欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

奥数试题及答案二次相遇

时间:2025-10-21 07:53:33 其他范文 收藏本文 下载本文

下面是小编帮大家整理的奥数试题及答案二次相遇,本文共12篇,希望对大家有所帮助。

篇1:奥数试题及答案二次相遇

奥数试题及答案关于二次相遇

甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?

考点:相遇问题.

专题:行程问题.

分析:甲队每小时行5千米,乙对每小时行4千米,两地相距18千米,根据路程÷速度和=相遇时间可知,两人相遇时共行了18÷(4+5)=2小时,在这两小时中,这名骑自行车的学生始终在运动,所以两队相遇时,骑自行车的学生共行:15×2=30千米.

解答:解:18÷(4+5)×15

=18÷9×15,

=30(千米).

答:两队相遇时,骑自行车的学生共行30千米.

点评:明确两队相遇时,骑自行车的'学生始终在运动,然后根据时间×速度=所行路程求出骑自行车的学生行的路程是完成本题的关键.

篇2:二次相遇问题奥数试题及解析

二次相遇问题奥数试题及解析

难度:中难度

甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?

解答:【分析】甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144(千米)

篇3:奥数多次相遇问题的试题和答案

有关奥数多次相遇问题的试题和答案

1.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?

分析:在往返来回相遇问题中,第一次相遇两人合走完一个全程,以后每次再相遇,都合走完两个全程.即:两人相遇时是在他们合走完1,3,5个全程时.然后根据路程÷速度和=相遇时间解答即可.

解答:解答:①第三次相遇时两车的路程和为:

90+90×2+90×2,

=90+180+180,

=450(千米);

②第三次相遇时,两车所用的时间:

450÷(40+50)=5(小时);

③距矿山的'距离为:40×5-2×90=20(千米);

答:两车在第三次相遇时,距矿山20千米.

点评:在多次相遇问题中,相遇次数n与全程之间的关系为:1+(n-1)×2个全程=一共行驶的路程.

篇4:小学奥数试题测试及答案:多次相遇问题

(1)2倍的关系(两头同时出发相向而行):对于单个人来讲,从一次相遇到相邻的下一次相遇走了他从出发到第一次相遇的2倍。(关注2倍的关系,是因为很多题目,只告诉第一次相遇地点距离一段的路程)

【例1】小明和小英各自在公路上往返于甲、乙两地。设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?

(2)对于一头同时出发同向行驶或者环型行程中,思路是从路程和或者某一个人在不同时间段的关系找到对应的时间关系,再找到单个人或另外一个人两个时间段的路程关系。(路程关系~~~时间关系~~~~路程关系)

【例2】一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。求客车的速度。

【例3】甲乙二人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。如果他们同时出发,并在甲跑完60米时第一次相遇,在乙跑一圈还差80米时两人第二次相遇,求跑道的长度?

(3)根据速度比m:n,设路程为m+n份

【例4】甲、乙两车分别从AB两地出发,在AB之间不断的往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第3次与第4次相遇点恰好为100千米,那么AB两地之间的.距离是多少千米?

【例5】甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶。甲、乙两车的速度比为3:7,并且甲、乙两车第次相遇的地点和次相遇的地点恰好相距120千米(这里指面对面的相遇),那么A、B两地之间的距离是多少千米?

(4)n次相遇---画平行线并结合周期性分析

【例6】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒钟2米。如果他们同时分别从直路的两端出发,10分钟内共相遇了几次?(平行线+周期性分析)

【例7】A、B两地相距1000米,甲从A地、乙从B地同时出发,在A、B间往返锻炼。甲跑步每分钟行150米,乙步行每分钟60米。在30分钟内,甲、乙两人第几次相遇时距A地最近

篇5:小学奥数试题测试及答案:多次相遇问题

兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点.

考点:多次相遇问题.

分析:第十次相遇,妹妹已经走了:30×10÷(1.3+1.2)×1.2=144 (米). 144÷30=4(圈)…24(米). 30-24=6 (米).还要走6米回到出发点.

解答:解:第十次相遇时妹妹已经走的路程:

30×10÷(1.3+1.2)×1.2,

=300÷2.5×1.2,

=144(米).

144÷30=4(圈)…24(米).

