD教程第6章-机械制图直线与点投影知识

。用光线照射物体,在预设的面上绘制出被投射物体图形的方法,叫做投影法。光线叫做投射线,所投射的面叫做投影面,投影面上等到的物体图形叫做该物体的投影。2 . 投影法种类中心投影法: 投射线都从投影中心出发,在投影面上作出物体图形的方法叫做中心投影法。平行投影法: 若将投射中心移至无穷远处,则所有的投射线就相互平行。用相互平行的投射线,在投影面上作出物体图形的方法叫做平行投影法。在平行投影法中,根据投影面是否垂直于投影面,又分为两种:斜投影 投射线倾斜于投影面正投影 投射线平行于投影面正投影法能准确地表达出物体的形状结构,而且度量性好,因而在工程上广泛应用。但它的缺点是立体感差,一般要用两个或两个以上的图形才能把物体的形状表达清楚。机械图形主要是用正投影法绘制的,所以正投影法是本课程学习的主要内容。在以后的课程中,除有特别说明外,我们提到的投影均指正投影3 .正投影法的投影特性,以直线、平面相对于投影面位置的不同,讲明实形性、积聚性和类似性三大主要特性。二、物体三视图的形成及投影规律1、三视图的形成用三个互相垂直的投影面构成一空间投影体系,即正面V、水平面H、侧面W,把物体放在空间的某一位置固定不动,分别向三个投影面上对物体进行投影,在V面上得到的投影叫做主视图,在H面上得到的投影叫俯视图,在W面上得到的投影叫左视图。为了在同一张图纸上画出物体的三个视图,国家标准规定了其展开方法:V面不动,H面绕OX轴向下旋转90°与V面重合,W面绕OZ轴向后旋转90°与V面重合,这样,便把三个互相垂直的投影面展平在同一张图纸上了。三视图的配置为:以主视图为基准,俯视图在主视图的下方;左视图在主视图的右方。2、视图之间的投影规律每个视图反映物体两个方向的尺寸。主视图反映物体的长度和高度;左视图反映宽度和高度;俯视图反映长度和宽度。按照三视图的配置,三视图的投影规律为:长对正,高齐平,宽一致。三视图的投影规律是在画图、看图时都须严格遵守的。3、视图中图纸及线框的含义在绘制物体的三视图时,物体表面上的线、面与视图中的轮廓线、线框都有着一一对应的关系。(1)、视图中每一条轮廓线的含义物体表面上交线的投影;物体上垂直于投影面的平面或曲面的投影;面立体转向轮廓线的投影。(2)、视图中每一封闭线框的含义:视图中每一个封闭线框都表示物体上的一个面(平面或曲面)的投影。视图中图线及线框的含义是画图、看图的依据,并可根据其含义对视图的正确性进行检查。( 3)、物体的空间方位物体有上、下、左、右、前、后、六个方向的位置关系,每个视图能反映物体的四个方位。主视图反映物体的上、下、左、右,左视图反映物体的上、下、前、后,俯视图反映物体的前、后、左、右。根据以上位置关系,可以在各视图上分析出物体各部分的空间位置,以便增强对物体的空间想象能力。三、三视图的画图步骤根据物体或立体图画三视图时,应把物体摆平放正,选择形体主要特正投影的基本知识一、投影法的基本知识1 .投影的形成原理。用光线照射物体,在预设的面上绘制出被投射物体图形的方法,叫做投影法。光线叫做投射线,所投射的面叫做投影面,投影面上等到的物体图形叫做该物体的投影。2 . 投影法种类中心投影法: 投射线都从投影中心出发,在投影面上作出物体图形的方法叫做中心投影法。平行投影法: 若将投射中心移至无穷远处,则所有的投射线就相互平行。用相互平行的投射线,在投影面上作出物体图形的方法叫做平行投影法。在平行投影法中,根据投影面是否垂直于投影面,又分为两种:斜投影 投射线倾斜于投影面正投影 投射线平行于投影面正投影法能准确地表达出物体的形状结构,而且度量性好,因而在工程上广泛应用。但它的缺点是立体感差,一般要用两个或两个以上的图形才能把物体的形状表达清楚。机械图形主要是用正投影法绘制的,所以正投影法是本课程学习的主要内容。在以后的课程中,除有特别说明外,我们提到的投影均指正投影3 .正投影法的投影特性,以直线、平面相对于投影面位置的不同,讲明实形性、积聚性和类似性三大主要特性。二、物体三视图的形成及投影规律1、三视图的形成用三个互相垂直的投影面构成一空间投影体系,即正面V、水平面H、侧面W,把物体放在空间的某一位置固定不动,分别向三个投影面上对物体进行投影,在V面上得到的投影叫做主视图,在H面上得到的投影叫俯视图,在W面上得到的投影叫左视图。为了在同一张图纸上画出物体的三个视图,国家标准规定了其展开方法:V面不动,H面绕OX轴向下旋转90°与V面重合,W面绕OZ轴向后旋转90°与V面重合,这样,便把三个互相垂直的投影面展平在同一张图纸上了。三视图的配置为:以主视图为基准,俯视图在主视图的下方;左视图在主视图的右方。2、视图之间的投影规律每个视图反映物体两个方向的尺寸。主视图反映物体的长度和高度;左视图反映宽度和高度;俯视图反映长度和宽度。按照三视图的配置,三视图的投影规律为:长对正,高齐平,宽一致。三视图的投影规律是在画图、看图时都须严格遵守的。3、视图中图纸及线框的含义在绘制物体的三视图时,物体表面上的线、面与视图中的轮廓线、线框都有着一一对应的关系。(1)、视图中每一条轮廓线的含义物体表面上交线的投影;物体上垂直于投影面的平面或曲面的投影;面立体转向轮廓线的投影。(2)、视图中每一封闭线框的含义:视图中每一个封闭线框都表示物体上的一个面(平面或曲面)的投影。视图中图线及线框的含义是画图、看图的依据,并可根据其含义对视图的正确性进行检查。( 3)、物体的空间方位物体有上、下、左、右、前、后、六个方向的位置关系,每个视图能反映物体的四个方位。主视图反映物体的上、下、左、右,左视图反映物体的上、下、前、后,俯视图反映物体的前、后、左、右。根据以上位置关系,可以在各视图上分析出物体各部分的空间位置,以便增强对物体的空间想象能力。三、三视图的画图步骤根据物体或立体图画三视图时,应把物体摆平放正,选择形体主要特

征明显的方向作为主视图的投影方向,一般画图步骤如下:

