欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

高一数学《函数图象的平移》说课稿

时间:2022-06-03 17:02:31 其他范文 收藏本文 下载本文

下面小编给大家带来高一数学《函数图象的平移》说课稿,本文共11篇,希望能帮助到大家!

高一数学《函数图象的平移》说课稿

篇1:反比例函数及其图象

解:列表

x

-6

-5

-4

-3

1

2

3

4

5

6

-1

-1.2

-1.5

-2

6

3

2

1.5

1.2

1

1

1.2

1.5

2

-6

-3

-2

-1.5

-1.2

1

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.

3、观察图象,归纳、总结出反比例函数的性质

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

(1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

的讨论与此类似.

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

(2)函数 的图象,在每一个象限内,y随x的增大而减小;

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小.

同样可以推出 的图象的性质.

(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.

函数 的图象性质的讨论与次类似.

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的`数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

5、布置作业      习题13.8   1-4

教学设计示例2

篇2:反比例函数及其图象

一、素质教育目标

(一)知识教学点

1.使学生了解反比例函数的概念;

2.使学生能够根据问题中的条件确定反比例函数的解析式;

3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;

4.会用待定系数法确定反比例函数的解析式.

(二)能力训练点

1.培养学生的作图、观察、分析、总结的能力;

2.向学生渗透数形结合的教学思想方法.

(三)德育渗透点

1.向学生渗透数学来源于实践又反过来作用于实践的观点;

2.使学生体会事物是有规律地变化着的观点.

(四)美育渗透点

通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.

二、学法引导

教师采用类比法、观察法、练习法

学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号.

三、重点・难点・疑点及解决办法

1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.

2.教学难点 :画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.

3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).

4.解决办法:(1) 中隐含条件是 或 ;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.

四、教学步骤

(一)教学过程

提问:小学是否学过反比例关系?是如何叙述的?

由学生先考虑及讨论一下.

答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.

看下面的实例:(出示幻灯)

1. 当路程s一定时,时间t与速度v成反比例;

2.当矩形面积S一定时,长a与宽b成反比例;

它们分别可以写成 (s是常数), (S是常数)写在黑板上,用以得出反比例函数的概念:(板书)

一般地,函数 (k是常数, )叫做反比例函数.

即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?

通过这个问题,使学生进一步理解反比例函数的概念,只要满足 (k是常数, )就可以.因此可以说速度v是时间t的反比例函数,因为 (s是常量).对第2个实例也一样.

练习一:教材P129中1  口答.P130  1

根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?

答:图像和性质.

通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后

学生要研究其他函数,也可以按照这种方式来研究.

下面,我们就来看桓隼?猓海ǔ鍪净玫疲?/P>

例1  画出反比例函数 与 的图像.

提问:1.画函数图像的关键问题是什么?

答:合理、正确地选值列表.

2.在选值时,你认为要注意什么问题?

答:(1)由于函数图像的特点还不清楚,多选几个点较好;

(2)不能选 ,因为 时函数无意义;

(3)选整数较好计算和描点.

这个问题中最核心的一点是关于 的问题,提醒学生注意.

3.你能不能自己完成这道题呢?

学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:

注意:(1)一般地,反比例函数 的图像由两条曲线组成,叫做双曲线;

(2)这两条曲线不相交;

(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交.

关于注意(3)可问学生:为什么图像与x和y轴不相交?

通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.

再让学生观察黑板上的图,提问:

1.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

2.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

这两个问题由学生讨论总结之后回答,教师板书:

对于双曲线(1)当 :(1)当 时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当 时,双曲线的两分支位于二、四象限,y随x的增大而增大.

3.反比例函数的这一性质与正比例函数的性质有何异同?

通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.

练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上

上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)

例2已知y与 成反比例,并且当 时, ,求 时,y的值.

用提问的方式对此题加以分析:

(1)y与 成反比例是什么含义?

由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: .

(2)根据这个式子,能否求出当 时,y的值?

(3)要想求出y的值,必须先知道哪个量呢?

(4)怎样才能确定k的值?用什么条件?

答:用待定系数法,把 时 代入 ,求出k的值.

