这里小编给大家分享一些高一数学直线与方程知识点总结,本文共18篇,方便大家学习。

篇1:高一数学知识点总结_直线与方程知识点
《直线与方程》知识点整理
1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l的倾斜角 的范围是 .
2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即 . 如果知道直线上两点 ,则有斜率公式 . 特别地是,当 , 时,直线与x轴垂直,斜率k不存在;当 , 时,直线与y轴垂直,斜率k=0.
注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合. 当α=90°时,斜率k=0;当 时,斜率 ,随着α的增大,斜率k也增大;当 时,斜率 ,随着α的增大,斜率k也增大. 这样,可以求解倾斜角α的范围与斜率k取值范围的一些对应问题.
两条直线平行与垂直的判定
1. 对于两条不重合的直线 、 ,其斜率分别为 、 ,有:
(1) ? ;(2) ? .
2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x轴;….
直线的点斜式方程
1. 点斜式:直线 过点 ,且斜率为k,其方程为 .
2. 斜截式:直线 的斜率为k,在y轴上截距为b,其方程为 .
3. 点斜式和斜截式不能表示垂直x轴直线. 若直线 过点 且与x轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为 ,或 .
4. 注意: 与 是不同的方程,前者表示的直线上缺少一点 ,后者才是整条直线.
直线的两点式方程
1. 两点式:直线 经过两点 ,其方程为 ,
2. 截距式:直线 在x、y轴上的截距分别为a、b,其方程为 .
3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.
4. 线段 中点坐标公式 .
直线的一般式方程
1. 一般式: ,注意A、B不同时为0. 直线一般式方程 化为斜截式方程 ,表示斜率为 ,y轴上截距为 的直线.
2 与直线平行的直线,可设所求方程为 ;与直线 垂直的直线,可设所求方程为 . 过点 的直线可写为 .
经过点 ,且平行于直线l的直线方程是 ;
经过点 ,且垂直于直线l的直线方程是 .
3. 已知直线 的方程分别是: ( 不同时为0), ( 不同时为0),则两条直线的位置关系可以如下判别:
(1) ; (2) ;
(3) 与 重合 ; (4) 与 相交 .
如果 时,则 ; 与 重合 ; 与 相交 .
两条直线的交点坐标
1. 一般地,将两条直线的方程联立,得到二元一次方程组 . 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.
2. 方程 为直线系,所有的直线恒过一个定点,其定点就是 与 的交点.
两点间的距离
1.平面内两点 , ,则两点间的距离为: .
特别地,当 所在直线与x轴平行时, ;当 所在直线与y轴平行时, ;当 在直线 上时, .
2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.
篇2:高一数学知识点总结_直线与方程知识点
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x轴截距)
点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))
两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)
做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。
在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。
篇3:高一数学知识点总结_直线与方程知识点
各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零。
篇4:直线与方程知识点总结
直线与方程知识点总结
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。
当 时, ; 当 时, ; 当 时, 不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式:
其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。
⑤一般式: (A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线: (b为常数);平行于y轴的直线: (a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(二)垂直直线系
垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系: ,直线过定点 ;
(ⅱ)过两条直线 , 的交点的直线系方程为
( 为参数),其中直线 不在直线系中。
(6)两直线平行与垂直当 , 时,;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点相交
交点坐标即方程组 的一组解。
方程组无解 ; 方程组有无数解 与 重合
(8)两点间距离公式:设 是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点 到直线 的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
篇5:高一数学必修2直线与方程知识点总结
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的`曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
篇6:高考数学直线方程知识点总结
直线方程
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
注:
1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.
特例:点P(x,y)到原点O的距离:
2. 定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则
特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤<180°)、斜率:
4. 过两点.
当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率
⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.
注;直线系方程
1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( m?R, C≠m).
2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( m?R)
3. 过定点(x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B不全为0)
4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
注:①曲线、直线关于一直线对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.
②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.
篇7:高考数学直线方程知识点总结
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
注:
1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.
特例:点P(x,y)到原点O的距离:
2. 定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则
特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤<180°)、斜率:
4. 过两点.
当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率
⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.
注;直线系方程
1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( m?R, C≠m).
2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( m?R)
3. 过定点(x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B不全为0)
4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
注:①曲线、直线关于一直线()对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.
②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.