1、用点画线和细实线画出各视图的作图基准线。2、用细实线、虚线,按照物体的构成,先大后小,先整体,后局部的顺序,用三视图的投影规律,画出物体三视图的底图。3、底图画完后,需经过检查,没有错误后并清理图面,再按图线要求描深。图线的描深顺序为:先曲线,后直线;水平线应自上而下,依次描深,垂线应自左向右依次描深。按照这种顺序描深,可以保证曲线与直线的正确连接,提高描深速度,保证图面的清洁。点的投影一、点在两个投影面体系中的投影如图点在两面体系中的投影投影特性:( 1 )点的正面投影和水平投影连线垂直 OX 轴,即 a'a ⊥ OX;( 2 )点的正面投影到 OX 轴的距离,反映该点到 H 面的距离,点的水平投影到 OX 轴的距离,反映该点到 V 面的距离,即 a'ax=Aa, aax=Aa' ,二、点在三个投影面体系中的投影点在两面投影体系已能确定该点的空间位置,但为了更清楚地表达某些形体,有时需要在两投影面体系基础上,再增加一个与 H 面及 V 面垂直的侧立的投影面 W 面,形成三面投影体系。如下图。点在三面体系中的投影投影特性:( 1 ) a'a ⊥ OX, a'a” ⊥ OZ, aayH ⊥ OYH, a”ayW ⊥ OYW( 2 ) a'ax=Aa, aax=Aa' 。 a'aZ=Aa”三、点的投影与坐标根据点的三面投影可以确定点在空间位置,点在空间的位置也可以由直角坐标值来确定。点的正面投影由点的 X 、 Z 坐标决定,点的水平投影由点的 X 、 Y 坐标决定,点的侧面投影由点的 Y 、 Z 坐标决定。例题 1 已知点 A ( 20 , 15 , 10 )、 B ( 30 , 10 , 0 )、 C ( 15 , 0 , 0 )求作各点的三面投影。分析:由于 ZB=0 ,所以 B 点在 H 面上, YC=0 , ZC=0 ,则点 C 在 X 轴上。在 OX 轴上量取 ax=20;过 ax 作 aa' ⊥ OX 轴,并使 aax=15, a'aZ=10;过 a' 作 aa” ⊥ OZ 轴,并使 a”aZ= aax, a, a',a” 即为所求 A 点的三面投影。根据点的坐标求点的投影作 B 点的投影:在 OX 轴上量取 bX=30;过 bX 作 bb' ⊥ OX 轴,并使 b'bX=0, bbX=10, 由于 ZB=0 , b',bX 重合。即 b' 在 X 轴上;因为 ZB=0 , b' 在 OYW 轴上,在该轴上量取 byw=10, 得 b” ,则 b 、 b' 、 b” 即为所求 B 点的三面投影。作 C点的投影 :由在 OX 轴上量取 CX=15;于 Yc=0 , Zc=0,c 、 c' 都在 OX 轴上,与 c 重合, c” 与原点 O 重合。四、两点的置点相对在同面投影的位坐标来判断,其中左右由 X 坐标差判别,上下由 Z 坐标差判别空间点的相对位置,可以利用两,前后由 Y 坐标差判别。如图。两点间相对位置Za>ZbA 点在 B 点上方, Ya>YbA 点在 B 点的前方, Xa>XbA 点在 B 点的左方。 A 点在 B 点的左前上方。5 、重影点当空间两点位于垂直于某个投影面的同一投影线上时,两点在该投影面上的投影重合,称为重影点。直线的投影直线可以由线上的两点确定,所以直线的投影就是点的投影,然后将点的同面投影连接,即为直线的投影,如图。直线的三面投影一、各种位置直线的投影( 1 )投影面平行线直线平行于一个投影面与另外两个投影面倾斜时,称为投影面平行线。正平线——平行于 V 面倾斜于 H 、 W 面;水平线——平行于 H 面倾斜于 V 、 W 面;侧平线——平行于 W 面倾斜于 H 、 V 面。投影面平行线特性:平行于那个投影面,在那个投影面上的投影反映该直线的实长,而且投影与投影轴的夹角,也反映了该直线对另两个投影面的夹角,而另外两个投影都是类似形,比实长要短。( 2 )投影面垂直线直线垂直于一个投影面与另外两个投影面平行时,称为投影面垂直线。正垂线——垂直于 V 面平行于 H 、 W 面;铅垂线——垂直于 H 面平行于 V 、 W 面;侧垂线——垂直于 W 面平行于 V 、 H 面。投影面垂直线特性:垂直于那个投影面,在那个投影面上的投影积聚成一个点,而另外两个投影面上的投影平行于投影轴且反映实长。( 3 )一般位置直线直线与三个投影面都处于倾斜位置,称为一般位置直线。一般位置直线一般位置直线在三个投影面上的投影都不反映实长,而且于投影轴的夹角也不反映空间直线对投影面的夹角。二、一般位置直线的实长及其与投影面夹角一般位置直线的投影即不反映实长又不反映对投影面的真实倾斜角度。要求得实长和夹角,我们利用直角三角形法求得。如图所示。求一般位置直线的实长及对投影面的夹角三、 直线上点的投影如果点在直线上,则点的各个投影必在该直线的同面投影上,并将直线的各个投影分割成和空间相同的比例。直线上的点四、两直线的相对位置( 1 ) 两直线平行两直线平行两直线空间平行,投影面上的投影也相互平行。( 2 )两直线相交两直相交空间两直线相交,交点 K 是两直线的共有点, K 点的投影,符合点的投影规律。( 3 )两直线交叉两直线交叉空间两直线不平行又不相交时称为交叉。交叉两直线的同面投影可能相交,但它们各个投影的交点不符合点的投影规律。五、两直线垂直相交空间两直线垂直相交,其中有一直线平行于某投影面时,则两直线在所平行的投影面上的投影反映直角。

垂直相交两直线的投影

证明:因为 AB ⊥ BC , AB ⊥ Bb ,所以 AB 必垂直于 BC 和 Bb 决定的平面 Q 及 Q 面上过垂足 B 的任何一直线( BC1 、 BC2…… )因 AB ∥ ab 故 ab 也必垂直于 Q 面过垂足 b 的任一直线,即 ab ⊥ bc 。例题:如图,已知点 C 及直线 AB 的两面投影,试过 C 点作直线 AB 的垂线 CD , D 为垂足,并求 CD 的实长。求点到直线的垂足及距离分析:因为 ab ∥ OX ,所以 AB 是正平线,又因 CD 与 AB 垂直相交, D 为交点

,则 a'b' ⊥ c'd', 由 d' 可在 ab 上求得 d 。利用直价三角形法可求得 CD 的实长。

作法: 1 ) c' 作 c'd' ⊥ a'b' 得交点 d' ;2 )由 d' 引投影连线与 ab 交得 d;3 )连 c 和 d ,则 c'd' 、 cd 即为垂线 CD 的两面投影;4 )用直角三角形法求得 C 与直线 AB 之间的真实距离 CD 。

篇2:机械制图教程第10讲-直线的投影

课   题:1、直线上点的投影

2、两直线的相对位置3、直角投影定理课堂类型:讲授教学目的:1、讲解直线上点的投影特性2、讲解两直线各种相对位置(平行、相交、交叉)的投影特点3、讲解用直角投影定理教学要求:1、理解并掌握直线投影的定比性的解题方法2、会根据两直线的投影判断它们的相对位置,并熟练掌握两直线平行、相交的作图问题3、理解并掌握直角投影定理的特点和解题思路教学重点:1、两直线各种相对位置(平行、相交、交叉)的投影特点2、直角投影定理教学难点:利用直角投影定理图解空间几何问题教   具:自制的三投影面体系模型教学方法:例题辅助讲解教学过程:一、复习旧课1、三种位置直线(包括七种类型)的投影特性,