(5)你能否自己完成这道例题:

由一名同学板演,其他同学在练习本上完成.

例3   已知: , 与x成正比例, 与x成反比例,当 时, 时, ,求y与x的解析式.

分析:一定要先写出y与x的函数表达式 ,

要用x分别把 , 表示出来得 ,

要注意 不能写成k,∴

解:设 ,

.

由题意得

∴ .

(二)总结、扩展

教师提问,学生思考回答:

1.什么是反比例函数?

2.反比例函数的图像是什么样的?

3.反比例函数 的性质是什么?

4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.

五、布置作业

1.教材P130中4,5,6

2.选做:P130中B1,2

六、板书设计

篇3:反比例函数及其图象

引例:(1)例1: 例2: 例3:

(2)

1.反比例函数:

2.反比例函数的性质 探究活动

已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。 。

(1)求反比例函数的解析式;

(2)设点A的横坐标为m, 的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;

(3)当 的面积等于 时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。

解:(1)过点B作 轴于点H。

在Rt 中,

由勾股定理,得

又 ,

∴  点B(-3,-1)。

设反比例函数的解析式为

∵  点B在反比例函数的图像上,

∴  反比例函数的解析式为 。

(2)设直线AB的解析式为 。

由点A在第一象限,得 。

又由点A在函数 的图像上,可求得点A的纵坐标为 。

∵  点B(-3,-1),点 ,

∴    解关于 、 的方程组,得

∴  直线AB的解析式为 。

令  。

求得点D的横坐标为 。

过点A作 轴于点G

由已知,直线经过第一、二、三象限,

∴  ,即 。

由此得

∴  。

即  。

(3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。

证明如下:

由 ,

解得 。

经检验, 都是这个方程的根。

∴  不合题意,舍去。

∴  点A(1,3)。

设过A(1,3)、B(-3,-1)两点的抛物线的解析式为 。

∴    由此得

即  。

设抛物线与x轴两交点的横坐标为 。

则  。

即  。

整理,得  。

∴  方程 无实数根。

因此过A、B两点的抛物线在x轴上截得的线段长不能等于3。

篇4:反比例函数及其图象

教学目标 :

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

教学重点:

结合图象分析总结出反比例函数的性质;

教学难点 :描点画出反比例函数的图象

教学用具:直尺

教学方法:小组合作、探究式

教学过程 :

1、从实际引出反比例函数的概念

我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

即vt=S(S是常数);

当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(S是常数)

(S是常数)

一般地,函数 (k是常数, )叫做反比例函数.

如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

2、列表、描点画出反比例函数的图象

篇5:函数的图象

教学目标:

1、培养学生看图识图的能力.

2、在识图过程中,渗透数形结合的数学思想.

3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

4、激发学生学习数学的兴趣,培养学生的探索精神

教学重点:培养学生看图识图的能力

教学难点:渗透数形结合的数学思想

教学用具:计算机、投影机

教学方法:谈话法、分组讨论

教学过程:

1、阅读习题13.3的第四题

学生阅读后,老师可以提问学生,分别回答:

下图是北京春季某一天的

2、提出看图说图的重要性

随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

3、为学生提供相对丰富的素材,体会以图识性.

例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是 .如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

第 1 2 页

篇6:函数的图象

教学目标 :

1、培养学生看图识图的能力.

2、在识图过程中,渗透数形结合的数学思想.

3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

4、激发学生学习数学的兴趣,培养学生的探索精神

教学重点:培养学生看图识图的能力

教学难点 :渗透数形结合的数学思想

教学用具:计算机、投影机

教学方法:谈话法、分组讨论

教学过程 :

1、阅读习题13.3的第四题

学生阅读后,老师可以提问学生,分别回答:

下图是北京春季某一天的

2、提出看图说图的重要性

随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的`应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

3、为学生提供相对丰富的素材,体会以图识性.

例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是 .如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

例2、 如图,是各月气温的分配图

能从图中找出气温最低的月份,气温最高的月份.

并判断出该地所处的气温带.