30-24=6 (米).

还要走6米回到出发点.

故答案为6米.

篇6:简单相遇问题奥数试题

简单相遇问题奥数试题

例1:甲、乙二人沿运动场的`跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?

解析请看下一页

分析:这是一道封闭线路上的追及问题.甲和乙同时同地起跑,方向一致.因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是400米.根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间.

解答:解:400÷(290-270)

=400÷20,

=20(分钟);

答:甲经过20分钟才能第一次追上乙.

篇7:奥数试题及答案

奥数试题及答案

一个等差数列的第2项是2.8,第三项是3.1,这个等差数列的第15项是。

考点:等差数列.

分析:这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.

解答:解:公差是:3.1-2.8=0.3,

首项是2.8-0.3=2.5,

2.5+(15-1)×0.3,

=2.5+4.2,

=6.7;

故答案为:6.7.

点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).

篇8:奥数经典试题及答案

奥数经典试题及答案

两个数的'和是,其中一个加数的个位是0,如果把这个0去掉,就正好等于另一个加数的两倍.这两个加数各是多少?

答案与解析:这两个加数分别是:96和1920。因为把第一个加数个位上的“0”去掉,得到了第二个加数的2倍,所以,第一个加数是第二个加数的20倍.把第二个加数看作“1倍数”,第二个加数就是“20倍数”,这两个数的和2016就是“1+20”倍的数。根据这个“量”与“倍”的对应关系,可先求出第二个加数.这两个加数分别是:/(1+20)=96,2016-96=1920

篇9:五年级奥数试题及答案

五年级奥数试题及答案

1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?

解:AB距离=(4.5×5)/(5/11)=49.5千米

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?

解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米

3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7

那么4小时就是行全程的4/7

所以乙行一周用的时间=4/(4/7)=7小时

4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?

解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8

那么甲乙的路程比=7/8:7/10=5:4

所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米

5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?

解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米

AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇

(225-15)/(1-3/7)=210/(4/7)=367.5千米

6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?

解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20

甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12

那么再有(11/20)/(1/12)=6.6分钟相遇

1

7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?

解:路程差=36×2=72千米 速度差=48-36=12千米/小时 乙车需要72/12=6小时追上甲

8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?

解:甲在相遇时实际走了36×1/2+1×2=20千米 乙走了36×1/2=18千米

那么甲比乙多走20-18=2千米

那么相遇时用的时间=2/0.5=4小时 所以甲的速度=20/4=5千米/小时 乙的速度=5-0.5=4.5千米/小时 9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?

解:速度和=60+40=100千米/小时 分两种情况, 没有相遇

那么需要时间=(400-100)/100=3小时 已经相遇

那么需要时间=(400+100)/100=5小时

10、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?

解:速度和=9+7=16千米/小时

那么经过(150-6)/16=144/16=9小时相距150千米

11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?

解:

速度和=42+58=100千米/小时 相遇时间=600/100=6小时 相遇时乙车行了58×6=148千米或者 甲乙两车的速度比=42:58=21:29 所以相遇时乙车行了600×29/(21+29)=348千米

12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?

解:将两车看作一个整体 两车每小时行全程的1/6 4小时行1/6×4=2/3

那么全程=188/(1-2/3)=188×3=564千米

13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?

解:二车的速度和=600/6=100千米/小时 客车的速度=100/(1+2/3)=100×3/5=60千米/小时

2

货车速度=100-60=40千米/小时

14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?

解:速度和=(40-4)/4=9千米/小时 那么还需要4/9小时相遇

15、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?

解:甲车到达终点时,乙车距离终点40×1=40千米 甲车比乙车多行40千米

那么甲车到达终点用的时间=40/(50-40)=4小时 两地距离=40×5=200千米

16、两辆车从甲乙两地同时相对开出,4时相遇。慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?

解:快车和慢车的速度比=1:3/5=5:3 相遇时快车行了全程的5/8 慢车行了全程的3/8

那么全程=80/(5/8-3/8)=320千米

17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。A、B两地的最短距离多少米?最长距离多少米?

解:最短距离是已经相遇,最长距离是还未相遇 速度和=100+120=220米/分 2小时=120分 最短距离=220×120-150=26400-150=26250米 最长距离=220×120+150=26400+150=26550米

18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?