>>>返回目录
如何提高高考数学成绩
1、想提高数学成绩,首先要对自己的数学有一个整体的判断,比如自己在知识点上哪一块是优势,哪一块是需要弥补的地方。
2、其次在发现自己薄弱处后,要在薄弱的知识点上下狠工夫,同样学习数学也需要一定的分类方法的,把一些关联的知识点结合起,做到关联学习,会事倍功半,避免盲目。但因为高中学科比较多,我们不可能每天都顾及到这门单一的学科,所以难免也会对数学的知识点有所遗忘。还有一个问题就是学生在给自己归类的时候可能会花费一些不必要的时间,这样的话我们就需要一个既节省时间又很智能的工具替我们维护这个效的学习方法。
总体来说,学习数学就是三步:了解自己知识的优弱势;找出薄弱环节,归类并且不断强化;勤于练习,常复习。
>>>返回目录
高考前需要注意什么
1、心态决定一切
尽最大的努力和做最坏的打算,以平常心对待高考,高考前夕需要冷静。平常紧张的话,可以找父母朋友谈谈心,适当的交流有助于舒缓紧张情绪。
不过考生们要注意,千万不要扩大紧张情绪。部分考生总是怀疑自己还有很多知识没复习到位,匆忙找同学借笔记来复印,这只会徒增紧张情绪罢了。
2、注意饮食和运动
高考前一天,一定要注意自己的饮食安全,不要吃太油腻的食物,也不要吃得太饱;同时不要参加剧烈的运动,避免体能消耗过大而发生意外,可以适当散步和慢跑减缓心理压力。
3、看考场
高考前夕最好提前去看考场,搞清楚自己的考场位置,选择自己最佳的出行路线。同时备好多个出行方案,以免高考当天人多造成堵车。
如果考场开放,最好在自己的位置坐一会,熟悉周围环境,找找考试感觉。这样高考当天可以迅速进入状态。还要注意查看教室是否有挂钟,考场附近的厕所在什么位置。
4、天气状况
要提前一天查看高考的天气预报,确定是否要带雨伞,穿多少件衣服。当天气出现较大的波动时,对于天气较为敏感的考生来说,要做的就是调整好自己的心态。
要知道天气的好坏在于我们内心的感受,试着保持镇定,把注意力集中在高考答题上,要坚信主宰你命运的是自己而不是天气。
>>>返回目录
篇8:高一数学直线方程教学计划
一、内容及其解析
1、内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。
2、解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、目标及其解析
1、目标
掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2、解析
①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。
②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。
③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。
④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。
⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的'基本思想。
三、教学问题诊断分析
1、学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。
2、学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。
3、由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。
四、教法与学法分析
1、教法分析
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。
2、学法分析
改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。
通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。
五、教学过程设计
问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?
[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。
问题2:建立直线方程的实质是什么?
[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。
引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?
[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。
问题2.1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?
(过与两点的直线的斜率为)
[设计意图]让学生寻找确定直线的条件,体会动中找静。
问题2.2如何将上述条件用代数形式表示出来?
[设计意图]让学生理解和体会用坐标表示确定直线的条件。
用代数式表示出来就是,即。
问题2.3为什么说是满足条件的直线方程?
[设计意图]让学生初步感受直线与直线方程的关系。
此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。
另外以方程的解为坐标的点也在直线上。
所以我们得到经过点,斜率为的直线方程是。
问题2.4:能否说方程是经过,斜率为的直线方程?
[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。
问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?
[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。
问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?
[设计意图]引导学生掌握解析几何取点的方法。
引导学生求出直线的点斜式方程
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?
[设计意图]让学生初步感受解析几何求曲线方程的步骤。
①设点———用表示曲线上任一点的坐标;
②寻找条件————写出适合条件;
③列出方程————用坐标表示条件,列出方程
④化简———化方程为最简形式;
⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。
例1分别求经过点,且满足下列条件的直线的方程,并画出直线。
⑴倾斜角
⑵斜率
⑶与轴平行;
⑷与轴平行。
[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。
注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。
⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。
⑶当直线的倾斜角时,直线的斜率,直线方程是。
⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。
练习:
已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。
[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。
问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。
[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。
将斜率与定点代入点斜式直线方程可得:
说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。
注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。
(2)斜截式方程中的k和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?