分析:最高气温在7月,最低在2月.气温曲线的

下限也在 以上,即 ~ 之间,因此可判断出

该地位于亚热带.

(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.

例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.

参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.

以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业 提前下发,也可以在上课时,由老师进行通俗的解释.

右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.

(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线

(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.

(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.

(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.

4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.

5、作业 :从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.

篇7:反比例函数的图象与性质数学说课稿

反比例函数的图象与性质数学说课稿

一、 教材分析

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、 教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:

1、 掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。

2、 在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。

3、 通过学习培养学生积极参与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、 教学方法

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

五、学法指导

本堂课立足于学生的.“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

六、教学过程

(一) 复习引入——反函数解析式

练习1:写出下列各题的关系式:

(1) 正方形的周长C和它的一边的长a之间的关系

(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系

(3) 矩形的面积为10时,它的长x和宽y之间的关系

(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

例题1:已知变量y与x成反比例,且当x=2时,y=9

(1) 写出y与x之间的函数解析式

(2) 当x=3。5时,求y的值

(3) 当y=5时,求x的值

通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。

课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式:

(1)x=2,y=3 (2)x=,y=

通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。

(二)探究学习1——函数图象的画法

问题3:如何画出正比例函数的图象?

通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。

问题4:那反比例函数的图象应该怎样去画呢?

在教学过程中可以引导学生仿照正比例函数图象的的画法。

设想的教学设计是:

(1) 引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;

(2) 老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;

(3) 随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。

初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

(1) 在“列表”这一环节

在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

(2) 在“连线”这一环节

学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。

从而引导学生画出正确的函数图象。

(3) 图象与x轴或y轴相交

在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。

需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。

巩固练习:画出函数和的图象

通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。

(三) 探究学习2——函数图象性质

1、图象的分布情况

问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?

提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。

问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?

在这一环节中的设计:

(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;

(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;

(3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。

2、 图象的变化情况

问题7:正比例函数图象的变化情况是怎么样的呢?

提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。

问题8:那反比例函数的图象,是否也具有这样的性质呢?

在这一环节的教学设计是:

(1)回顾反比例函数和的图象,通过实际观察;

(2)根据解析式对x进行取值,比较x在取不同值时函数值的变化情况;

(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。

(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=—2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。

问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?

在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。

(四) 备用思考题

1、 反比例函数的图象在第一、三象限,求a的取值范围

2、(1) 当m为何值时,y是x的正比例函数

(2) 当m为何值时,y是x的反比例函数

篇8:《反比例函数的图象和性质》说课稿

《反比例函数的图象和性质》说课稿

一、教材分析 :

主要从地位与作用,教学目标,重点难点三方面进行阐述,

(一)地位与作用:

本节教材是在学生理解反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的,是本章学习的重点,为后面学习实际问题与反比例函数及画二次函数图象奠定基础。

(二)教学目标 :

根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:

知识目标 :学会用描点法作反比例函数的图象,能结合函数图象进行探索 . 理解并掌握反比例函数的性质。

能力目标 :培养学生的作图能力,观察 . 分析 . 归纳能力,渗透数形结合的数学思想方法,逐步形成解决问题的一些基本策略。

情感目标 :在动手实践 . 合作交流中,培养学生的团结协作精神,通过利用函数图象探索反比例函数的性质,让学生体验到数学活动中充满了探索与创造,培养了学生的创新意识。

(三)教学重点,难点:

因为通过本节学习使学生会画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质,所以确定 本节的重点为:反比例函数图象的画法及探究反比例函数的性质;

因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。据此确定 本节课的难点为:反比例函数图象是平滑双曲线的理解及对图象特征的分析.

华罗庚教授曾深刻指出:“数无形,少直观;形无数,难入微 . ”为了突出重点、突破难点。 我 让学生动手操作,积极参与并主动探索函数性质, 利用多媒体教学 帮助学生直观地理解反比例函数的性质

二、 教法学法分析

( 一 ) 教法分析

鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平, 为了充分调动学生学习的积极性,使学生主动愉快地学习,采用启发讲授、小组讨论、合作探究相结合的教学方式.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.

