下面是小编收集整理的高中数学函数说课稿,本文共10篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:高中数学函数说课稿
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时――指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析
1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析 基于对教材的理解和分析,我制定了以下的教学目标
1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析
1.教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。
2.教学思想: 贯彻引导发现式教学原则,在教学中既注重提供知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
四 教学过程分析: 根据新课标的理念,我把整个的教学过程分为五个阶段,即:创设情境,形成概念发现问题,探求新知 强化训练,巩固双基小结归纳,拓展深化 布置作业,提高升华
1、创设情境,形成概念
在本节课的开始,我设计了一个游戏情境,学生分组,通过动手折纸,观察对折的次数与所得的层数之间的关系,得出对折次数x与所得层数y的关系式。此时教师给出指数函数的定义,即形如 (a>0且a≠1) 的函数称为指数函数,定义域为R.教师将引导学生探究为什么定义中规定a>0且a≠1呢?对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和性质埋下了伏笔。在给出学生定义之后可能会有同学感觉定义的形式十分简单,此时教师给出问题,打破学生对定义的轻视,你能否判断下列函数哪些是指数函数吗?(1)(2) (3)(4)在学生判断的过程中教师给予适时指导,教师提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,进而得出只有(1)是指数函数。通过这一环节使学生对定义有了更进一步的认识。此时教师把问题引向深入,我们要研究一个函数,光有定义是远远不够的,还要对一个函数的图像和性质进行进一步的研究。教师带领学生进入下一个环节――发现问题,探求新知。
2、发现问题,探求新知
指数函数是学生在学习了函数基本概念和性质以后接触到的第一个具体函数,所以在这部分的安排上我更注重学生思维习惯的养成,即应从哪些方面,那些角度去探索一个具体函数,所以我设置了以下三个问题,(1)怎样得到指数函数的图像?(2)指数函数图像的特点(3)通过图像,你能发现指数函数的那些性质?这也是本节课的重点环节。(1)函数图像学生分成四个小组,分别完成 通过前面知识的学习,学生可以较快的通过描点法将图像画出,最后教师在多媒体上将这四个图像给予展示,这样做既避免了学生在画图过程中占用过多时间又让学生体会到了合作交流的乐趣。()此时教师组织学生讨论,观察图像的特点,得出a>1和0
(2)根据函数图像研究函数性质
我将给出表格,引导学生根据图像填写。让学生充分感受以图像为基础研究函数的性质这一重要的数学思想。表格的完成将会使学生体会到很大的成功感,也将学生思考的热情带入高峰,通过前面几个环节,学生已基本掌握了本节课指数函数的相关知识,此时我将带领学生体验运用新知识去解决问题的乐趣,进入本节课的下一个环节――当堂训练,共同提高。
4、当堂训练,巩固双基
例1:比较下列各题中两值的大小
(1) 1.72.5 , 173; (2) 0.8-01 , 0.8-02;―― 同底指数幂比较大小
同底数幂比大小,构造指数函数,利用函数单调性
(3)(0.3)-0.3,(0.2)-0.3 ――底不同但同指数
不同底数幂比大小,利用图像与底之间的关系,结合函数图像进行比较
(4)1.70.3,0.93.1 ――底不同,指数也不同
利用函数图像或中间变量进行比较
例2:已知下列不等式, 比较m和n的大小 :
(l) (2) (3) (且)
――本例题诣在对知识的逆用,建立学生的函数思想及分类讨论思想。
5、小结归纳,拓展深化: 在小结归纳中我将从学生的知识,方法和体验入手,带领学生从以下三个方面进行小结:1给出函数定2作出函数图象 3研究函数性质 4解决简单问题
6、布置作业,提高升华
A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
答案:15天的合同可以签,而30 天的合同不能签。
目的在于让学生体会指数的增长速度之快,同时让学生感受指数的用途,激发学生的兴趣。
教学反思
以上五个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,使学生对知识的理解逐步深入。而最终的思考题又将激发学生兴趣,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。
篇2:高中数学函数说课稿
高中数学函数说课稿
一、说教材
1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
四、说学法
我认为学生将实际问题转化成函数的能力是有限的`,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。
好学教育:
因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
篇3:高中数学函数学习方法
高中函数的4种必备技巧
一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。
而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。
很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
二、牢记几种基本初等函数及其相关性质、图象、变换。
中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。
还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。
翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。
四、多做题,多向老师请教,多总结。
多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!
4种高中函数整理方法
一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。
而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。
很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
二、牢记几种基本初等函数及其相关性质、图象、变换。
中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。
还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。
翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。
四、多做题,多向老师请教,多总结。
多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!
