欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

高一数学画二次函数图像的步骤

时间:2022-11-20 08:09:36 其他范文 收藏本文 下载本文

下面是小编为大家整理的高一数学画二次函数图像的步骤,本文共5篇,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学画二次函数图像的步骤

篇1:高一数学画二次函数图像的步骤

高一数学画二次函数图像的步骤

二次函数的画法

五点法

五点草图法又被叫做五点作图法是二次函数中一种常用的作图方法。

注明:虽说是草图,但画出来绝不是草图。

五点草图法中的五个点都是极其重要的五个点,分别为:顶点、与x轴的交点、与y轴的交点及其关于对称轴的对称点。

正规考试也是用这种方法初步确定图像。但是正规考试的要求在于要列表格,取x、y,再确定总体图像。五点法是可以用在正规考试中的。

描点法

1、列表

先取顶点,用虚线画出对称轴。取与x轴两个交点(如果存在)、y轴交点及其对称点(如果存在)和另外两点及其对称点。原则上相邻x的差值相等,但远离顶点的点可以适当减小差值。

2、依据表格数据绘制函数图像

二次函数求根公式

推导ax²+bx+c=0的解。

移项,ax²+bx=-c

两边除a,然后再配方,

x²+(b/a)x+(b/2a)²=-c/a+(b/2a)²

[x+b/(2a)]²=[b²-4ac]/(2a)²

两边开平方根,解得

x=[-b±√(b2-4ac)]/(2a)

篇2:高一数学二次函数图像性质总结

高一数学二次函数图像性质总结

1二次函数图像

2二次函数性质

二次函数y=ax²+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程,即ax²+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax²,y=ax²+k,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。

2.抛物线y=ax²+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a).

3.抛物线y=ax²+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax²+bx+c(a≠0)的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b²-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax²+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax²+bx+c的最值(也就是极值):如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b²)/4a.

顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax²+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中高考的热点考题,往往以大题形式出现。

篇3:二次函数图像性质总结

二次函数简介

①y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称。

②y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称。

③y=ax^2+bx+c与y=-ax^2-bx+c-b2/2a关于顶点对称。

④y=ax^2+bx+c与y=-ax^2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

篇4:高一数学学二次函数的窍门

高一数学学二次函数的窍门

1定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

2二次函数的三种表达式

一般式:y=ax²+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b²)/4ax₁,x₂=(-b±√b²-4ac)/2a

3二次函数图像与X轴交点的情况

当△=b²-4ac>0时,函数图像与x轴有两个交点。

当△=b²-4ac=0时,函数图像与x轴只有一个交点。

当△=b²-4ac<0时,函数图像与x轴没有交点。

4二次函数的应用

1、二次函数的图象、性质广泛应用于实际生活中,主要有最大利益的获取,最佳方案的设计、最大面积的计算等问题。

2、解决最值问题的基本思路:(1)认真审题,分清题中的已知和未知,找出数量间的关系;(2)确定自变量x及函数y;(3)根据题中实际数量的相等关系,建立函数关系模型;(4)分析表信息、利用待定系数法、配方法等求出最值。

篇5:二次函数的性质与图像教案

一 学习目标

1、掌握二次函数的图象及性质;

2、会用二次函数的图象与性质解决问题;

学习重点:二次函数的性质;

二次函数知识点

二次函数练习题

二次函数数学教案

二次函数教案

二次函数说课稿

二次函数知识点总结

二次函数教学设计

二次函数教学反思

人教版二次函数教学设计

《二次函数》复习课反思

《高一数学画二次函数图像的步骤(推荐5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档