( 二 ) 学法分析

在教学过程中,学生掌握一种方法远比学会一个知识点重要的多。为使学生掌握科学的学习方法,养成良好的学习习惯,我根据课程标准的要求及本节的内容以及学情分析,在课堂教学中,我充分发挥学生在教学中的主体作用,让他们 运用 观察、操作、归纳、猜想和验证的方式进行学习,养成善于观察、乐于思考、勤于动手、敢于表达的学习习惯,挖掘学习潜能,培养自主学习和与人合作交流的能力。

三、教学程序设计:

(一)创设情境,引入新课

(二)类比联想,探究交流

( 三 ) 探索比较,发现规律

(四)运用新知,拓展训练

(五) 归纳总结,布置作业

四教具准备:坐标纸多媒体课件

五 、教学过程

活动一情景导入 激发兴趣

1,正比例函数 Y = 6倍 的图象是什么形状? 作图的步骤是什么?

2 、 猜测:反比例函数 的图象会是什么形状呢?我们可以用什么方法画这个反比例函数的图象?

通过问题一帮助学生回忆用描点法画函数图象 作函数图象的基本步骤:包括列表、描点、连线 ,激活学生原有的知识,为探究反比例函数图象的画法奠定基础。问题二的提出,给学生一个想象空间,激发学生参与课堂学习的热情。

活动二类比联想 探索交流

1, 活动一 : 尝试在坐标纸上画出反比例函数 Y = 和Y = - 的图象。

学生是首次接触到双曲线这种比较特殊函数图象, 我设计为y= 由师生共同完成。学生在完成时 可能会在下面几个环节中出错:

(1)在“列表”这一环节

在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里指导学生在列表时,自变量x的取值可以选取 容易计算且 绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续, 以便于描点和全面反映图象的特征。

(2)在描点这一环节

描点时,一般情况下所选的点越多则图象越精细。

(3)在“连线”这一环节

连线时,让学生根据已经描好的点先思考:图象有没有可能是直线。学生自主探究发现图象特点后,引导学生用平滑的曲线按照自变量从小到大的顺序连接各点,得到反比例函数的图象,

同时让学生思考:反比例函数的图象与两坐标轴会有交点吗? 学生在讨论后得出答案:由于K≠0.所以xy都不为0.永远都不会与xy轴产生交点。

2. 在纠正好学生可能犯的错误后让学生画出Y = - 的图象 。

(这里我的设计意图是:通过画反比例函数的图象使学生进一步了解用描点法画函数图象的基本步骤,为以后画二次函数图象奠定了基础,同时也培养了学生动手操作能力)

3.比较 Y = 和Y = - 的图象有什么共同特征它们之间有什么关系?

学生通过观察比较,总结出两个反比例 函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与和探究新知的目的。

4 多媒体展示学生作图中常见问题:

这个过程可以进一步纠正学生在画反比例函数图象的'错误。

5,巩固训练:画函数Y = 和Y = - 的图象

这个过程可以 让 学生进一步 掌握 画反比例函数图象的 基本 方法 和步骤 ,也为后面观察分析归纳出反比例函数图象的性质增加感性认识。

活动三探索比较 发现规律

以四人小组为单位做游戏:每人手中拿一种 自己坐标纸上的 函数的图象,观察函数 与 的图象以及 与 的图象,找一找它们之中谁和谁可以成为好朋友? 并说出你的理由。

学生讨论分类:

分类一: 观察与的图象特征

归纳总结1:当 时,双曲线的两支分别位于第一、三象限,在每个象限内 随 值的增大而减小

分类二: 观察与的图象特征

归纳总结2:当 时,双曲线的两支分别位于第二、四象限,在每个象限内 随 值的增大而增大

分类三: 观察与的图象特征

归纳总结3 :在同一直角坐标系内两个反比例函数图象 关于 轴对称,也关于 轴对称, 即 具有对称关系的两个反比例函数的 值互为相反数。

通过游戏能很好的激发学生学习的兴趣, 让学生更好的投入到课堂学习中从而掌握知识

突破难点。同时 增强学生之间的合作交流,共同解决问题的 能力,学生通过观察图形探索发现规律,很好的渗透了数形结合的思想,有利于加深学生对性质的理解和掌握。 老师再利用多媒体展示出反比例函数的图象和性质,使每个学生的条理和认识更加清晰。

性质:(1)反比例函数Y =(K 为常数,K≠0)的图象是双曲线。

(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y的值随x值的增大而减小.