[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。
篇9:必修二数学直线方程知识点
必修二数学直线方程知识点
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180
(2)直线的斜率
①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。
当 时, ; 当 时, ; 当 时, 不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0时,k=0,直线的方程是y=y1。
当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式:
其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。
⑤一般式: (A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线: (b为常数);平行于y轴的直线: (a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(二)垂直直线系
垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系: ,直线过定点 ;
(ⅱ)过两条直线 , 的交点的直线系方程为
( 为参数),其中直线 不在直线系中。
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组 的一组解。
方程组无解 ; 方程组有无数解 与 重合
(8)两点间距离公式:设 是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点 到直线 的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
学好数学的方法
1、做好课前预习,掌握听课主动权。课前准备的好坏,直接影响听课的效果。
2、专心听讲,做好课堂笔记。
3、及时复习,把知识转化为技能。
4、认真完成作业,形成技能技巧,提高分析解决问题的能力。
5、及时进行小结,把所学知识条理化、系统化。
因此,今后还要保持“先预习、后听讲;先复习、后作业;经常进行阶段小结”的好习惯。
数学集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
篇10:数学必修二直线方程知识点
数学必修二直线方程知识点
1直线方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x轴截距)
点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))
两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)
做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。
在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。
2直线方程的局限性
各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零。
数学集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
学数学的好方法
第一,兴趣。
如今的家庭和学校对孩子的期望很高,而且女生的性格普遍较为文静,心理不够强大,还有的就是数学这科目难度相对来说较高,很容易会导致女生对数学的兴趣降低。
所以说,作为老师应该多关心她们的学习情况,多与她们交流科目上的内容,了解她们的想法,只有理解她们的想法才能有效的制定相应的学习计划,为她们驱除紧张的情绪,从而达到一个好的学习状态。与此同时,作为家长的应该多关心孩子的情况,不要一看到成绩不好就开口训斥,这样对孩子的心理会造成一定的影响,甚至可能削弱孩子对数学的兴趣。我们应该用积极的态度去对待孩子的学习,女生的情感与男生不同,她们对于感兴趣的,一般会更有耐心克服困难,达到自己的目标。
第二,自信。
女生的形象思维能力一般比男生要差,逻辑思维能力也如此,所以容易造成没有信心的现象。事实上,女生在运算准确率方面是很高的,也比较规范,所以我们看到女生的数学答题大都很工整,其实这是一个优点。
所谓每个人都有优缺点,我们不应该因为自己的缺点而妄自菲薄,而是应该努力克服缺点,增强自己的自信心,在学习上应该多了解通解通法,还有一些常用的数学公式,解题技巧,还有解题速度。很多女生解数学题的速度都不快,甚至有些女生到时间了还有几道大题没做,这样丢分是让人很遗憾的。
篇11:必修二数学直线与方程知识点提纲
必修二数学直线与方程知识点提纲
直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中。
(6)两直线平行与垂直
当,时,;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
数学学习方法
1、建立数学纠错本。做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、
防错。达到:平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。
2、记忆数学规律和数学小结论。
3、经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。
4、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位。
5、理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些新的解法或产生新的认识等。
6、把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。
数学里什么叫成数
成数,表示一个数是另一个数的百分之几十的数,相当于百分数。例:一成就是10%,三成五就是35%,八成五就是85%。通常用在工农业生产中表示生产的增长状况。几成就是十分之几。例如,粮食产量增产“二成”。
篇12:直线与方程(原)
1.理解直线的倾斜角和直线的斜率的概念; 2.掌握过两点的直线的斜率公式;
3.掌握已知一点和斜率导出直线方程的方法; 4.重点掌握直线方程的点斜式、斜截式、一般式; 【基础知识】
1、倾斜角: 叫做直线的倾斜角,范围为 .
斜率:当直线的倾斜角不是90时,则k= ; 当直线的倾斜角等于90时,直线的斜率 。
2、过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:k= 若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90. 3.直线方程的几种形式:
【基础知识】
1、已知三点A(3,1)B(-2,K)C(8,11)共线,则K的取值是( )
A、-6 B、-7 C、-8 D、-9 2、设
?
2
????,则直线y=xcos?+m的倾斜角的取值范围是( )
A、(
??3?33
,?) B、(,?) C、(,?) (?,?)
244442
3、已知A(-2,3)B(3,0),直线L过O(0,0)且与线段AB相交,则直线L的斜率的取值范围是( ) A.-
3333
≤K≤0 B.K≤-或K≥0 C.K≤0或K≥ D.0≤K≤ 2222
4.已知直线l1:ax-y-b=0,l2:bx-y+a=0,当a、b满足一定的条件时,它们的图形可以是( )
2
2
5、过点M(1,2)的直线L将圆(x-2)+y=9分成两段弧,当其中的劣弧最短时,L的方程为__ 6、与两坐标轴正方向围成面积为2平方单位的三角形,并且两截距之差为3的直线方程为 【典型例题】
例1.若直线满足如下条件,分别求出其方程 (1)斜率为
(2)经过两点A(1,0)、B(m,1)。
3
,且与两坐标轴围成的三角形面积为6; 4
(3)将直线L绕其上一点P沿顺时针方向旋转角?(0
继续旋转角90-?.所得直线方程为x+2y+1=0。
(4)过点(-a,0)(a>0)且分割第二象限得一面积为S的三角形区域。
例2.过点P(1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的`截距之和最小时,求此直线方程.