篇4:高中数学函数知识点
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 顶点坐标 对 称 轴
y=ax^2 (0,0) x=0
y=a(x-h)^2 (h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
篇5:高中数学函数知识点
指数函数
指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
篇6:高中数学函数知识点
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
3. 奇偶函数运算
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
定义域
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
值域
名称定义
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
篇7:高中数学函数知识点
对数函数
对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数
指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
篇8:高中数学函数教学
教学目标
1、通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。
2、使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。
教学难点
幂函数图像和性质的发现过程
教学重点
幂函数的性质及运用
教学过程
一、教学导入
数学和日常生活是密不可分的,观察下列问题中的函数个有什么共同特征?
(1)如果李斯在超市买了每支1元的水笔n(支),那么他应支付p=n元。这里p是n的函数。
(2)如果正方形的边长a,那么正方形的面积为S=a2 ,这里S是a的函数。
(3)如果立方体的边长a,那么立方体的体积为V=a3 ,这里V是a的函数。
(4)如果正方形的面积为S,那么这个正方形的边长为a=S ,这里a是S的函数。
(5)如果壮壮t(s)内骑车行进了1(km),那么他骑车的平均速度为v=t-1 ( ),这里v是t的函数。
由学生讨论,总结,即可得出:p=n,S=a2 ,V=a3 ,a=S ,v=t-1 都是自变量的若干次幂的形式。
这节课,我们将来共同学习另一种函数——幂函数(老师板书课题)
二、讲授新课
1、定义:一般地,函数y=xa 叫做幂函数,其中x是自变量,a是实常数。
判断一个函数是否是幂函数?注意:①是否为幂的形式;②自变量是幂的底数,指数可以是任意实数。
例1、(1)y=xa 与y=ax 一样吗?
(2)在函数y=x+2,y=1,y=x2+x,y=2x2+3,y= 中,哪几个函数是幂函数?
(3)已知幂函数y=f(x)的图像过点(2, ),试求出这个函数的解析式。
三、课外作业
P49习题2—5 A组 1、2
教学后记
本节课主要从五个具体幂函数中认识幂函数的一些性质,画五个幂函数的图像并由图像概括其性质是教学中可能遇到的困难,所以要注意引导学生亲自动手画图像、分组讨论等形式,让学生自己去探究,把主动权交给学生。
篇9:高中数学函数方法
我们做函数题目的时候,要把握输出函数解析式的方法,这点需要我们细细的去总结。课后一定要记得去看,反复练习,不然过一阵子就会忘记,一定要经常去翻看课本教材。
做函数题目要有信心,对自己要相信的态度,不要被难题吓倒,给自己积极的心理暗示,对做题也会有帮助。
函数未知数的求法会比较难求,所以要总结自己的做题顺序,寻求老师的帮助会更好。课后一定要记得去看,反复练习,不然过一阵子就会忘记,一定要经常去翻看课本教材。
2函数学习方法
高中数学函数方法:理解函数三要素:定义域,对应法则,值域。题目类型:求定义域,值域,相等函数概念.值域求法:换元法,单调性法,分离系数法,数形结合法,配方法等。求函数解析式:a待定系数法;b配凑法;c换元法;d代入法;e构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。f赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。g递推法。
函数的性质和图像:性质:单调性,奇偶性,周期性。函数的性质和图像要相互结合起来思考,把每一个条件都要分析处理,从中寻找解题思路。
导数与函数的单调性:复杂的函数要求函数的单调性,可以用导数的方法,可以使问题大大简化。函数模型与综合应用:对于一些常见的问题,可以构建我们熟悉的函数模型进行求解。注意函数的定义域问题。
3函数学习方法
首先就是熟悉坐标系:在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。
理解函数概念:理解自变量和应变量的概念进而理解函数的概念,函数的概念理解了,理解了函数的概念才可以进行函数题的计算。
学习简单的函数:学习简单的函数,完全掌握简单的函数,一次函数和二次函数。将一次函数和一元一次方程对应,将二次函数和一元二次方程对应,学会求点求数值。学会表示点:另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。
读懂函数图像:根据函数的图像能想够读懂函数图像上的点的意义和函数图像的意义。在实际的生活中能够看懂图像,看懂图像的意义。学习简单的函数建立:在学习计算的过程中,试着可以将遇到的问题转化为我们的函数问题,培养动态思维能力。
4函数学习方法
函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。
函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。
篇10:函数说课稿
一、说教材
1、地位与重要性
“反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。
2、教学目标
(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;
(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;
(3)培养学生发现问题、观察问题、解决问题的能力;
(4)使学生树立对立统一的辩证思维观点。
3、教学重难点
重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。
难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。
二、说教法
根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。
引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
三、说学法
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
四、说过程
在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。
一、新课导入
首先,在导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?