(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y的值随x值的增大而增大.

(4) 当互为相反数时 , 对应的反比例函数图象既关于轴对称, 也关于轴对称

(四) 运用新知,拓展训练

根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”在练习时给出有梯度的练习,以满足不同层次学生学习的需要。 也能很好的体现分层教学的要求。

1.已知反比例函数y =(K≠0) 的图象如图所示,则ķ 0,

在图象的每一支上,Y值随点¯x的增大而 。

2.下列图象中,是反比例函数的图象的是

3,函数的图象在第________象限,在每一象限内,y随点¯x的增大而_________。

4,函数 的图象在第________象限,在每一象限内,y随点¯x的增大而______。

5,函数,当x> 0时,图象在第____象限,y随点¯x的增大而_________。

六、拓展练习:

1、已知反比例函数

(1) 若函数的图象位于第一三象限,则k______;

(2) 若在每一象限内,y随点¯x增大而增大,则k______。

2p已知 氏 “0,函数 Y 1 = KX,Y = 2 在同一坐标系中的图象大致是()

拓展练习是为了让学生灵活运用反比例函数性质解决问题,让学生在完成习题时都能紧扣性质进行分析,达到理解并掌握性质的目的。

( 五 ),归纳总结,布置作业

1,对同学说你有什么收获1),知识2),思想方法

2,对老师说你有什么困惑

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。 从而体验到学习数学的快乐。

作业巩固:习题17.1:第3和第8题。

七、板书设计

八、教学设计思路

本节课老师首先引导学生回顾用描点法画函数图象的方法,激活学生原有的知识,然后引导学生画反比例函数图,并让学生利用游戏来观察图象,探究分析,得出反比例函数的基本性质,让学生自我构建新知识。在整个活动中。学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去观察、感受、讨论、发现、探究、总结得到的。实现了 学习中让 学生自己动手、主动探索、合作交流 的目的。

以上这是我对本节课的理解,希望和位评委,老师批评指正,谢谢

篇9:《函数的图象》数学教学方案设计

《函数的图象》数学教学方案设计

教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程设计

(一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

5.请在坐标平面内画出A点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

具体做法是

第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。

函数式y=2x+1

自变量x

-2

-1

1

2

函数值y

-3

-1

1

3

5

(这种用表格表示函数关系的方法叫做列表法)

第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

第三步 连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13-24

例1 在同一直角坐标系中画出下列函数式的图象:

(1)y=-3x;(2)y=-3x+2; (3)y=-3x-3

分析:按照列表、描点、连线三步操作。

解:

函数式(1)y=-3x

自变量x

-2

-1

1

2

函数y

6

3

-3

-6

函数(2)y=-3x+2

自变量x

-2

-1

1

2

函数y

8

5

2

-1

-4

函数(3)y=-3x-3

自变量x

-2

-1

1

2

函数y

3

-3

-6

-9

它们的图象分别是图13-25中的(1)(2)(3)。

例2 某化工厂1月到12月生产某种产品的统计资料如下:

X/月份

1

2

3

4

5

6

7

8

9

10

11

12

Y/产品吨数

2

3

3

4

5

6

6

6

5

4

5

7

(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同一直角坐标系中。

(2)按照月份由小到大的顺序,把每两个点用线段连接起来。

(3)解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。

(4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

解:(1),(2)见图13-26

(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。

产量下降:8月到9月,9月到10月。

产量不升不降:2月到3月;6月到7月,7月到8月。

(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5 ,所以4月15日的产量约为4.5吨。

(三)课堂练习

已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。

(四)小结

到现在,我们已经学过了表示函数关系的方法有三种:

1.解析式法——用数学式子表示函数的关系。

2.列表法——通过列表给出函数y与自变量x的对应关系。

3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。

这三种表示函数的方法各有优缺点。

1.用解析法表示函数关系

优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。

缺点:在求对应值时,有时要做较复杂的计算。

2.用列表表示函数关系

优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。

缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。

3.用图象法表示函数关系

优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。

缺点:从自变量的值常常难以找到对应的函数的准确值。

函数的.三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。

(五)作业

1.在图13-27中,不能表示函数关系的图形有

(A)(a),(b),(c) (B)(b),(c),(d) (C)(b),(c),(e) (D)(b),(d),(e)

2.函数y=的图象是图13-28中的( )

3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2).

