欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

《正切函数的定义、图像与性质》说课稿

时间:2022-09-14 08:14:43 其他范文 收藏本文 下载本文

以下是小编精心整理的《正切函数的定义、图像与性质》说课稿,本文共16篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

《正切函数的定义、图像与性质》说课稿

篇1:《正切函数的定义、图像与性质》说课稿

一、教材分析(说教材)

1.教材所处的地位和作用

本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.

2.教学目标

知识与技能:(1)能借助单位圆理解任意角的正切函数的定义.(2)能画出y=tanx的图像.(3)掌握正切线的基本性质.(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.

过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.

情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神. 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的.兴趣.

3.重点、难点以及确定的依据和处理的方法

重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.

难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.

二、学情分析(说学法)

学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.

三、教学策略(说教法)

(一)教学手段

一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.

(二)教学方法及其理论依据

如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.

四、教学流程

(一)复习回顾:正弦函数和余弦函数;

利用单位圆中的正弦线作出正弦函数的图像.

(二)自主探究:

1.正切函数的定义

请学生课前自主学习课本35页7.1的内容,明确以下几个问题:

(1)正切函数的定义及定义域。

(2)正切函数值在每个象限的符号。

(3)什么是正切线?怎样作?

(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?

分组讨论后解答这几个问题。

通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.

2.正切函数的图像

让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.

3.正切函数的性质

通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.

(三)例题展示

篇2:《正切函数的定义、图像与性质》说课稿

设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.

例2 利用正切函数图像求满足条件的角的范围.

设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.

(四)课堂小结:学生自己先总结然后老师补充.

(五)思考问题:

1.正切函数是整个定义域上的增函数吗?为什么?

2.正切函数会不会在某一区间内是减函数?为什么?

五、作业布置

完成相应的课后作业.

六、设计说明

1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.

2.时间分配:(一) 五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟

(三)五分钟(四)一分钟(五)一分钟

篇3:《正切函数的定义、图像与性质》说课稿

一、教材分析(说教材)

1.教材所处的地位和作用

本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.

2.教学目标

知识与技能:

(1)能借助单位圆理解任意角的正切函数的定义.

(2)能画出y=tanx的图像.

(3)掌握正切线的基本性质.

(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.

过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.

情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神. 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣.

3.重点、难点以及确定的依据和处理的方法

重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.

难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.

二、学情分析(说学法)

学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的.研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.

三、教学策略(说教法)

(一)教学手段

一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.

(二)教学方法及其理论依据

如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.

四、教学流程

(一)复习回顾:正弦函数和余弦函数;

利用单位圆中的正弦线作出正弦函数的图像.

(二)自主探究:

1.正切函数的定义

请学生课前自主学习课本35页7.1的内容,明确以下几个问题:

(1)正切函数的定义及定义域。

(2)正切函数值在每个象限的符号。

(3)什么是正切线?怎样作?

(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?

分组讨论后解答这几个问题。

通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.

2.正切函数的图像

让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.

3.正切函数的性质

通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.

(三)例题展示

例1 求函数 《正切函数的定义、图像与性质》说课稿 的定义域.

设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.

例2 利用正切函数图像求满足条件的角的范围.

设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.

(四)课堂小结:学生自己先总结然后老师补充.

(五)思考问题:

1.正切函数是整个定义域上的增函数吗?为什么?

2.正切函数会不会在某一区间内是减函数?为什么?

五、作业布置

完成相应的课后作业.

六、设计说明

1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.

2.时间分配:(一) 五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟

(三)五分钟(四)一分钟(五)一分钟

篇4:《正切函数的性质与图像》高一数学说课稿

各位领导 教师同仁:

我说课的内容是正切函数的性质和图像。

教材理解分析

《1,4.3 正切函数的.性质与图像》是人教社A版必修4第一章第4节的第3小节的内容。是前面系统的学习了正弦与余弦函数的概念,图像及其性质以后滴内容

学习目标

1、掌握正切函数的性质及其应用

2、理解并掌握作正切函数图象的方法;

3、体会类比、换元、数形结合等思想方法。

学情分析

由于我们文科平行班基础不太好加之学习函数的图像及性质又是一个难点,自主学习必然会出现困难。加之教学时间紧,任务重,前面地学习也不是很好。

根据教材结构和学情我对具体地教学过程和设计作如下说明:

在学法上大胆采用高效课堂模式,让学生探究,大胆去掉非主线知识内容,内容程序尽量简洁明了,一课一得,便于学生掌握。教学过程共有这样几个方面

一、复习引入

(1)画出下列各角的正切线

(2)复习相关诱导公式

二、探究新知

探究一 正切函数的性质

探究二 正切函数的图像

三、新知运用

例1 求函数的定义域、周期和单调区间.