解:原来速度=180/4=45千米/小时 实际速度=45+5=50千米/小时 实际用的时间=180/50=3.6小时 提前4-3.6=0.4小时

19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?

解:设甲乙的速度分别为4a千米/小时,3a千米/小时 那么 4a×12×(3/7)/(3a)+4a×12×(4/7)/(4a+12)=12 4/7+16a/7(4a+12)=1 16a+48+16a=28a+84 4a=36 a=9

甲的速度=4×9=36千米/小时 AB距离=36×12=432千米算术法: 相遇后的时间=12×3/7=36/7小时 每小时快12千米,乙多行12×36/7=432/7千米

相遇时甲比乙多行1/7

那么全程=(432/7)/(1/7)=432千米

20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的`1.5倍,车开出几时相遇?

解:乙的速度=52×1.5=78千米/小时 开出325/(52+78)=325/130=2.5相遇

21、甲乙两车分别从A,B两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的百分之十,当乙行到全程的5/8时,甲再行全程的1/6可到达B地。求A,B两地相距多少千米?

解:乙行全程5/8用的时间=(5/8)/(1/10)=25/4小时 AB距离=(80×25/4)/(1-1/6)=500×6/5=600千米

22、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米。两车相遇时,乙车离中点20千米。两地相距多少千米?

解:甲乙速度比=40:45=8:9 甲乙路程比=8:9

相遇时乙行了全程的9/17

那么两地距离=20/(9/17-1/2)=20/(1/34)=680千米

23、甲乙两人分别在A、B两地同时相向而行,与E处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙分别到达B和A后立即折返,仍在E处相遇。已知甲每分钟走60米,乙每分钟走80米,则A和B两地相距多少米?

解:把全程看作单位1

甲乙的速度比=60:80=3:4 E点的位置距离A是全程的3/7 二次相遇一共是3个全程

乙休息的14分钟,甲走了60×14=840米 乙在第一次相遇之后,走的路程是3/7×2=6/7 那么甲走的路程是6/7×3/4=9/14 实际甲走了4/7×2=8/7

那么乙休息的时候甲走了8/7-9/14=1/2 那么全程=840/(1/2)=1680米

24、甲乙两列火车同时从AB两地相对开出,相遇时,甲.乙两车未行的路程比为4:5,已知乙车每小时行72千米,甲车行完全程要10小时,问AB两地相距多少千米?

解:相遇时未行的路程比为4:5 那么已行的路程比为5:4 时间比等于路程比的反比 甲乙路程比=5:4 时间比为4:5

那么乙行完全程需要10×5/4=12.5小时 那么AB距离=72×12.5=900千米

25、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?

解:甲乙的相遇时的路程比=速度比=4:5 那么相遇时,甲距离目的地还有全程的5/9 所以AB距离=4×2/(5/9)=72/5=14.4千米

篇10:等差数列奥数试题及答案

等差数列奥数试题及答案

一个等差数列的.第2项是2.8,第三项是3.1,这个等差数列的第15项是。

考点:等差数列.

分析:人教版四年级等差数列奥数试题及答案这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.

解答:解:公差是:3.1-2.8=0.3,

首项是2.8-0.3=2.5,

2.5+(15-1)×0.3,

=2.5+4.2,

=6.7;

故答案为:6.7.

点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).

篇11:小升初奥数试题和答案

关于小升初奥数试题和答案

二年级

1.一辆公交车到A站下车5人,上车7人,到B站下车6人,上车10人,现在车上有40人,车上原来有乘客多少人?

2.13+14+15+16+17+25

三年级

1.十位数字与个位数字之差(大数减小数)等于1的两位数有多少个?

2.A、B、C、D、E五个人一起回答一道题,五个人中只有两个人答对了,所有答对的可能情况有多少种?

四年级

1.有一串数共11个,中间数最大。从中间往前数,一个比一个小2;从中间往后数,一个比一个小3。已知这些数的总和是200,那么中间数是多少?

2.在下面的算式中合适的地方填入“+”、“-”,使等式成立。

0808=1000

五年级

1.有若干名同学需要住宿,如果每间住4人,那么有10人没地方住;如果每间住6人,那么最后一间住不满。这些同学最多有多少名?