机械制图教程第10讲-直线的投影

。尤其注意:实长和倾角的判断。2、用直角三角形法求一般位置直线的实长及其对各投影面倾角的方法和步骤。二、引入新课题上次课我们学习了三种位置直线的投影特性,本次课我们继续学习空间直线的其他投影特性。三、教学内容(一)直线上点的投影1、直线上点的投影点在直线上,则点的各个投影必定在该直线的同面投影上,反之,若一个点的各个投影都在直线的同面投影上,则该点必定在直线上。举例:如图2-27所示直线AB上有一点C,则C点的三面投影c、c′、c″ 必定分别在该直线AB的同面投影ab、a′ b′、a″b″ 上。图2-27   直线上点的投影2、直线投影的定比性直线上的点分割线段之比等于其投影之比,这称为直线投影的定比性。在图2-27中,点C在线段AB上,它把线段AB分成AC和CB两段。根据直线投影的定比性,AC:CB = ac:cb = a′ c′:c′ b′ = a″c″:c″b″ 。3、讲解例题(例2-6) 如图2-28(a),已知侧平线AB的两投影和直线上K点的正面投影k′,求K点的水平投影k 。(a)题目              (b) 解法1                (c)解法2图2—28    求直线上点的投影(二)两直线的相对位置两直线的相对位置有平行、相交、交叉三种情况。1、两直线平行(1)特性若空间两直线平行,则它们的各同面投影必定互相平行。如图2-29所示,由于AB∥CD,则必定ab∥cd、 a′ b′∥c′ d′、a″b″∥c″d″ 。反之,若两直线的各同面投影互相平行,则此两直线在空间也必定互相平行。(a)                  (b)课   题:1、直线上点的投影2、两直线的相对位置3、直角投影定理课堂类型:讲授教学目的:1、讲解直线上点的投影特性2、讲解两直线各种相对位置(平行、相交、交叉)的投影特点3、讲解用直角投影定理教学要求:1、理解并掌握直线投影的定比性的解题方法2、会根据两直线的投影判断它们的相对位置,并熟练掌握两直线平行、相交的作图问题3、理解并掌握直角投影定理的特点和解题思路教学重点:1、两直线各种相对位置(平行、相交、交叉)的投影特点2、直角投影定理教学难点:利用直角投影定理图解空间几何问题教   具:自制的三投影面体系模型教学方法:例题辅助讲解教学过程:一、复习旧课1、三种位置直线(包括七种类型)的投影特性。尤其注意:实长和倾角的判断。2、用直角三角形法求一般位置直线的实长及其对各投影面倾角的方法和步骤。二、引入新课题上次课我们学习了三种位置直线的投影特性,本次课我们继续学习空间直线的其他投影特性。三、教学内容(一)直线上点的投影1、直线上点的投影点在直线上,则点的各个投影必定在该直线的同面投影上,反之,若一个点的各个投影都在直线的同面投影上,则该点必定在直线上。举例:如图2-27所示直线AB上有一点C,则C点的三面投影c、c′、c″ 必定分别在该直线AB的同面投影ab、a′ b′、a″b″ 上。图2-27   直线上点的投影2、直线投影的定比性直线上的点分割线段之比等于其投影之比,这称为直线投影的定比性。在图2-27中,点C在线段AB上,它把线段AB分成AC和CB两段。根据直线投影的定比性,AC:CB = ac:cb = a′ c′:c′ b′ = a″c″:c″b″ 。3、讲解例题(例2-6) 如图2-28(a),已知侧平线AB的两投影和直线上K点的正面投影k′,求K点的水平投影k 。(a)题目              (b) 解法1                (c)解法2图2—28    求直线上点的投影(二)两直线的相对位置两直线的相对位置有平行、相交、交叉三种情况。1、两直线平行(1)特性若空间两直线平行,则它们的各同面投影必定互相平行,如图2-29所示,由于AB∥CD,则必定ab∥cd、 a′ b′∥c′ d′、a″b″∥c″d″ 。反之,若两直线的各同面投影互相平行,则此两直线在空间也必定互相平行。(a)                  (b)图2-29 两直线平行(2)判定两直线是否平行图2-30  判断两直线是否平行1)如果两直线处于一般位置时,则只需观察两直线中的任何两组同面投影是否互相平行即可判定。2)当两平行直线平行于某一投影面时,则需观察两直线在所平行的那个投影面上的投影是否互相平行才能确定。如图2-30所示,两直线AB、CD均为侧平线,虽然ab∥cd、 a′b′∥c′d′,但不能断言两直线平行,还必需求作两直线的侧面投影进行判定,由于图中所示两直线的侧面投影a″b″ 与c″d″相交,所以可判定直线AB、CD不平行。2、两直线相交(1)特性若空间两直线相交,则它们的各同面投影必定相交,且交点符合点的投影规律。如图2-31所示,两直线AB、CD相交于K点,因为K点是两直线的共有点,则此两直线的各组同面投影的交点 k、 k′、k″ 必定是空间交点K的投影。反之,若两直线的各同面投影相交,且各组同面投影的交点符合点的投影规律,则此两直线在空间也必定相交。(a)                                (b)图2-31  两直线相交(2)判定两直线是否相交1)如果两直线均为一般位置线时,则只需观察两直线中的任何两组同面投影是否相交且交点是否符合点的投影规律即可判定。2)当两直线中有一条直线为投影面平行线时,则需观察两直线在该投影面上的投影是否相交且交点是否符合点的投影规律才能确定;或者根据直线投影的定比性进行判断。如图2-32所示,两直线AB、CD两组同面投影ab与cd、a′ b′ 与c′ d′ 虽然相交,但经过分析判断,可判定两直线在空间不相交。(a)                                           (b)图2-32  两直线在空间不相交3、两直线交叉两直线既不平行又不相交,称为交叉两直线。(1)特性若空间两直线交叉,则它们的各组同面投影必不同时平行,或者它们的各同面投影虽然相交,但其交点不符合点的投影规律。反之亦然。如图2-33(a)所示。(2)判定空间交叉两直线的相对位置空间交叉两直线的投影的交点,实际上是空间两点的投影重合点。利用重影点和可见性,可以很方便地判别两直线在空间的位置。在图2-33(b)中,判断AB和CD的正面重影点k′(l′)的可见性时,由于K、L两点的水平投影k比l的y坐标值大,所以当从前往后看时,点K可见,点L不可见,由此可判定AB在CD的前方。同理,从上往下看时,点M可见,点N不可见,可判定CD在AB的上方。(a)                                      (b)图2-33   两直线交叉(三)直角投影定理1、概念空间垂直相交的两直线,若其中的一直线平行于某投影面时,则在该投影面的投影仍为直角。反之,若相交两直线在某投影面上的投影为直角,且其中有一直线平行于该投影面时,则该两直线在空间必互相垂直。这就是直角投影定理。如图2-34所示。已知AB⊥BC,且AB为正平线,所以ab必垂直于bc 。(a)              (b)图2-34   垂直相交的两直线的投影2、讲解例题(目的是帮助学生理解掌握利用直角投影定理图解空间几何问题的解题思路和解题方法)(1)例2-7  求点A到直线BC的距离, 如图2-35(a)(a)题目              (b)解法图2-35 求点到直线的距离(2)例2-8 如图2-36(a)所示,已知菱形ABCD的一条对角线AC为一正平线,菱形的一边AB位于直线AM上,求该菱形的投影图。(a)题目              (b)解法图2-36  求菱形的投影图四、小结1、平行两直线的投影特性和判别方法。2、相交两直线的投影特性和判别方法。3、交叉两直线的投影特性。4、直角投影定理的应用

篇3:机械制图教程第9讲-直线的投影

课   题:1、直线的投影图

2、直线对于一个投影面的投影特性3、各种位置直线的投影特性4、一般位置直线的实长和对投影面的倾角课堂类型:讲授教学目的:1、讲解三种投影面平行线和三种投影面垂直线的投影特性2、讲解用直角三角形法求一般位置直线的实长和倾角教学要求:1、理解并掌握各种位置直线的投影特性,并能根据投影特性判别直线对投影面的相对位置2、熟练掌握求一般位置直线的实长及其对各投影面倾角的直角三角形法教学重点:1、各种位置直线的投影特性2、直角三角形法教学难点:直角三角形法教   具:自制的三投影面体系模型;挂图:“投影面平行线的投影特性”、“投影面垂直线的投影特性”教学方法:直线投影的实质,就是线段两个端点的同面投影的连线;尤其是投影面垂直线,实质就是重影点,