四、课堂练习

1、求函数y=tan3x的定义域,值域,单调增区间。

2、 观察正切曲线,写出满足下列条件x的范围:

(1) ; (2) ; (3)

五.小结与课后作业

篇5:《正切函数的图像与性质》评课稿

《正切函数的图像与性质》评课稿

《正切函数的图像与性质》是高一的一节概念课,在学习了正弦函数和余弦函数的图形与性质以后,再学习正切函数的图像与性质,教学的重点除了要让学生掌握正切函数的图像性质,更要让学生掌握研究函数的一般方法,也就是在课堂教学中学生对于“方法”的掌握和体验很关键。这次,听了刘卫华老师的《正切函数的图像与性质》一课,给我的启发和收获很大。

首先,虽然现在的数学课堂教学过程中可以利用的教学辅助技术和工具很多,而且,刘老师也确实恰到好处地在课堂教学过程中使用了PPT和几何画板,这对于更精确、形象而又直观地研究函数图像有很大的帮助。然而,让我很敬佩的是,刘老师同时也没有因此而放弃我们传统的尺规作图的教学,她通过自己的作图带领学生经历了一次很好的函数性质研究过程。从而也体现了她良好的数学业务功底以及对数学学科知识的很高认知水平。

此外,刘老师教学语言的规范性,教学过程中推理的严密性也非常值得我学习。她的课堂教学语言非常简练,几乎没有什么多余的废话。对学生的'问题总是能非常简洁而又一针见血地指出。这对于培养学生严密的思维以及良好的数学语言表达能力是非常重要的。让我印象很深的是,在研究正切函数奇偶性的时候,当学生完成了奇函数的证明后,刘老师能够继续指出,让学生思考有没有可能是一个偶函数?从而充分体现了教师在教学过程中推理演绎过程的严密性。在这里,稍微有点遗憾的是,有学生提出是奇函数了就不会是偶函数时,教师可能因为没有听到的原因,没有针对这个问题把学生的这个错误纠正。

第三、教学过程中对于一些通性通法的教学使得学生能够在类比思想的引导下,基本自主地完成函数图像和性质的研究。在整堂课的教学过程中,其实类比的思想方法是始终贯穿其中的。教师一开始就让学生类比正弦函数的定义来得到正切函数的定义。虽然在类比过程中,正切函数的定义得出有点快,但是整个的设计指导思想是对的。因为,数学教学中,最重要的是数学思想和一些研究问题的方法的学习,这才是对学生今后的继续学习最有用的。如果说稍微有些遗憾的地方,就是在课的最后小结部分显得有些仓促和慌乱,没有能很好的利用课堂小结这个环节将整堂课所涉及到的那么多研究的方法进行总结。

篇6:正切函数的性质

8、对称性:无轴对称:无对称轴中心对称:关于点(kπ/2+π/2,0)对称(k∈Z)。

9、奇偶性:由tan(-x)=-tan(x),知正切函数是奇函数,它的图象关于原点呈中心对称。

10、图像(如图所示)实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π(n∈Z)都是它的对称中心。

在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的'和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。

法兰西斯·韦达(Fran?oisViète)曾在他对三角法研究的第一本著作《应用于三角形的数学法则》中提出正切定理。现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。不过在没有计算机的辅助求解三角形时,这定理可比余弦定理更容易利用对数来运算投影等问题。

正切定理:(a+b)/(a-b)=tan((α+β)/2)/tan((α-β)/2)

tanA·tanB·tan(A+B)+tanA+tanB-tan(A+B)=0

高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

tanA·tanB=1

篇7:二次函数图像性质总结

二次函数简介

①y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称。

②y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称。

③y=ax^2+bx+c与y=-ax^2-bx+c-b2/2a关于顶点对称。

④y=ax^2+bx+c与y=-ax^2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

篇8:正比例函数的图像和性质

正比例函数图像性质

正比例函数在线性规划问题中体现的力量也是无穷的。

比如斜率问题就取决于k值,当k越大,则该函数图像与x轴的夹角越大,反之亦然。

还有,y=kx是y=k/x的图像的对称轴。

1.单调性

当k>0时,图像经过第一、三象限,从左往右上升,y随x的`增大而增大(单调递增),为增函数;

