下面小编给大家整理的高一数学函数与方程练习题,本文共4篇,欢迎阅读与借鉴!

篇1:高一数学函数与方程练习题
高一数学函数与方程练习题
1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内
A.可能有3个实数根 B.可能有2个实数根
C.有唯一的实数根 D.没有实数根
解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数,
f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.
答案:C
2.(长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:
x123456
f(x)136.1315.552-3.9210.88-52.488-232.064
则函数f(x)存在零点的区间有()
A.区间[1,2]和[2,3]
B.区间[2,3]和[3,4]
C.区间[2,3]、[3,4]和[4,5]
D.区间[3,4]、[4,5]和[5,6]
解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,
f(x)在区间[2,3],[3,4],[4,5]上都存在零点.
答案:C
3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是
()
A.(3.5,+) B.(1,+)
C.(4,+) D.(4.5,+)
解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,
在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则1n+1m1.
答案:B
4.(2014昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x)的零点所在的区间是()
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B.
答案:B
5.已知函数f(x)=2x-1,x0,-x2-2x,x0,若函数g(x)=f(x)-m有3个零点,则实数m的`取值范围是________.
解析:画出f(x)=2x-1,x0,-x2-2x,x0,的图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0
答案:(0,1)
6.定义在R上的奇函数f(x)满足:当x0时,f(x)=2 014x+log2 014x则在R上,函数f(x)零点的个数为________.
解析:函数f(x)为R上的奇函数,因此f(0)=0,当x0时,f(x)=2 014x+log2 014x在区间0,12 014内存在一个零点,又f(x)为增函数,因此在(0,+)内有且仅有一个零点.根据对称性可知函数在(-,0)内有且仅有一解,从而函数在R上的零点的个数为3.
答案:3
7.已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________.
解析:令x+2x=0,即2x=-x,设y=2x,y=-x;
令x+ln x=0,即ln x=-x,
设y=ln x,y=-x.
在同一坐标系内画出y=2x,y=ln x,y=-x,如图:x10
则(x)2-x-1=0,
x=1+52,即x3=3+521,所以x1
答案:x1
8.若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的取值范围.
解:(1)当a=0时,函数f(x)=-x-1为一次函数,则-1是函数的零点,即函数仅有一个零点.
(2)当a0时,函数f(x)=ax2-x-1为二次函数,并且仅有一个零点,则一元二次方程ax2-x-1=0有两个相等实根.则=1+4a=0,解得a=-14.综上,当a=0或a=-14时,函数仅有一个零点.
9.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围.
解:设f(x)=x2+(m-1)x+1,x[0,2],
①若f(x)=0在区间[0,2]上有一解,
∵f(0)=10,则应用f(2)0,
又∵f(2)=22+(m-1)2+1,
m-32.
②若f(x)=0在区间[0,2]上有两解,
则0,0-m-122,f20,
m-12-40,-3
m3或m-1,-3
-32-1.
由①②可知m的取值范围(-,-1].
数学高一年级上册函数与方程专项训练题就为大家介绍到这里,希望对你有所帮助。
篇2:高一数学函数与方程练习题及答案
人教版高一数学函数与方程练习题及答案
1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)<0,则方程f(x)=0在[-1,1]内
( )
A.可能有3个实数根 B.可能有2个实数根
C.有唯一的实数根 D.没有实数根
解析:由f -12f 12<0得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数,
∴f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.
答案:C
2.(2014长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:
x 1 2 3 4 5 6
f(x) 136.13 15.552 -3.92 10.88 -52.488 -232.064
则函数f(x)存在零点的区间有
( )
A.区间[1,2]和[2,3]
B.区间[2,3]和[3,4]
C.区间[2,3]、[3,4]和[4,5]
D.区间[3,4]、[4,5]和[5,6]
解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,
∴f(x)在区间[2,3],[3,4],[4,5]上都存在零点.
答案:C
3.若a>1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是
( )
A.(3.5,+∞) B.(1,+∞)
C.(4,+∞) D.(4.5,+∞)
解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,
在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的.交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm≥4,又n≠m,故(n+m)1n+1m>4,则1n+1m>1.