机械制图教程第9讲-直线的投影

。为了进一步加强空间思维的训练,要用一定量的例题作演示性讲解,并布置适当的练习加以巩固。教学过程:一、复习旧课1、 讲评上次作业。2、复习点的投影与与其直角坐标的关系3、复习点的三面投影规律4、复习特殊位置点的投影5、复习两点的相对位置和重影点二、引入新课题空间两点确定一条空间直线段,空间直线的投影一般也是直线。直线段投影的实质,就是线段两个端点的同面投影的连线;所以学习直线的投影,必须于点的投影联系起来。三、教学内容(一)直线的投影图空间一直线的投影可由直线上的两点(通常取线段两个端点)的同面投影来确定。如图2-19所示的直线AB,求作它的三面投影图时,可分别作出A、B两端点的投影(a、a′、a″)、(b、b′、b″),然后将其同面投影连接起来即得直线AB的三面投影图(a b、a′ b′ 、a″b″)。(a)                                                           (b)                                                              (c)图2-19   直线的投影课   题:1、直线的投影图2、直线对于一个投影面的投影特性3、各种位置直线的投影特性4、一般位置直线的实长和对投影面的倾角课堂类型:讲授教学目的:1、讲解三种投影面平行线和三种投影面垂直线的投影特性2、讲解用直角三角形法求一般位置直线的实长和倾角教学要求:1、理解并掌握各种位置直线的投影特性,并能根据投影特性判别直线对投影面的相对位置2、熟练掌握求一般位置直线的实长及其对各投影面倾角的直角三角形法教学重点:1、各种位置直线的投影特性2、直角三角形法教学难点:直角三角形法教   具:自制的三投影面体系模型;挂图:“投影面平行线的投影特性”、“投影面垂直线的投影特性”教学方法:直线投影的实质,就是线段两个端点的同面投影的连线;尤其是投影面垂直线,实质就是重影点。为了进一步加强空间思维的训练,要用一定量的例题作演示性讲解,并布置适当的练习加以巩固。教学过程:一、复习旧课1、 讲评上次作业。2、复习点的投影与与其直角坐标的关系3、复习点的三面投影规律4、复习特殊位置点的投影5、复习两点的相对位置和重影点二、引入新课题空间两点确定一条空间直线段,空间直线的投影一般也是直线。直线段投影的实质,就是线段两个端点的同面投影的连线;所以学习直线的投影,必须于点的投影联系起来。三、教学内容(一)直线的投影图空间一直线的投影可由直线上的两点(通常取线段两个端点)的同面投影来确定。如图2-19所示的直线AB,求作它的三面投影图时,可分别作出A、B两端点的投影(a、a′、a″)、(b、b′、b″),然后将其同面投影连接起来即得直线AB的三面投影图(a b、a′ b′ 、a″b″)。(a)                                                           (b)                                                              (c)图2-19   直线的投影(二)直线对于一个投影面的投影特性空间直线相对于一个投影面的位置有平行、垂直、倾斜三种,三种位置有不同的投影特性。1、真实性  当直线与投影面平行时,则直线的投影为实长,如图2-20(a)所示。2、积聚性  当直线与投影面垂直时,则直线的投影积聚为一点。如图2-20(b)所示。3、收缩性  当直线与投影面倾斜时,则直线的投影小于直线的实长。如图2-20(c)所示。(a)                             (b)                    (c)图2-20   直线的投影(三)各种位置直线的投影特性根据直线在三投影面体系中的位置可分为投影面倾斜线、投影面平行线、投影面垂直线三类。前一类直线称为一般位置直线,后两类直线称为特殊位置直线。1、投影面平行线平行于一个投影面且同时倾斜于另外两个投影面的直线称为投影面平行线。平行于V面的称为正平线;平行于H面的称为水平线;平行于W面的称为侧平线。直线与投影面所夹的角称为直线对投影面的倾角。α、β、γ分别表示直线对H面、V面、W面的倾角。举例说明:正平线的投影特性强调:(1)斜线反映实长;(2)直线的倾角α、γ。总结投影面平行线的投影特性:两平一斜。要求学生必须掌握表2-1中的图例。对于投影面平行线的辨认:当直线的投影有两个平行于投影轴,第三投影与投影轴倾斜时,则该直线一定是投影面平行线,且一定平行于其投影为倾斜线的那个投影面。讲解例题(例2-3) 如图2-21所示,已知空间点A,试作线段AB,长度为15,并使其平行V面,与H面倾角α=30°(只需一解)。(a)题目                         (b)解答图2-21   作正平线AB2、投影面垂直线垂直于一个投影面且同时平行于另外两个投影面的直线称为投影面垂直线。垂直于V面的称为正垂线;垂直于H面的称为铅垂线;垂直于W面的称为侧垂线。举例说明:侧垂线的投影特性强调:(1)两个投影反映实长;(2)一个投影积聚为一点。总结投影面平行线的投影特性:两线一点。要求学生必须掌握表2-2中的图例。对于投影面垂直线的辨认:直线的投影中只要有一个投影积聚为一点,则该直线一定是投影面垂直线,且一定垂直于其投影积聚为一点的那个投影面。讲解例题(例2-4) 如图2-22所示,已知正垂线AB的点A的投影,直线AB长度为10毫米,试作直线AB的三面投影(只需一解)。(a)题目                         (b)解答图2-22   作正垂线AB3、一般位置直线与三个投影面都处于倾斜位置的直线称为一般位置直线。举例:如图2-23(a)所示,直线AB与H、V、W面都处于倾斜位置,倾角分别为α、β、γ。其投影如图2-23(b)所示。(a)                                                           (b)一般位置直线的投影特征可归纳为:(1)直线的三个投影和投影轴都倾斜,各投影和投影轴所夹的角度不等于空间线段对相应投影面的倾角;(2)任何投影都小于空间线段的实长,也不能积聚为一点。对于一般位置直线的辨认:直线的投影如果与三个投影轴都倾斜,则可判定该直线为一般位置直线。(四)一般位置直线的实长和对投影面的倾角1、直角三角形法的作图原理如图2-24所示,AB为一般位置直线,过端点A作直线平行其水平投影ab并交Bb于C,得直角三角形ABC。在直角三角形ABC中,斜边AB就是线段本身,底边AC等于线段AB的水平投影ab,对边BC等于线段AB的两端点到H面的距离差(Z坐标差),也即等于a′ b′ 两端点到投影轴OX的距离差,而AB与底边AC的夹角即为线段AB对H面的倾角α。                    图2-24  直角三角形法的原理2、直角三角形法的作图方法和步骤图2-25直角三角形法根据上述分析,只要用一般位置直线在某一投影面上的投影作为直角三角形的底边,用直线的两端点到该投影面的距离差为另一直角边,作出一直角三角形。此直角三角形的斜边就是空间线段的真实长度,而斜边与底边的夹角就是空间线段对该投影面的倾角。这就是直角三角形法。作图方法与步骤如图2-25所示,用线段的任一投影为底边均可用直角三角形法求出空间线段的实长,其长度是相同的,但所得倾角不同。在直角三角形法中,直角三角形包含四个因素:投影长、坐标差、实长、倾角。只要知道两个因素,就可以将其余两个求出来。3、讲解例题(例2-5)  如图2-26(a)所示,已知直线AB的实长L =15mm,及直线AB的水平投影ab和点A的正面投影a′ ,试用直角三角形法求出直线AB的正面投影a′ b′。(a)题目                     (b)解答图2—26  直角三角形法应用示例四、小结1、三种位置直线(包括七种类型)的投影特性。尤其注意:实长和倾角的判断。2、用直角三角形法求一般位置直线的实长及其对各投影面倾角的方法和步骤。五、布置作业习题集2-2(1)、(2)、(7)

篇4:机械制图教程第8讲-点的投影

课   题:1、点的投影及其标记

2、点的三面投影规律3、点的三面投影与直角坐标4、特殊位置点的投影5、两点的相对位置课堂类型:讲授教学目的:1、介绍空间点及其投影的标记标记符号2、讲解点的三面投影规律3、讲解特殊位置点的投影4、讲解两点的相对位置和重影点教学要求:1、理解并掌握在两面和三面投影图中点的投影规律2、熟练掌握点的投影与与其直角坐标的关系以及由点的两个投影求作第三投影的方法3、掌握由点的轴测图作投影图和由点的投影图作轴测图的方法4、根据两个点的投影,能够理解并判别该两点在空间的相对位置5、掌握重影点的概念及其可见性的判别方法教学重点:1、在两面和三面投影图中点的投影规律2、重影点的概念和两点的相对位置教学难点:1、点的三面投影与直角坐标的关系2、特殊位置点的投影教   具:自制的三投影面体系模型教学方法:课堂教学中要加强三等关系和六方位关系的基本训练,着重突出空间概念的培养,这是树立空间概念,搭起空间架子的起步,