当k<0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。

2.对称性

对称点:关于原点成中心对称。

对称轴:自身所在直线;自身所在直线的垂直平分线。

正比例函数图像

篇9:二次函数的性质与图像教案

一 学习目标

1、 掌握二次函数的图象及性质;

2、 会用二次函数的图象与性质解决问题;

学习重点:二次函数的性质;

篇10:二次函数的性质与图像教案

二 知识点回顾:

函数 的性质

函数函数

图象a>0a<0

性质

三 典型例题:

例 1:已知 是二次函数,求m的值

例 2:(1)已知函数 在区间 上为增函数,求a的范围;

(2)知函数 的单调区间是 ,求a;

例 3:求二次函数 在区间[0,3]上的最大值和最小值;

变式:(1)已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

(2)已知 在区间[0,1]内有最大值-5,求a。

(3)已知 ,a>0,求 的最值。

四、 限时训练:

1 、如果函数 在区间 上是增函数,那么实数a的取值

范围为 B

A 、a≤-2 B、a≥-2 C、a≤-6 D、B、a≥-6

2 、函数 的定义域为[0,m],值域为[ ,-4],则m的取值范围是

A、 B、 C、 D、

3 、定义域为R的'二次函数 ,其对称轴为y轴,且在 上为减函数,则下列不等式成立的是

A、 B、

C、 D、

4 、已知函数 在[0,m]上有最大值3,最小值2,则m的取值范围是

A、 B、 C、 D、

5、 函数 ,当 时是减函数,当 时是增函数,则

f(2)=

6、 已知函数 ,有下列命题:

① 为偶函数 ② 的图像与y轴交点的纵坐标为3

③ 在 上为增函数 ④ 有最大值4

7、已知 在区间[0,1]上的最大值为2,求a的值。

8、已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

9、已知函数 ,求a的取值范围使 在[-5,5]上是单调函数。

篇11:《对数函数的图像与性质》说课稿

难点:对数函数性质中对于在与两种情况函数值的不同变化。

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的.教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透数形结合、分类讨论等数学思想方法;

(4)用探究性教学、提问式教学和分层教学。

2、教学手段:

计算机多媒体辅助教学。

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

(2)主动式学习:学生自己归纳得出对数函数的图像与性质。

四、说教程

1、温故知新

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

2、探求新知

研究对数函数的图像与性质。关键是学生自主的'对函数和的图像分析归纳,引导学生填写表格(该表格一列填有在及两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质。

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

3、课堂研究,巩固应用

例1主要利用对数函数的定义域是来求解。

例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数两种情况。

例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

4、巩固练习

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

(1)掌握对数函数的图像与性质,体会数形结合的思想方法;

(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。

6、作业:p97习题3,4,5

选做题6题

篇12:《对数函数的图像与性质》说课稿

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识.

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1) 知识目标:掌握对数函数的图像与性质;初步学会用

对数函数的性质解决简单的问题.

(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.

(3) 情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性.

3、教学重点与难点

重点:对数函数的图像与性质.

难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化.

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透数形结合、分类讨论等数学思想方法.

(4)用探究性教学、提问式教学和分层教学

2、教学手段:

计算机多媒体辅助教学.

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1) 探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

归纳得出对数函数的图像与性质。

(2) 主动式学习:学生自己归纳得出对数函数的图像与性质。

四、说教程

1、温故知新

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生分析问题的能力.

2、探求新知

研究对数函数的图像与性质.关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的.方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质.

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习.

3、课堂研究,巩固应用

例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解.

例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况.

例3 解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充

分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的

解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.

4、巩固练习

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握.从两方面进行小结:

(1) 掌握对数函数的图像与性质,体会数形结合的思想方法;

(2) 会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的

解法,体会分类讨论的思想方法.