(1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

(2) 列表、描点、连线画出此函数的图象

4.(1)画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

(2)判断下列各有序实数对是不是函数。Y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上:

(-2,2 ), (- ,2 ), (-1,3), ( ,1 )

5.画出下列函数的图象:

(1)y=4x-1; (2)y=4x+1

6.图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:

(1)8时,12时,20时的气温各是多少;

(2)最高气温与最低气温各是多少;

(3)什么时间气温最高,什么时间气温最低。

7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

X

-2

-1.5

-1

-0.5

0.5

1

1.5

2

y

8.画出函数y= 图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

X

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

y

作业的答案或提示

1. 选(C),因为对应于x的一个值的y值不是唯一的。

2. 选(D)当x<0时, y=“=” x=“”>0时, =x,所以y= = =1

3.

(1)y=x(6-x)其中0

(2)

X

1

2

3

4

5

6

y

5

8

9

8

5

4.

Y=- x+2

x

-4

-3

-2

-1

1

2

3

4

y

3

3

2

2

2

1

1

1

经过检验,点(- ,2 )及点( ,1 )在所画的函数图象上。

5.

Y=4x-1

X

-2

-1

1

2

y

-9

-5

-1

3

7

Y=4x+1

x

-2

-1

1

2

y

-7

-3

1

5

9

6.(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。

7.

Y=x2

X

-2

-1.5

-1

-0.5

0.5

1

1.5

2

y

4

2.25

1

0.25

0.25

1

2.25

4

8.

Y=

X

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

y

-1

-

-

-2

-3

-6

6

3

2

1

课堂教学设计说明

1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

5.作业中的第1-3题,对训练函数图象很有帮助。

第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。

第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

篇10:函数的图象数学教学设计

函数的图象数学教学设计

一、教学目的

1.使学生进一步理解自变量的取值范围和函数值的意义.

2.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:1.理解与认识函数图象的意义.

2.培养学生的看图、识图能力.

难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

三、教学过程

复习提问

1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

2.结合函数y=x的图象,说明什么是函数的图象?

3.说出下列各点所在象限或坐标轴:

新课

1.画函数图象的方法是描点法.其步骤:

(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

2.讲解画函数图象的'三个步骤和例.画出函数y=x+0.5的图象.

小结

本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

练习:①选用课本练习(前一节已作:列表、描点,本节要求连线)

②补充题:画出函数y=5x-2的图象.

作业:选用课本习题.

四、教学注意问题

1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

2.注意充分调动学生自己动手画图的积极性.

3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

篇11:函数的图象(一)

函数的图象(一)

函数的图象(一)

一、教学目的

1.使学生初步认识函数的图象.

2.使学生了解函数的列表表示法.

3.使学生了解函数的图象表示法.

4.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:介绍函数图象的初步知识.

难点:对于函数图象的认识.

三、教学过程

复习提问

1.一种豆子每千克售2元,写出买豆子的总金额y(元)与所买豆子的数量x(千克)之间的函数关系.(答:y=2x.)

2.在第一题的函数式中,谁是自变量?谁是函数?说出自变量的取值范围.(答:x是自变量,y是x的函数,x可取所有非负实数.)

3.由函数y=2x,填出下表:

(答:下一行:0,1,2,3,4,5,6.)

4.平面直角坐标系是怎样组成的?(答:在平面内画两条互相垂直的数轴,组成平面直角坐标系.)

5.什么是点的横坐标、纵坐标、坐标?(答:平面直角坐标系中一个点A在x轴上的坐标叫横坐标a,点A在y轴上的坐标叫纵坐标b,把a,b合起来,且a在前、b在后:(a,b)就是点A的坐标.)