机械制图教程第8讲-点的投影

。这部分教学要突出空间位置的判断。运用直观教具,采用讲授和演示教学法,讲情三投影面体系的有关内容和展开方法。注意以下几个要点:投影面展开前:(1)空间点对投影面的距离及对应坐标的关系。(2)空间点的投影与其对应坐标的关系。投影面展开后:要演示两投影连线与投影轴的关系,从而引出投影规律。教学过程:一、复习旧课简要复习有关投影法的几个基本概念。重点复习三视图的形成、投影规律和方位关系。二、引入新课题任何物体都是由点、线、面等几何元素构成的,只有学习和掌握了几何元素的投影规律和特征,才能透彻理解机械图样所表示物体的具体结构形状。本次课先来学习点的投影。三、教学内容(一)点的投影及其标记当投影面和投影方向确定时,空间一点只有唯一的一个投影。如图2-11(a)所示,假设空间有一点A,过点A分别向H面、V面和W面作垂线,得到三个垂足a、a′、a″,便是点A在三个投影面上的投影。规定用大写字母(如A)表示空间点,它的水平投影、正面投影和侧面投影,分别用相应的小写字母(如a、a′ 和a″)表示。根据三面投影图的形成规律将其展开,可以得到如图2-11(b)所示的带边框的三面投影图,即得到点A两面投影;省略投影面的边框线,就得到如图2-11(c)所示的A点的三面投影图,(注意:要与平面直角坐标系相区别。)(a)                                   (b)课   题:1、点的投影及其标记2、点的三面投影规律3、点的三面投影与直角坐标4、特殊位置点的投影5、两点的相对位置课堂类型:讲授教学目的:1、介绍空间点及其投影的标记标记符号2、讲解点的三面投影规律3、讲解特殊位置点的投影4、讲解两点的相对位置和重影点教学要求:1、理解并掌握在两面和三面投影图中点的投影规律2、熟练掌握点的投影与与其直角坐标的关系以及由点的两个投影求作第三投影的方法3、掌握由点的轴测图作投影图和由点的投影图作轴测图的方法4、根据两个点的投影,能够理解并判别该两点在空间的相对位置5、掌握重影点的概念及其可见性的判别方法教学重点:1、在两面和三面投影图中点的投影规律2、重影点的概念和两点的相对位置教学难点:1、点的三面投影与直角坐标的关系2、特殊位置点的投影教   具:自制的三投影面体系模型教学方法:课堂教学中要加强三等关系和六方位关系的基本训练,着重突出空间概念的培养,这是树立空间概念,搭起空间架子的起步。这部分教学要突出空间位置的判断。运用直观教具,采用讲授和演示教学法,讲情三投影面体系的有关内容和展开方法。注意以下几个要点:投影面展开前:(1)空间点对投影面的距离及对应坐标的关系。(2)空间点的投影与其对应坐标的关系。投影面展开后:要演示两投影连线与投影轴的关系,从而引出投影规律。教学过程:一、复习旧课简要复习有关投影法的几个基本概念。重点复习三视图的形成、投影规律和方位关系。二、引入新课题任何物体都是由点、线、面等几何元素构成的,只有学习和掌握了几何元素的投影规律和特征,才能透彻理解机械图样所表示物体的具体结构形状。本次课先来学习点的投影。三、教学内容(一)点的投影及其标记当投影面和投影方向确定时,空间一点只有唯一的一个投影。如图2-11(a)所示,假设空间有一点A,过点A分别向H面、V面和W面作垂线,得到三个垂足a、a′、a″,便是点A在三个投影面上的投影。规定用大写字母(如A)表示空间点,它的水平投影、正面投影和侧面投影,分别用相应的小写字母(如a、a′ 和a″)表示。根据三面投影图的形成规律将其展开,可以得到如图2-11(b)所示的带边框的三面投影图,即得到点A两面投影;省略投影面的边框线,就得到如图2-11(c)所示的A点的三面投影图,(注意:要与平面直角坐标系相区别。)(a)                                   (b)(c)图2-11   点的两面投影(二)点的三面投影规律1、点的投影与点的空间位置的关系从图2-11(a)、(b)可以看出,Aa、A a′、A a″ 分别为点A到H、V、W面的距离,即:A a = a′a x = a″a y (即a″aYW),反映空间点A到H面的距离;A a′ =a a x = a″a z ,反映空间点A到V面的距离;A a″ = a′a z = a a y (即aYH),反映空间点A到W面的距离;上述即是点的投影与点的空间位置的关系,根据这个关系,若已知点的空间位置,就可以画出点的投影。反之,若已知点的投影,就可以完全确定点在空间的位置。2、点的三面投影规律由图2-11中还可以看出:a aYH = a′a z      即a′a⊥OXa′a x = a″aYW 即a′a″⊥OZa a x = a″a z这说明点的三个投影不是孤立的,而是彼此之间有一定的位置关系。而且这个关系不因空间点的位置改变而改变,因此可以把它概括为普遍性的投影规律:(1)点的正面投影和水平投影的连线垂直OX轴,即a′a⊥OX;(2)点的正面投影和侧面投影的连线垂直OZ轴,即a′a″⊥OZ;(3)点的水平投影a和到OX轴的距离等于侧面投影a″ 到OZ轴的距离,即a a x = a″a z 。(可以用45°辅助线或以原点为圆心作弧线来反映这一投影关系)根据上述投影规律,若已知点的任何两个投影,就可求出它的第三个投影。3、讲解例题(例2-1) 已知点A的 正面投影a′ 和侧面投影a″(图2-12),求作其水平投影a 。(a)题目                           (b)解答图2-12  已知点的两个投影求第三个投影强调:一般在作图过程中,应自点O作辅助线(与水平方向夹角为45°),以表明a a x = a″a z的关系,(三)点的三面投影与直角坐标1、点的三面投影与直角坐标的关系三投影面体系可以看成是一个空间直角坐标系,因此可用直角坐标确定点的空间位置。投影面H、V、W作为坐标面,三条投影轴OX、OY、OZ作为坐标轴,三轴的交点O作为坐标原点。由图2-13可以看出A点的直角坐标与其三个投影的关系:点A到W面的距离 = Oa x = a′a z = a aYH = x坐标;点A到V面的距离 = aYH = a a x = a″az = y坐标;点A到H面的距离 = Oa z = a′ a x = a″aYW = z坐标。图2-13   点的三面投影与直角坐标用坐标来表示空间点位置比较简单,可以写成A (x,y,z)的形式。由图2-13(b)可知,坐标x和z决定点的正面投影a′ ,坐标x和y决定点的水平投影a,坐标y和z决定点的侧面投影 a″,若用坐标表示,则为a (x,y,0),a′ (x,0,z),a″ (0,y,z)。因此,已知一点的三面投影,就可以量出该点的三个坐标;相反地,已知一点的三个坐标,就可以量出该点的三面投影。2、讲解例题(例2-2)  已知点A的坐标(20,10,18),作出点的三面投影,并画出其立体图。其作图方法与步骤如图2-14所示:(a)                                                        (b)                                                                       (c)图2-14    由点的坐标作点的三面投影立体图的作图步骤如图2-15所示;(a)                                                           (b)                                                       (c)图2-15    由点的坐标作立体图(四)特殊位置点的投影1、在投影面上的点(有一个坐标为0)有两个投影在投影轴上,另一个投影和其空间点本身重合。例如在V面上的点A,如图2-16(a)所示;2、在投影轴上的点(有两个坐标为0)有一个投影在原点上,另两个投影和其空间点本身重合。例如在OZ轴上的点B,如图2-16(b)所示;(a)                              (b)                        (c)