6、作业:p97习题3,4,5

选做题 6题

篇13:《对数函数的图像与性质》说课稿

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的.知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

3、教学重点与难点

重点:对数函数的图像与性质。

难点:对数函数性质中对于在两种情况函数值的不同变化。

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)渗透数形结合、分类讨论等数学思想方法。

(4)用探究性教学、提问式教学和分层教学。

2、教学手段:

计算机多媒体辅助教学。

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

(2)主动式学习:学生自己归纳得出对数函数的图像与性质。

四、说教程

1、温故知新

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

2、探求新知

研究对数函数的图像与性质。关键是学生自主的对函数和的图像分析归纳,引导学生填写表格(该表格一列填有在及两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质。

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

3、课堂研究,巩固应用

例1主要利用对数函数的定义域是来求解。

例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数及两种情况。

例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

4、巩固练习

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

(1)掌握对数函数的图像与性质,体会数形结合的思想方法。

(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。

6、作业:p97习题3,4,5

选做题6题

篇14:《对数函数的图像与性质》说课稿

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1) 知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题.

(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力.

(3) 情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数学的精确和美妙之处,调动学生学习数学的积极性.

3、教学重点与难点

重点:对数函数的意义、图像与性质.

难点:对数函数性质中对于在a>1与0

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.

2、教学手段:

计算机多媒体辅助教学.

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,使问题得以圆满解决.

篇15:《对数函数的图像与性质》说课稿

一、说教材:

1。教材的内容、地位及编排依据

[内容、地位]本节教材内容主要研究: ⑴对数函数的图象及其基本性质;⑵利用对数函数的图象及其性质来解决一些与对数有关的问题。这节教学内容是在学生学过函数的基本性质、指数、指数函数以及对数的基础上再来学习的,可以说它是上述内容的延续和发展,同时也为数学在实际应用中提供了一种新的函数模型。因此本节内容起到了一种承上启下的作用。

[编排依据]主要是从学生获取知识遵循“从特殊到一般,由浅入深,由易到难,循序渐进”的原则出发,符合学生的认知水平和接受能力。

2。教学目标的确定和确定目标的依据

根据对数函数及其相关知识历来在高考中的地位以及新课程标准的要求、学生的认知水平,确定教学目标如下:

(1)知识目标:使学生理解对数函数的定义并了解其图象的特点;

(2)能力目标:培养学生动手操作的能力以及自主探究数学问题的素养;

(3)德育目标:培养学生勇于探索和创新的精神以及优化他们的个性品质;

(4)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流。

3。教学的重点、难点、关键: [重点]掌握对数函数的概念及其图象,使学生能初步自觉地、有意识地利用图象研究对数函数的性质。 [难点]理解和掌握对数函数的概念,图象特征,区分01和a1不同条件下的性质。 [关键]认识底数a与对数函数图象之间的关系。

二、说教法与学法

教法:1、为了培养学生自主学习的能力以及使得不同层次的学生都能获得相应的满足。因此本节课采用探究性教学、提问式教学和分层教学。2、根据本节课的特点也为了给学生的数学探究与数学思维提供支持,同时也为了培养学生的动手操作能力,所以采用计算机辅助教学,以突出重点和突破难点。

学法:为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法:

(1)自主性学习法:根据作图的常规方法画出对数函数的图象;

(2)探究性学习法:通过分析、探索得出对数函数的性质;

(3)巩固反馈法:检验知识的应用情况,找出未掌握的内容及其差距。

三、采用教具:

多媒体辅助教学

1通过flash软件直观的呈现出对数函数的图象,使学生对其有丰富的感性认识;

2为学生展现自己的才华提供了平台。

四、说教学程序

1、导入新课:

由2。2。1的例题6(即考古学家是如何估算出土文物或古遗址的年代)引入,让学生利用计算器计算并填写下表。略

篇16:正切、余切函数的图象和性质

张思明

教学目的:(略)

教学过程择录:

一、引题:

师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题?

生众:P159(11)正弦,余弦函数的定义域; P158(3)正弦,余弦函数的最值(值域); P158(6)正弦,余弦函数的奇偶性 P159(8)正弦,余弦函数的单调性 P159(7)正弦,余弦函数的应用一-,-比大小 P158(4)正弦,余弦函数的周期(最小正周期) P159(12)正弦,余弦函数的图象 P160(16、17)正弦,余弦函数性质的应用。

教师在黑板上书写:

(1)定义域

(2)值域

(3)奇偶性

(4)单调性

(5)比大小

(6)求最小正周期

(7)作图

(8)应用

教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题?

生众:不就是上面这几点问题吗?

教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后(1)~(7)后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟(P153~P157)。

[评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。

二、学生自己回顾性设问,(自问自答) 5分钟以后:学生阅读完毕,教师指导第一组学生(7人)为相邻的同桌的同学(第二组学生)就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学(起立)对着大家回答。

做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正。

生1:正切函数的定义域是什么?