6.点A的坐标如(5,4),又可以称作什么?(答:一对有序实数.)

7.坐标平面内的点与有序实数对的关系是什么?(答:一一对应关系.)

新课

1.函数的表示法――列表法.

通过上述1~3个问题的提问及学生的回答,由y=2x及表格,按照函数定义,对于x的每一个值,y都有唯一的值和它对应.这就告诉我们,上面的表格本身也表示了y与x之间的函数关系.于是我们把这种通过列表表示函数的方法叫列表法.列表法的优点:容易由自变量的值求出对应的函数的值.列表法的缺点:不能把一个函数在自变量取值范围内的所有值都列出来,所以有局部性;或所求的函数值是近似值.

2.通过上述复习提问第3~7题及学生的回答,我们把第3题的表中的x,y值对应地写出来,就得出了一列有序实数对:(0,0),(0.5,1),(1,2),(1.5,3),….这里强调学生要进一步明确“有序”的意义,(1.5,3),(3,1.5)是不相同的有序实数对.再联系到平面内的点与有序实数对的一一对应关系,于是我们借助平面直角坐标系,就可以把这些有序实数对转化为坐标平面内的点.这样就可以用平面内的图形来表示函数关系.

3.从最简单的函数y=x入手来分析及画出其图象.

(1)让学生完成x与y的对应值表.

(2)在有坐标格的小黑板上,把表中给出的'7个有序实数对作为点的坐标,师生一道描出这7个点.

(3)分析函数y=x的特点:自变量与函数的值相等.它的任意一对对应值都可以表示成(m,m)的形式(m可取全体实数).借助坐标平面可知,表示(m,m)的点就是到x轴的距离与到y轴的距离相等的点.我们把x轴与y轴所划分的坐标平面的四个角叫象限角,依次有第一象限角,第二象限角,第三象限角,第四象限角.由平面几何知识可知,到一个角的两边的距离相等的点,它的轨迹是这个角的平分线.换一句话说,到这个角两边距离相等的点,都在这个角的平分线上;反之,在这个角的平分线上的所有的点,到这个角的两边距离都相等.于是函数y=x的整个图象就可以画出了.它是第一象限角和第三象限角的两个角的平分线,是一条直线.

4.对于函数图象要辩证地双向分析:图象上每一个点的坐标,都是这个函数的一对对应值;反之,每个坐标是这个函数的一对有序的对应值的点,都在这个函数的图象上.

5.函数的表示法――图象法.我们用图象来表示一个函数的方法,叫图象法.函数的图象法优点:形象、直观.缺点:求得的函数值是近似的.

小结

1.画函数图象的方法步骤:

(1)根据函数的解析式列出函数对应值表.

(2)用这些对应值作为点的坐标,在坐标平面内描点.

(3)把这些点用平滑曲线连结起来,可得函数图象.

2.函数的三种表示法:(1)解析法,(2)列表法,(3)图象法.

练习;选用课本练习(只要求列表、描点.)

补充例题

1.解答课本本章题图中的两个问题.

2.画出函数y=3x的图象.(只要求列表、描点.)

作业:选用课本习题(只填表、描点,不要求连线.)

四、教学注意问题

1.注意双向思维的渗透与训练.比如,由函数的关系式可得函数图象;反之,由函数的图象也可表示函数关系,等等.

2.注意渗透转化思想方法.比如,把有序实数对转化为坐标平面内的点等等.

3.注意精微,要善于区分邻近概念,比如“实数对”与“有序实数对”虽两字之差,但意义不同.

反比例函数的图象和性质说课稿

函数y=Asin(ωx+φ)图象优秀说课稿

五年级数学“平移”说课稿

四年级数学说课稿 :《平移》

平移说课稿

图形的平移数学说课稿

高一物理匀速直线运动的图象教案设计

高一数学说课稿

四年级数学《平移与平行》说课稿

反比例函数的图象与性质教案教学设计

《高一数学《函数图象的平移》说课稿(整理11篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档