图2-16    特殊位置点的投影

3、在原点上的空间点(有三个坐标都为0)它的三个投影必定都在原点上。如图2-16(c)所示。(五)两点的相对位置1、两点的相对位置设已知空间点A,由原来的位置向上(或向下)移动,则z坐标随着改变,也就是A点对H面的距离改变;如果点A,由原来的位置向前(或向后)移动,则y坐标随着改变,也就是A点对V面的距离改变;如果点A,由原来的位置向左(或向右)移动,则x坐标随着改变,也就是A点对W面的距离改变.综上所述,对于空间两点A、B的相对位置(1)距W面远者在左(x坐标大);近者在左(x坐标小);(2)距V面远者在前(y坐标大);近者在后(y坐标小);(3)距H面远者在左(z坐标大);近者在左(z坐标小)。2、举例如图2-17所示,若已知空间两点的投影,即点A的三个投影a、a′ 、a″ 和点B的三个投影b、b′ 、b″,用A、B两点同面投影坐标差就可判别A、B两点的相对位置。 由于xA > xB,表示B点在A点的右方;zB > zA,表示B点在A点的上方;yA > yB,表示B点在点的A后方。总起来说,就是B点在A点的右、后、上方。图2-17  两点的相对位置3、重影点若空间两点在某一投影面上的投影重合,则这两点是该投影面的重影点。这时,空间两点的某两坐标相同,并在同一投射线上。当两点的投影重合时,就需要判别其可见性,应注意:对H面的重影点,从上向下观察,z坐标值大者可见;对W面的重影点,从左向右观察,x坐标值大者可见;对V面的重影点,从前向后观察,y坐标值大者可见。在投影图上不可见的投影加括号表示,如(a′)。4、举例如图2-18中,C、D位于垂直H面的投射线上,c、d重影为一点,则C、D为对H面的重影点,z坐标值大者为可见,图中zC > zD,故c为可见,d为不可见,用c(d)表示。四、小结1、空间点及其投影的标记标记符号2、点的投影与与其直角坐标的关系3、点的三面投影规律4、特殊位置点的投影5、两点的相对位置和重影点五、布置作业习题集2-1(1)~(8)

篇5:机械制图基础-点、直线和平面的投影

投影法知识 一、投影法的概念   投影法是画法几何学的基本方法,如图2.1所示,为投影中心,为空间一点,为投影面,连线为投射线。投射线均由投影中心射出,射过空间点的投射线与投影面相交于一点,点称作空间点在投影面上的投影。同样,点是空间点在投影面上的投影。在投影面和投射中心确定的条件下,空间点在投影面上的投影是唯一确定的。

图2.1 投影法                            图2.2 中心投影法    画法几何就是靠这种假设的投影法,确定空间的几何原形在平面上(图纸上)的图像。图2.2是三角板投影的例子。二、投影法的种类   上述的投影法,投射线均通过投影中心,称为中心投影法,如图2.2所示。如果投射线互相平行,此时,空间几何原形在投影面上也同样得到一个投影,这种投影法称为平行投影法。当平行的投射线对投影面倾斜时,称为斜投影法,如图2.3所示。当平行的投射线与投影面垂直时,称为正投影法,如图2.4所示。图2.3 平行投影法——斜投影法           图2.4 平行投影法——正投影法     平行投影的特点之一是,空间的平面图形(如图2.3和图2.4中的三角板)若和投影面平行,则它的投影反映出真实的形状和大小。三、正投影法的基本性质1、类似性:当线段或平面与投影面倾斜时,其线段投影小于实长;平面的投影为小于实形的类似形。2、不变性:当线段或平面与投影面平行时,其反映实长或实形投影。3、积聚性:当线段或平面与投影面平行时,投影积聚。4、从属性和定比性:机械工程上常用几种投影图一、正投影图   正投影图是一种多面投影图,它采用相互垂直的两个或两个以上的投影面,在每个投影面上分别采用正投影法获得几何原形的投影。由这些投影便能确定该几何原形的空间位置和形状。图2.5是某一几何体的正投影。图2.5 几何体的正投影                       图2.6 几何体的轴测投影图        采用正投影图时,常将几何体的主要平面放成与相应的投影面相互平行。这样画出的投影图能反映出这些平面的实形。因此说正投影图有很好的度量性,而且正投影图作图也较简便。在机械制造行业和其他工程部门中,被广泛采用。二、轴测投影图   轴测投影图是单面投影图。先设定空间几何原形所在的直角坐标系,采用平行投影法,将三根坐标轴连同空间几何原形一起投射到投影面上。图2.6是某一几何体的轴测投影图。由于采用平行投影法,所以空间平行的直线,投影后仍平行。采用轴测投影图时,将坐标轴对投影面放成一定的角度,使得投影图上同时反映出几何体长、宽、高三个方向上的形状,增强了立体感。三、标高投影图   标高投影图是采用正投影法获得空间几何元素的投影之后,再用数字标出空间几何元素对投影面的距离,以在投影图上确定空间几何元素的几何关系。图2.7是曲面的标高投影。图中一系列标有数字的曲线称为等高线。图2.7 曲面的标高投影                    图2.8 几何体的透视投影图标高投影图常用来表示不规则曲面,如船舶、飞行器、汽车曲面及地形等。四、透视投影图   透视投影图用的是中心投影法。它与照相成影的原理相似,图像接近于视觉映像。所以透视投影图富有逼真感、直观性强。按照特定规则画出的透视投影图,完全可以确定空间几何元素的几何关系。   图2.8是某一几何体的一种透视投影图。由于采用中心投影法,所以空间平行的直线,有的在投影后就不平行了。透视投影图广泛用于工艺美术及宣传广告图样。

投影法知识 一、投影法的概念   投影法是画法几何学的基本方法。如图2.1所示,为投影中心,为空间一点,为投影面,连线为投射线。投射线均由投影中心射出,射过空间点的投射线与投影面相交于一点,点称作空间点在投影面上的投影。同样,点是空间点在投影面上的投影。在投影面和投射中心确定的条件下,空间点在投影面上的投影是唯一确定的。

图2.1 投影法                            图2.2 中心投影法    画法几何就是靠这种假设的投影法,确定空间的几何原形在平面上(图纸上)的图像。图2.2是三角板投影的例子。二、投影法的种类   上述的投影法,投射线均通过投影中心,称为中心投影法,如图2.2所示。如果投射线互相平行,此时,空间几何原形在投影面上也同样得到一个投影,这种投影法称为平行投影法。当平行的投射线对投影面倾斜时,称为斜投影法,如图2.3所示。当平行的投射线与投影面垂直时,称为正投影法,如图2.4所示。图2.3 平行投影法——斜投影法           图2.4 平行投影法——正投影法     平行投影的特点之一是,空间的平面图形(如图2.3和图2.4中的三角板)若和投影面平行,则它的投影反映出真实的形状和大小。三、正投影法的基本性质1、类似性:当线段或平面与投影面倾斜时,其线段投影小于实长;平面的投影为小于实形的类似形。2、不变性:当线段或平面与投影面平行时,其反映实长或实形投影。3、积聚性:当线段或平面与投影面平行时,投影积聚。4、从属性和定比性:机械工程上常用几种投影图一、正投影图   正投影图是一种多面投影图,它采用相互垂直的两个或两个以上的投影面,在每个投影面上分别采用正投影法获得几何原形的投影。由这些投影便能确定该几何原形的空间位置和形状。图2.5是某一几何体的正投影。图2.5 几何体的正投影                       图2.6 几何体的轴测投影图        采用正投影图时,常将几何体的主要平面放成与相应的投影面相互平行。这样画出的投影图能反映出这些平面的实形。因此说正投影图有很好的度量性,而且正投影图作图也较简便。在机械制造行业和其他工程部门中,被广泛采用。二、轴测投影图   轴测投影图是单面投影图。先设定空间几何原形所在的直角坐标系,采用平行投影法,将三根坐标轴连同空间几何原形一起投射到投影面上。图2.6是某一几何体的轴测投影图。由于采用平行投影法,所以空间平行的直线,投影后仍平行。采用轴测投影图时,将坐标轴对投影面放成一定的角度,使得投影图上同时反映出几何体长、宽、高三个方向上的形状,增强了立体感。三、标高投影图   标高投影图是采用正投影法获得空间几何元素的投影之后,再用数字标出空间几何元素对投影面的距离,以在投影图上确定空间几何元素的几何关系。图2.7是曲面的标高投影。图中一系列标有数字的曲线称为等高线。图2.7 曲面的标高投影                    图2.8 几何体的透视投影图标高投影图常用来表示不规则曲面,如船舶、飞行器、汽车曲面及地形等。四、透视投影图   透视投影图用的是中心投影法。它与照相成影的原理相似,图像接近于视觉映像。所以透视投影图富有逼真感、直观性强。按照特定规则画出的透视投影图,完全可以确定空间几何元素的几何关系。   图2.8是某一几何体的一种透视投影图。由于采用中心投影法,所以空间平行的直线,有的在投影后就不平行了。透视投影图广泛用于工艺美术及宣传广告图样。