邻生答:除了,k∈Z外的全体实数。

生2:正切函数的值域是整个y轴吗?

邻生改正:应说成是全体实数

生3: ………

生10:学过四种三角函数都是奇数吗?都是增函数吗?

邻生答:不对,反例是余弦函数)

生11:正切函数是它定义域上的增函数吗?(好问题!)

邻生答:是,其它学生更正:不是。

教师追问理由………

生12:正切函数是一个周期为2的函数吗?(含义不清的问题)

邻生回答:准确地说正切函数是最小正周期为的周期函数。

生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?

邻生:不对, 另外的学生答:对,……… 学生即席讨论………。

生14:怎样由y=tgx的图象得到y=ctgx的图象?(好问题),邻生答:可以先把y=tgx的图象以x轴为轴,翻转180度,再向右平移。

另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。

教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度和把y=tgx的图象以y轴为轴,翻转180度的.效果一样?

学生讨论得到:因为y=tgx是奇函数,f(-x)=-f(x)。

教师又插说:非要先翻转后平移吗?

学生讨论略。

[评论]学生自己设计问题,自问他答,其它学生协助判定是否正确,可以在很大程度上调动学生自己学习的主动性。但问题的难易控制有一定难度,先问的人设计问题相对容易些,可以用往复问答的方式来解决(第一个提问的学生将回答最后一个问题)。

邻座的学生作答,同一横行同学做答的是非判定,这样做目的是让反馈的更快、更广些。

从学生问答情况看,基本达到了目的。

三、自己提出问题,设计问题,当堂练习,自己作评价。

师:下面请第3组同学为大家设计一组课堂练习可以讨论。(2分钟)

要求是七个方面都要覆盖。(七人上黑板,学生之间有交流,组长分配协调一人一个题,不使重复,2分钟后题目完成)

请第4组同学上黑板解:其它同学在下面解。

再请第5组同学:评价题目和解法的长短。

请第6组同学对应设计课后作业(C组题)。

请第7组同学:作全课的小结(谈自己认为感觉最深几点)

[评述]活动覆盖面大,学生在教师控制的“方向”上直接参与练习设计,求解,并且加入练习题设计及解法的评价和全课小结,目的是让学生学会“品题”,“品课”,这本身是对学生掌握学法的一种引导,对培养学生的自学能力十分重要。

第3组学生上黑板设计的题目:

(1)求函数的定义域。

(2)求函数的值域。

(3)比较和的大小。

(4)函数最小正周期是什么?

(5)求出的单调增区间。

(6)作出函数的图象,并说明它是由y=tgx经过怎样的变换得到的。

(7)讨论下面函数的奇偶性和最小周期:,y=tg (mx+n)+b

学生D组7人上黑板解题。

求解过程及改错讨论略。

学生E组评价:首先对D组的解答做出评判(略)

学生15:我觉得(3)设计的好,它要求先用诱导公式转化成同名函数再比大小。

学生16:我先纠正解答中的错误,原解认为最小正周期是,这是一个明显的错误,因为它不是正数。我觉得(4)设计的目的就是要考查最小正周期的表达式中绝对值这一个最容易被忽略的地方。我认为此题设计的很好。

学生17:我觉得(5)设计的不很好,原因是,对数后面根号似乎多余,因为对数对真数的要求和算术根大体一致。又复合函数的内、外层函数y=lgt, 都是增函数,再讨论递增区间,显得“挖潜”不够,不如将y=lgt或换成某种减函数如。这样可以考察到更多的复合函数单调性的知识。

[评述]:这里有一个集体协作的场景,组长“派”任务和个人主动抢任务结合,学困生强以优先,各尽其能,各显所长。教师可以在旁边观察、欣赏、记录。作出鼓励或引导性的“旁白”。

第7组的两个代表,上来做了全课的总结:

学生17:今天我们学习了正切、余切、函数的性质,我觉得比较重要的是要把握函数的性质,就要去研究什么东西?这里面主要是定义域,值域单调性、奇偶性、周期性,和由此得到的函数的图象。对于正、余切函数的性质我觉得通过它们的图象去记忆,去理解是最容易的。只要记住函数的基本图象,我们就可以说出相应的性质。简单地说可以从图象直观走向看增减性、是否对称看奇偶性、是否可重复看周期性………。