首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。
这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。
二、新课讲授
在导入的基础上,给出反函数的具体概念。
给出概念后,必须防止学生对于反函数f—1(y)形式的误解(以为是1/f(x))。此外,还要学生理解:最终的表达形式写为y=f—1(x)是顺应习惯,并且也为后面的图象研究提供方便,y实际上是原函数中的x,x是原函数中的y。对于这一问题可以引导学生从图象观察得出。
进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?
引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。
这时,给出电脑动画,指明反函数与原函数的关系。澄清学生对于概念的认识,抓住问题的关键。
但是,具体怎样求一个函数的反函数呢?
这些问题,必须通过实例解决,于是进入例题解答过程。
例1、求下列函数的反函数。
(1)y=3x—1(x∈R);(2)y=x3+1;
(3)y=(2x+3)/(x—1)(x∈R且x≠1)
通过例1,要使学生明白具体求反函数的过程。以达到突出重点、突破难点的目的。
启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。引导学生找出关键通过解关于x的方程,将x用y表达,以得到反函数的表达式。这个表达式中的x、y表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x、y得到我们习惯使用的函数表达式。再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。
教师板书第(1)小题,学生完成后两题。
此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x的方程,求出反函数的解析式)——→互换(求出所给函数的值域并把它改换成反函数的定义域)——→改写(将函数写成y=f—1(x)的形式)。
教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。在教师创设的问题情境中,学生的认识达到了第一次平衡。
“反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。这时,出示第二道例题,打破平衡,激起学生的疑难。
例2、(1)y=x2(x∈R)的反函数
(2)y=x2(x≥0)的反函数是
(3)y=x2(x<0)的反函数是
相当一部分同学会按部就班求出第(1)小题的“反函数”y=(x∈R)。这对不对呢?出示电脑动画,引导学生观察图象,从函数的概念出发,必须存在x→y的单值对应,但反过来呢?y→x存不存在单值对应呢?适当的引导提问,使学生抓住了问题的关键:在原函数的定义域内必须存在y→x的单值对应,这是反函数存在的前提。认清这一问题后,引导学生进一步分析,y=x2(x∈R)不存在反函数,在定义域的局部存不存在反函数呢?让学生借助图形发现答案,并且进一步得出y=x2(x≥0),y=x2(x<0)两个函数的反函数。这样,就突破了主要难点,澄清了概念,并为以后反正弦函数的教学做好理论准备。
这样设计的好处是:(1)通过函数图像来研究问题,直观形象,符合学生的认识水平,并且为后续的互为反函数的函数图像关系问题做好铺垫。(2)对于反函数的存在性问题,不能回避,必须使学生理解其内在含义,由具体的二次函数结合图像解决这一问题,可以澄清的学生的疑问,达到教学目标。$_:7au%X
此时,趁学生对于概念有了一个比较清晰的认识,出示幻灯,从函数概念、反函数的存在性、反函数的求法三方面进行简单的归纳,突出重点,突破难点。
三、终结阶段Z7
(一)课堂练习
出示电脑幻灯,让学生完成以下练习:
(1)函数y=2|x|在下列哪个定义区间内不存在反函数?()
(A)[2,4];(B)[—4,4](C)(0,+∞](D)(—∞,0]
(2)求反函数:y=x/(2x+5),(x∈R且x≠—5/3)
(3)已知y=,x∈[0,5/2],求出它的反函数,并指明定义域。
第一道题是概念题,使学生对于反函数的概念有更清晰的认识,使学生对于反函数的存在条件认识更深刻。第二道题使学生熟悉反函数的求法,突出重点。第三道题使学生加深对于概念的理解,弄清反函数与原函数的内在关系。
(二)小结归纳
通过对反函数概念和性质的小结,使学生理清这节课的重难点,并使终结阶段的教学更为完整,达到本堂课的教学目标。
让学生做课本P65习题六2、3、5,通过作业反馈学生掌握知识的效果,以利课后解决学生尚有疑难的地方。
布置一道发散性的练习(已知函数y=f(x),(x∈A)是增函数,问:反函数y=f—1(x)单调性如何?图象中如何反映?),进一步深化教学。
总之,在整个教学过程中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。培养了学生的观察分析能力和思维的全面性。具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。
文档为doc格式