点的投影   物体是由点、线和面组成,其中点是最基本的几何元素,下面从点开始来说明正投影法的建立及其基本原理。一、点在两投影面体系中投影(1)点的两个投影能唯一地确定该点的空间位置   首先建立两个互相垂直的投影面H及V,其间有一空间点A,它向投影平面H投影后得投影a,向投影平面V投影后得投影a′,投射线Aa及A a′是一对相交线,故处于同一平面内,如图2.9所示。图2.9 点的两面投影                 图2.10 两个投影能唯一确定空间点   从图2.9可知,若移去空间点A,由点的两个投影a、a′就能确定该点的空间位置。另外,由于两个投影平面是相互垂直的,可在其上建立笛卡尔坐标体系,如图2.10所示。已知a,即已知x、y两个坐标。已知a′,即已知x、z两个坐标,因此,已知空间点A的两个投影a及a′,即确定了空间点A的x、y及z三个坐标,也就唯一地确定该点的空间位置。(2)术语及规定1.术语   如图2.11(a)所示:   水平位置的投影面称水平投影面,用H表示。   与水平投影面垂直的投影面称正立投影面,用V表示。   两投影面的交线称投影轴,用OX表示。   空间点用大写字母(如A、B、…)表示。   在水平投影面上的投影称水平投影,用相应小写字母(如a、b、…)表示。   在正立投影面上的投影称正面投影,用相应小写字母加一撇(如a′、b′、…)表示。2.规定   图2.11(a)所示为一直观图。   为使两个投影a和a′画在同一平面(图纸)上,规定将H面绕OX轴按图示箭头方向旋转90°,使它与V面重合,这样就得到如图2.11(b)所示点A的两面投影图。投影面可以认为是任意大的,通常在投影图上不画它们的范围,如图2.11(c)所示。投影图上细实线a a′称为投影连线。由于图纸的图框可以不用画出,所以今后常常利用图2.11(c)所示的两面投影图来表示空间的几何原形。(a) 两投影面体系                   (b)两面投影图             (c)不画投影面的范围图2.11 两面投影图的画法 (3)两面投影图的性质1.一点的两个投影连线垂直于投影轴(a a′⊥OX a′到点O 因为投射线Aa a′构成了一个平面Aaax a′,如图2.11(a)所示。它垂直于H面,也垂直于V面,则必垂直于H面和V面的交线OX。所以处于平面Aaax a′上的直线aaxa′ax必垂直于OXa′ax⊥OXax、a′三点共线,且a′ax⊥OX。。当a跟着H面旋转而和V面重合时,则aax⊥OX的关系不变。因此投影图上的a、,即aax⊥OX和和和A2.一点的水平投影到OX a′),都反映y a′=y);其正面投影到OXa′ax)等于该点到Ha′ax=Aa=z)。面的距离(Aa),都反映z坐标(轴的距离(坐标(aax=A轴的距离(aax)等于该点到V面的距离(A二、点在三投影面体系中的投影图2.12  需用三面投影图表示的几何体    点的两个投影已能确定该点的空间位置。但为更清楚地表达某些几何体,有时需采用三面投影图。例如图2.12 所示的几何体投影,相同的正面和水平投影,只有确定了其第三面投影,才能清楚地表示出该几何体的形状。   由于三投影面体系是在两投影面体系基础上发展而成,因此两投影面体系中的术语及规定、投影图的性质,在三投影体系中仍适用。此外,它还有一些本身的术语及规定、投影图的性质。(1)术语及规定   与正立投影面及水平投影面同时垂直的投影面称侧立投影面,用W表示,如图2.13所示。   在侧立投影面上的投影称侧面投影,用小写字母加两撇(如a″、b″、…)表示。   规定W面绕OZ轴按图示箭头方向转90°和V面重合,得到三个投影的投影图。投影图中OY轴一分为二,随H面转动的以OYH表示,随W面转动的以OYw表示。(2)三面投影图的性质1.一点的侧面投影与正面投影连线垂直于OZ轴(a′a″⊥OZ)。因侧立投影面与正立投影面也构成一个两投影面体系,故由上面内容可知,此性质成立。2.点的水平投影a到OX轴的距离(aax)和侧面投影a″到OZ轴的距离(a″az)均等于A到V面的距离(Aa′)都反映y坐标(aax=a″az=Aa′=y)。为作图方便,也可自点O作45°辅助线,以实现这个关系,如图2.13(b)所示。以上的性质是画点的投影图必须遵守的重要依据。(a)                                    (b)                      图2.13 三面投影图性质和画法三、特殊位置点的投影   特殊情况下,点有可能处于投影面上、投影轴上。(1)在投影面上的点(a)                               (b)图2.14 投影面及投影轴上的点   如图2.14(a)所示,点A、B、C分别处于V面、H面、W面上,它们的投影如图2.14(b)所示,由此得出处于投影面上的点的投影性质:1.点的一个投影与空间点本身重合2.点的另外两个投影,分别处于不同的投影轴上(2)在投影轴上的点   如图2.14所示,当点D在OY轴上时,点D和它的水平投影、侧面投影重合于OY轴上,点D的正面投影位于原点。   据此可以得出在投影轴上的点的投影性质。四、两点的相对位置及重影点(1)两点相对位置的确定   立体上两点间相对位置,是指在三面投影体系中,一个点处于另一个点的上、下、左、右、前、后的问题。两点相对位置可用坐标的大小来判断,Z坐标大者在上,反之在下;Y坐标大者在前,反之在后;X坐标大者在左,反之在右。图2.15中,A、C两点的相对位置 :ZAZC,因此点A在点C之上;YAYC,点A在点C之前;XAXC,点A在点C之右,结果是点在点C的右前上方。图2.15 两点的相对位置及重影点(2)重影点   当空间两点的某两个坐标相同,即位于同一条投射线上时,它们在该投射线垂直的投影面上的投影重合于一点,此空间两点称为对该投影面的重影点。如图2.15中,A、B两点位于垂直于V面的同一条投射线上(XA=XB,ZA=ZB),正面投影a′和b′重合于一点。由水平投影(或侧面投影)可知YAYB,即点A在点B的前方。因此点B的正面投影b′被点A的正面投影a′遮挡,是不可见的,规定在b′上加圆括号以示区别。   总之,某投影面上出现重影点,判别哪个点可见,应根据它们相应的第三个坐标的大小来确定,坐标大的点是重影点中的可见点。【例2.1】已知点B的正面投影b′及侧面投影b″,试求其水平投影b。   分析:根据点的三面投影的性质,可以利用点B的正面投影和侧面投影求出点B的水平投影b。   作图:由于b与b′的连线垂直于OX轴,所以b一定在过b′而垂直于OX轴的直线上。又由于b至OX轴的距离必等于b″至OZ轴的距离,使bbx等于b″bz,便定出了b的位置,如图2.16(b)所示。(a)                         (b)图2.16 求第三投影【例2.2】已知A(28,0,20)、B(24,12,12)、C(24,24,12)、D(0,0,28)四点,试在三投影面体系中作出直观图,并画出投影图。   分析:由于把三投影面体系与空间直角坐标系联系起来,所以已知点的三个坐标就可以确定空间点在三投影面体系中的位置,此时点的三个坐标就是该点分别到三个投影面的距离。   作图:作直观图,如图2.17(a)所示,以B点为例,在OX轴上量取24,OY轴上量取12,OZ轴上量取12,在三个轴上分别得到相应的截取点bx、by和bz,过各截点作对应轴的平行线,则在V面上得到正面投影b′,在H面上得到水平投影b,在W面上得到了侧面投影b″。   同样的方法,可作出点A、C、D的直观图。其中A点在V面上(因为YA=0),其正面投影a′与A重合,水平投影a在OX轴上,侧面投影a″在OZ轴上。D点在OZ轴上(XD=YD=0),其正面投影d′、侧面投影d″与D点重合于OZ轴上,水平投影d在原点O处。   点B和点C有两个坐标相同(XB=XC,ZB=ZC),所以它们是对V面的重影点。它们的第三个坐标YBYC,正面投影c′可见,b′不可见加上圆括号。    根据各点的坐标作出投影图,如图2.17(b)。(a)                                   (b)图2.17 由点的坐标作直观图和投影图