例3.已知直线(a-2)y=(3a-1)x-1
(1)求证:无论a为何值,直线总经过第一象限;
(2)直线l是否有可能不经过第二象限,若有可能,求出a的范围;若不可能,说明理由。
例4.光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率。
【跟踪练习】
1、过点(-2,1)在两条坐标轴上的截距绝对值相等的直线条数有( )
(A)1 (B)2 (C)3 (D)4
2、直线xcos?+y+m=0的倾斜角范围是( ) (A)[0,?) (B)[
??
?3??3??3?
,)?(,] (C) [,] (D)[0,]?[,?)
44444224
3、 过点A(x,4)和点B(-2,x)的直线的倾斜角等于45°,则x的值为( )
A.1 B.-1 C.
2
D.-2 2
4.直线ax+by+c=0同时通过第一、第二、第四象限,则a、b、c应满足( )
A.abc>0 B.ac
xy
C.不经过原点的直线都可以用方程 + =1表示
abD.经过点A(0,b)的直线都可以用方程y=kx+b表示
6.将直线l1:x-y+3 C2=0绕着平面上的一点(23)沿逆时针方向旋转15?,得直线l2,则l2
篇13:直线与方程(原)
7.倾斜角α= 120°的直线l与两坐标轴围成的三角形面积S3,则直线l在y轴上的截距的取值范围为 .
8.经过点A(3,2)且在两轴上截距相等的直线方程是.
9.已知两直线:a1x?b1y?7?0,a2x?b2y?7?0,都经过点(3,5),则经过点(a1,b1),(a2,b2)的直线方程是 .
10、不论a, b为何实数,直线(2a+b)x+(a+b)y+a-b=0均通过一定点,此定点坐标为。 11.已知直线l:kx-y+1+2k=0 (1)证明l经过定点;
(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
(3)若直线不经过第三象限,求k的取值范围.
12.已知直线l经过点P(3,2),且与x轴y轴的正半轴分别交于点A,B,求l在两坐标轴上截距之和的最小值及此时直线的方程.
13.设过点P(2,1)作直线l交x轴的正半轴、y轴的正半轴于A、B两点, (1)当|PA|?|PB|取得最小值时,求直线l的方程. (2)当|OA|?|OB|取得最小值时,求直线l的方程.
篇14:直线与方程课件
直线与方程课件
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。
(3)掌握直线方程各种形式之间的互化。
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力。
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点。
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法。
教学建议
1、教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式。
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程。
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线。本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用。
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头。学生对点斜式学习的效果将直接影响后继知识的学习。
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明。
2、教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显。教学中各部分知识之间过渡要自然流畅,不生硬。
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础。
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的`分析论证。教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点。
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解。
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要。教学中应突出点斜式、两点式和一般式三个教学高潮。
篇15:高一下册数学格式直线的方程教学计划
高一下册数学格式直线的方程教学计划
【教学目标】
知识与技能目标
(1)了解直线的方程和方程的直线的概念.
(2)理解掌握直线的倾斜角、斜率的概念和过两点直线的斜率公式.
(3)掌握直线的倾斜角和斜率的相互关系.
过程与方法目标
(1)引导学生进行数学阅读,激发学生阅读的动机和兴趣,指导学生掌握数学阅读的方法,循序渐进,使学生从愿读转变到会读,最后上升为乐读.培养学生独立获取知识的自学能力.
(2)初步培养学生数形结合的思想,提高学生联系、转化、归纳、概括的思维能力,进一步培养学生的创新意识和分析问题、解决问题的能力.
情感、态度与价值观目标
通过学生的主动参与,师生、生生的'合作交流,提高学生的学习兴趣,激发其求知欲,培养探索精神.
【教学重点和难点】
重点:理解直线的斜率概念,探索如何通过两点求直线的斜率公式.
难点:斜率的几何意义,即直线的斜率和倾斜角的相互关系
【教法与学法】
教法上本着教是为了不教的教学思想,主要采用阅读探究式教学方法。通过鼓励学生阅读课本,引导学生捕捉数学问题并解决问题,让学生自主探索与合作交流相结合,使学生从懂到会到悟,提高解决问题的能力.
同时借助多媒体辅助教学,增强教学的直观性,提高课堂效率.
篇16:高一下册数学直线的方程教学计划
高一下册数学直线的方程教学计划
一、内容及其解析
1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。
2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、目标及其解析
1。目标
掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2。解析
①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。
②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。
③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。
④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。
⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。
三、教学问题诊断分析
1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。
2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。
3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。
四、教法与学法分析
1、教法分析
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。
2、学法分析
改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。
通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。
五、教学过程设计
问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?