答案:B
4.(2014昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f′(x)的零点所在的区间是
( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:函数f(x)的导数为f′(x)=1x,所以g(x)=f(x)-f′(x)=ln x-1x.因为g(1)=ln 1-1=-1<0,g(2)=ln 2-12=“”>0,所以函数g(x)=f(x)-f′(x)的零点所在的区间为(1,2).故选B.
答案:B
5.已知函数f(x)=2x-1,x>0,-x2-2x,x≤0,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是________.
解析:画出f(x)=2x-1,x>0,-x2-2x,x≤0,的图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0
答案:(0,1)
篇3:高一数学函数与方程教学计划
人教版高一数学函数与方程教学计划
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;
3.函数方程思想的.几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;
(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;
(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;
(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
篇4:高一数学方程的根与函数的零点练习题
高一数学方程的根与函数的零点练习题
一、选择题
1.已知函数f(x)在区间[a,b]上单调,且f(a)f(b)0则方程f(x)=0在区间[a,b]上()
A.至少有一实根 B.至多有一实根
C.没有实根 D.必有唯一的实根
[答案] D
2.已知函数f(x)的图象是连续不断的,有如下的x、f(x)对应值表:
x123456
f(x)123.5621.45-7.8211.57-53.76-126.49
函数f(x)在区间[1,6]上的零点至少有()
A.2个 B.3个
C.4个 D.5个
[答案] B
3.(2013~2014山东淄博一中高一期中试题)对于函数f(x)=x2+mx+n,若f(a)0,f(b)0,则f(x)在(a,b)上()
A.一定有零点 B.可能有两个零点
C.一定有没有零点 D.至少有一个零点
[答案] B
[解析] 若f(x)的.图象如图所示否定C、D
若f(x)的图象与x轴无交点,满足f(a)0,f(b)0,则否定A,故选B.
4.下列函数中,在[1,2]上有零点的是()
A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5
C.f(x)=lnx-3x+6 D.f(x)=ex+3x-6
[答案] D
[解析] A:3x2-4x+5=0的判别式0,
此方程无实数根,f(x)=3x2-4x+5在[1,2]上无零点.
B:由f(x)=x3-5x-5=0得x3=5x+5.
在同一坐标系中画出y=x3,x[1,2]与y=5x+5,x[1,2]的图象,如图1,两个图象没有交点.
f(x)=0在[1,2]上无零点.
C:由f(x)=0得lnx=3x-6,在同一坐标系中画出y=lnx与y=3x-6的图象,如图2所示,由图象知两个函数图象在[1,2]内没有交点,因而方程f(x)=0在[1,2]内没有零点.
D:∵f(1)=e+31-6=e-30,f(2)=e20,
f(1)f(2)0.
f(x)在[1,2]内有零点.
5.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是()
A.-1和16 B.1和-16
C.12和13 D.-12和-13
[答案] B
[解析] 由于f(x)=x2-ax+b有两个零点2和3,
a=5,b=6.g(x)=6x2-5x-1有两个零点1和-16.
6.(2010福建理,4)函数f(x)=x2+2x-3,x0-2+lnx,x0的零点个数为()
A.0 B.1
C.2 D.3
[答案] C
[解析] 令x2+2x-3=0,x=-3或1;
∵x0,x=-3;令-2+lnx=0,lnx=2,
x=e20,故函数f(x)有两个零点.
二、填空题
7.已知函数f(x)=x+m的零点是2,则2m=________.
[答案] 14
[解析] ∵f(x)的零点是2,f(2)=0.
2+m=0,解得m=-2.2m=2-2=14.
8.函数f(x)=2x2-x-1,x0,3x-4,x0的零点的个数为________.
[答案] 2
[解析] 当x0时,令2x2-x-1=0,解得x=-12(x=1舍去);当x0时,令3x-4=0,解得x=log34,所以函数f(x)=2x2-x-1,x0,3x-4,x0有2个零点.
9.对于方程x3+x2-2x-1=0,有下列判断:
①在(-2,-1)内有实数根;
②在(-1,0)内有实数根;
③在(1,2)内有实数根;
④在(-,+)内没有实数根.
其中正确的有________.(填序号)
[答案] ①②③
[解析] 设f(x)=x3+x2-2x-1,则f(-2)=-10,
f(-1)=10,
f(0)=-10,f(1)=-10,f(2)=70,
则f(x)在(-2,-1),(-1,0),(1,2)内均有零点,即①②③正确.
文档为doc格式