篇6:CAD教程第7章-平面的投影

一、平面的表示法

用几何元素表示平面

用几何元素表示平面

用迹线表示平面

用迹线表示平面

二、各种位置平面的投影

( 1 )投影面平行面

平面在三投影面体系中,平行于一个投影面,而垂直于另外两个投影面,

正平面——平行于 V 面而垂直于 H 、 W 面;

水平面——平行于 H 面而垂直于 V 、 W 面;

侧平面——平行于 W 面而垂直于 H 、 V 面。

投影面平行面特性:

平面在所平行的投影面上的投影反映实形,其余的投影都是平行于投影轴的直线;

( 2 )投影面垂直面

在三投影面体系中,垂直于一个投影面,而对另外两投影面倾斜的平面。

正垂面——垂直 V 面而倾斜于 H 、 W 面;

铅垂面——垂直 H 面而倾斜于 V 、 W 面;

侧垂面——垂直 W 面而倾斜于 V 、 H 面。

投影面垂直面特性:

平面在所垂直的投影上的投影积聚成一直线,该直线于投影轴的夹角,就是该平面对另外两个投影面的真实倾角,而另外两个投影面上的投影是该平面的类似形。

( 3 )一般位置平面

平面对三个投影面都倾斜。

平面对三个投影面的相对位置分析可得出平面的投影特性:

◆平面垂直于投影面时,它在该投影面上的投影积聚成一条直线——积聚性;

◆平面平行于投影面时,它在该投影面上的投影反映实形——实形性;

◆平面倾斜于投影面时,它在该投影面上的投影为类似图形——类似性,

三、平面上的直线和点

( 1 )平面上的直线

1 )直线通过平面上的已知两点,则该直线在该平面上。

2 )直线通过平面上的一已知点,且又平行于平面上的一已知直线,则该直线在该平面上。

( 2 )平面上的点

点在平面上的几何条件是:如果点在平面上的一已知直线上,则该点必在平面上,因此在平面上找点时,必须先要在平面上取含该点的辅助直线,然后在所作辅助直线上求点。

( 3 )平面上的投影面的平行线

平面上的投影面平行线的投影,既有投影面平行线具有的特性,又要满足直线在平面上的几何条件。

例题:已知三角形 ABC 的两面投影,在三角形 ABC平面上取一点 K ,使 K 点在 A 点之下 15mm ,在 A 点之前 13mm ,试求 K 点的两面投影。(如下图)

平面上取点

分析:由已知条件可知 K 点在 A 点之下 15mm ,之前 13mm ,我们可以利用平面上的投影面平行线作辅助线求得。 K 点在 A 点之下 15mm ,可利用平面上的水平线, K 点在 A 点之前 13mm ,可利用平面上的正平线, K 点必在两直线的交点上。

作法: 1 )从 a' 向下量取 15mm ,作一平行于 OX 轴的直线,与 a'b' 交于 m' ,与 a'c' 交于 n';

2 )求水平线 MN 的水平投影 m 、 n ;

3 )从 a 向前量取 13mm ,作一平行于 OX 轴的直线,与 ab 交于 g ,与 ac 交于 h ,则 mn 与 gh 的交点即为 k ;

4 )由 g 、 h 求 g' 、 h' ,则 g'h' 与 m'n' 交于 k' , k' 即为所求

篇7:机械制图图纸的一般知识_第六讲、点、直线、平面的投影

第二讲 点、直线、平面的投影1.知识要点

(1)点的投影(2)直线对投影面的相对位置及其投影规律(3)线对投影面的相对位置及其投影规律2.教学设计(1)点:重点讲三个点,三个坐标均不为0的点、一个坐标为0的点、两个坐标为0的点,

机械制图图纸的一般知识_第六讲、点、直线、平面的投影

。(2)直线:先讲投影面垂直线,再讲投影面平行线,最后讲一般位置直线。(3)平面:先讲投影面平行面,再讲投影面垂直面,最后讲一般位置平面。3.教学内容(1)点的投影空间点对于由V、H和W面组成的投影体系有三种位置关系:1)当点的x、y、z坐标均不为零时,点的三面投影均落在投影面内;2)当点的x、y、z坐标有一个为零时,空间点在投影面上,其两个投影落在投影轴上,特别值得注意的是,当点在H面上时,其W面的投影落在Y轴上,当按三视图的形成方法展开投影体系时,其W面投影随Y轴一起绕Z轴向后旋转落在YW轴上。3)当点的x、y、z坐标均有两个为零时,空间点在投影轴上,其一个投影与原点重合。无论点在空间处于什么位置,其三面投影仍然遵守长对正、高平齐、宽相等的投影规律(图3-12)。图3-12点的投影()(2)直线的投影空间直线对投影面有三种位置关系:平行、垂直和倾斜(一般位置)。1)投影面垂直线 若空间直线垂直于一个投影面,则必平行于其他两个投影面,这样的直线称之为投影面垂直线,对于垂直于V、H、W面的直线分别称之为正垂线、铅垂线和侧垂线。投影面垂直线在其垂直的投影面上的投影积聚为一个点,其他两个投影面上投影垂直于相应的投影轴,且反映实长,如表3-1所示。表3-1投影面垂直线2)投影面平行线若空间直线平行于一个投影面,倾斜于其他两个投影面,这样的直线称之为投影面平行线,按其平行于V、H、W面分别称之为正平线、水平线和侧平线。投影面平行线在其平行的投影面上的投影反映实长,其他两个投影面上投影垂直于相应的投影轴,且投影线段的长小于空间线段的实长。如表3-2所示表3-2投影面平行线3)一般位置直线一般位置直线和三个投影面均处于倾斜位置,其三个投影和投影轴倾斜,且投影线段的长小于空间线段的实长。从投影图上也不能直接反映出空间直线和投影平面的夹角。如图3-13所示。右图3-13一般位置直线(3)平面的投影空间平面对投影面有三种位置关系:平行、垂直和一般位置。1)投影面平行面 若空间平面平行于一个投影面,则必垂直于其他两个投影面,这样的平面称之为投影面平行,对平行于V、H、W面的平面分别称之为正平面、水平面和侧平面。投影面平行面在其平行的投影面上的投影反映实形,其他两个投影面上投影积聚成一条直线,且平行于相应的投影轴,如表3-3所示。2)投影面垂直面 若空间平面垂直于一个投影面,而倾斜于其他两个投影面,这样的平面称之为投影面垂直面,按垂直于V、H、W面的平面分别称之为正垂面、铅垂面和侧垂面。投影面垂直面在其垂直的投影面上的投影积聚成一条直线,该直线和投影轴的夹角反映了空间平面和其他两个投影面所成的二面角,其他两个投影面上的投影为类似形,如表3-4所示。3)一般位置平面若空间平面和三个投影面均处于倾斜位置,称之为一般位置平面。一般位置平面在三个投影面上的投影均为类似形,在投影图上不能直接放映空间平面和投影面所成的二面角。如图2-14所示表3-3投影面平行面表3-4投影面垂直面图3-14一般位置平面4.本讲作业习题集

《机械制图》与《CAD》教学探讨

点的投影说课稿

电气CAD上机操作教程

机械制图标准学习教程-图样画法

机械制图与检验技术教程-4.4包装材料品质标准

机械制图与检验技术教程-5.2直线度的检验方法

机械制图教程第17讲-平面与立体相交

浩辰CAD教程_的设置

浩辰CAD教程_序号标注

直线与方程课件

《CAD教程第6章-机械制图直线与点投影知识(共7篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档