学生18:我觉得应该补充的是:学习相关、相似知识时应抓住区别。“切”函数相对于与“弦”函数的区别在于:无最值,定义域“断续”,周期“变短”,增减性变“单纯”。 从我们的解决过问题看,用到最多的是转化的思想:即把一个对复合函数性质的讨论转化为对最基本的三角函数的性质的应用。如:求定义域,就是利用基本余切函数y=ctgt的定义域是t≠k,k∈z,再把看成一个整体。令 从而解决问题。所以抓住最基本的函数的性质是解决问题的根本。

教师:大家谈的都很好,特别是评价组的同学不仅做出题目,还能“品出”出题者的本意,小结做的也很好。我请大家注意这节课的过程实际上给了我们学习新内容的一种宏观的程序:温故(相关知识准备)→新的学习对象与旧知识的联系→类比提问、差异思考发现问题和学习目标→找出规律,解决问题→应用成果,练习巩固(发散)→归纳收缩(小结)。这里的程序还没有完,还有一段是:→进一步的发散思考,探索新的问题和规律。

这部分内容常常是在课外进行的。 记得最后一位同学的小结中提到的“根本”是基本函数的基本性质,这真的是很“根本”,因为我们今天所解决的问题都被化归到这个地方。

[评述]:学生的小结和评价不一定很完整、全面,可以一人一点,互相补充。即使有错误,教师也不要急于纠正。最引导学生自己发现、纠正。也可以让其它学生来补充更正。

教师的评价应是激励性的。另外应引导学生注意学法,特别是对高一的学生。

作业:

A 组:P157~158(直接勾画在书上)(练习)

B组:P161、18、20、21、22、23

C组:请第六组同学上黑板布置

(1)求函数y=tgx+cos2x和y=tgx-ctgx最小正周期。

(2)作出y=tgx・ctgx的图象。

(3)讨论y=atg(mx+n)+b (a>0,m≠0) 的性质,及各个文字对函数图象的影响。

(4)讨论 讨论函数y=sin9(cos7(tg5(ctg3x)))的单调递减区间。 教师补充:

(5)当较小时,如0

[评述]:A、B是基本要求,C组作为选做或探索题。让学生设计C组题也是为了调动学生自主学习的积极性,因为学生更乐于解决自己的问题。

如C组题的(1)(2)设计的就不错。

比如:(1)y=tgx-ctgx中的最小正周期不是,而是。这就需要借助于切割弦把它化成-ctg2x来发现。

(2)可以看出学生试图将结果一般化,虽有一定困难,但值得鼓励提倡。有时也会出“问题”。

如(3)的设计意图很好,综合应用的意识特别强。可以看出的学生的设计意图是把已学过的几种函数的性质“综合”应用到一起,出这道题的学生平时能力强、反应快,但有重难题,忽视基本的倾向。

我看到这题在没有反三角函数知识的情况下,求解、表达都有困难,已超出学生现有的水平,提出大家可以先思考而让设计提出该问题的同学下次介绍他的解法。

在下次课上这位同学说他出题时考虑不够,出完题没想解题时候的困难,定义域不好描述,单调区间写出有困难。我先肯定了这位同学的出题意图,然后说实际问题有可能是这样的。

我们在第一轮学习时应注意基本。就这道题来说,将来学习反三角函数知识再解可能更容易一些,另一个办法是用计算机(mathcad)软件,可以作出图象如下,从而可以分区间得到近似解。

x=1,1.0001---1.005 f(x)=sin(9cos(7tg(5ctg(3x))) 这样做的目的是既给出激励性`的评价,又通过问题中暴露的困难激发进一步学习的动力。

应该承认这样做是有一定风险的,学生出的题目也会常常使教师陷入窘境,但师生在同一个起点去思考,去碰壁,去绕岩避礁,长使教师与学生都能得到更多的收获。许多思考的技巧和解决问题的策略都是在这样的交流中,无形的被激发、转化、吸收。

八年级数学《菱形的定义与性质》说课稿

下学期 4.8正弦函数、余弦函数的图像和性质

《函数的概念与性质》教案设计

下学期 4.8 正弦函数、余弦函数的图像和性质2

九年级数学下册《二次函数的图像与性质(2)》教学教案(湘教版)

反比例函数的图象和性质说课稿

赠与合同的定义性质

实际问题与反比例函数的说课稿

《函数概念》说课稿

高中数学函数说课稿

《《正切函数的定义、图像与性质》说课稿(精选16篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档