[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。
问题2:建立直线方程的实质是什么?
[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。
引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?
[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。
问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?
(过与两点的直线的斜率为)
[设计意图]让学生寻找确定直线的条件,体会动中找静。
问题2。2如何将上述条件用代数形式表示出来?
[设计意图]让学生理解和体会用坐标表示确定直线的条件。
用代数式表示出来就是,即。
问题2。3为什么说是满足条件的直线方程?
[设计意图]让学生初步感受直线与直线方程的关系。
此时的'坐标也满足此方程。所以当点在直线上运动时,其坐标满足。
另外以方程的解为坐标的点也在直线上。
所以我们得到经过点,斜率为的直线方程是。
问题2。4:能否说方程是经过,斜率为的直线方程?
[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。
问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?
[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。
问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?
[设计意图]引导学生掌握解析几何取点的方法。
引导学生求出直线的点斜式方程
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?
[设计意图]让学生初步感受解析几何求曲线方程的步骤。
①设点———用表示曲线上任一点的坐标;
②寻找条件————写出适合条件;
③列出方程————用坐标表示条件,列出方程
④化简———化方程为最简形式;
⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。
例1分别求经过点,且满足下列条件的直线的方程,并画出直线。
⑴倾斜角
⑵斜率
⑶与轴平行;
⑷与轴平行。
[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。
注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。
⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。
⑶当直线的倾斜角时,直线的斜率,直线方程是。
⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。
练习:1。。
2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。
[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。
问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。
[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。
将斜率与定点代入点斜式直线方程可得:
说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。
注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。
(2)斜截式方程中的k和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?
[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。
练习:1。。
2。直线的斜率为2,在轴上的截距为,求直线的方程。
[设计意图]让学生明确截距的含义。
3。直线过点,它的斜率与直线的斜率相等,求直线的方程。
[设计意图]让学生进一步理解直线斜截式方程的结构特征。
4。已知直线过两点和,求直线的方程。
[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。
例2:已知直线,试讨论
(1)与平行的条件是什么?
(2)与重合的条件是什么?
(3)与垂直的条件是什么?
说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。
②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。
③若直线的斜率不存在,与之平行、垂直的条件分别是什么?
练习:
问题8:本节课你有哪些收获?
要点:
(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。
(2)两种形式的方程要在熟记的基础上灵活运用。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
篇17:数学直线的方程公式
我们在初中学习的直线的方程包括有平面方程和空间方程两种,相较于空间方程来说,平面方程的运用比较的多。
平面方程
1、一般式:适用于所有直线
Ax+By+C=0 (其中A、B不同时为0)
2、点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为
x=x0
3、斜截式:在y轴上截距为b(即过(0,b)),斜率为k的直线
由点斜式可得斜截式y=kx+b
与点斜式一样,也需要考虑K存不存在
4、截距式:不适用于和任意坐标轴垂直的直线
知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为
bx+ay-ab=0
特别地,当ab均不为0时,斜截式可写为x/a+y/b=1
5、两点式:过(x1,y1)(x2,y2)的直线
(y-y1)/(y1-y2)=(x-x1)/(x1-x2)(斜率k需存在)
6、法线式
Xcosθ+ysinθ-p=0
其中p为原点到直线的距离,θ为法线与X轴正方向的夹角
7、点方向式 (X-X0)/U=(Y-Y0)/V
(U,V不等于0,即点方向式不能表示与坐标平行的式子)
8、点法向式
a(X-X0)+b(y-y0)=0
空间方程
1、一般式
ax+bz+c=0,dy+ez+fc=0
2、点向式:
设直线方向向量为(u,v,w ),经过点( x0,y0,z0)
(X-X0)/u=(Y-Y0)/v=(x-x0)/w
3、x0y式
x=kz+b,y=lz+b
总结归纳一共有11个直线的方程公式,要运用好的时候也请大家选择了。
1.关于初中数学空间方程公式表
2.点到直线的距离公式
3.小升初数学常用公式
4.数学图形计算公式
5.数学公式口诀速记
6.小升初数学追及问题公式
7.数学公式整理汇总
8.小学数学图形计算公式公式
9.数学图形计算公式大全
10.总结数学盈亏的公式
篇18:数学参数方程知识点总结
数学参数方程知识点总结
参数方程定义
一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)
并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。
参数方程
圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数
椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数
双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数
抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数
参数方程的应用
一般在平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数:x=f(t),y=g(t), 并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。
圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数
椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程 x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
文档为doc格式