2.如图,∠1等于100度,∠2等于60度,∠3等于90度,∠4等于多少度?

六年级

1.78名同学围成一圈,从某个同学开始进行1—18报数,一圈一圈循环下去,那么有没有人同时报过5和10?为什么?

2.有20个队进行比赛,每两个队之间最多赛一场。现在已经共进行了21场比赛,那么是不是一定有一个队至少赛了3场?

答案:

二年级

1.一辆公交车到A站下车5人,上车7人,到B站下车6人,上车10人,现在车上有40人,车上原来有乘客多少人?

解答:40-10+6-7+5=34(人)

2.13+14+15+16+17+25

解答:原式=(13+17)+(14+16)+(15+25)=30+30+40=100

三年级

1.十位数字与个位数字之差(大数减小数)等于1的两位数有多少个?

解答:10、12、21、23、32、……、89、98,共17种。

2.A、B、C、D、E五个人一起回答一道题,五个人中只有两个人答对了,所有答对的可能情况有多少种?

解答:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10种。

四年级

1.有一串数共11个,中间数最大。从中间往前数,一个比一个小2;从中间往后数,一个比一个小3。已知这些数的总和是200,那么中间数是多少?

解答:(200+2+2×2+2×3+2×4+2×5+3+3×2+3×3+3×4+3×5)÷11=25

2.在下面的算式中合适的`地方填入“+”、“-”,使等式成立。

20080808=1000

解答:200+808-0-8=1000

五年级

1.有若干名同学需要住宿,如果每间住4人,那么有10人没地方住;如果每间住6人,那么最后一间住不满。这些同学最多有多少名?

解答:要想让人数最多,那么第二种情况下,最后一间住的人越少越好,即空位越多越好。最后一间至少住2人,最多空4个位置,所以房间最多是(10+4)÷(6-4)=7个,人数最多为4×7+10=38人。

2.如图,∠1等于100度,∠2等于60度,∠3等于90度,∠4等于多少度?

解答:四边形内角和是360度。∠1+∠2+∠3+∠4=180×4-360=360度,∠4=360-100-60-90=110度。

六年级

1.78名同学围成一圈,从某个同学开始进行1—18报数,一圈一圈循环下去,那么有没有人同时报过5和10?为什么?

解答:78÷18余6,且78与18的最大公约数就是6,所以每个人报的数之间的差只能是6,报5的只能报11或17,不可能报10。

2.有20个队进行比赛,每两个队之间最多赛一场。现在已经共进行了21场比赛,那么是不是一定有一个队至少赛了3场?

解答:假设每个队比赛的场数都不到3场,那么每个队最多赛2场,最多共进行2×20÷2=20场比赛,矛盾,所以一定有一个队至少赛了3场。

篇12:小升初奥数试题及答案

小升初奥数试题及答案

一年级

1.计算:211×555+445×789+555×789+211×445=______.

2.纽约时间是香港时间减13小时,你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应____月____日____时给他打电话

三年级

1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?

2.移动一根火柴棍,使得算式成立。

四年级

1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?

2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?

五年级

1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?

2.将各位数字都不大于5的非0自然数,从小到大排列,第2010个数是多少?

六年级

1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?

2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?

二年级

1.找出图形变化的规律,并画出第四幅图。

解答:

分别按照顺时针方向移动,因此第四幅图是

解答:

2.计算:28+208+2008+20008

解答:原式=(20+8)+(200+8)+(2000+8)+(20000+8)

=20+200+2000+20000+8+8+8+8

=22220+32=22252

三年级

1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?

解答:200÷4+1=51(棵)51×2=102(棵)

2.移动一根火柴棍,使得算式成立。

解答:11+3=7+7

四年级

1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?

解答:若妻子都增加5岁,那么四人的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。由条件可以知道,李强的妻子是小莉,王刚的`妻子是小芳。李强比小芳大6岁,王刚比小芳大5岁,所以李强比王刚大1岁,因此李强的年龄为(71+1)÷2=36岁,小莉是36-5=31岁。

2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?

解答:横向与纵向的火柴棍根数一样。4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=20200根。

五年级

1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?

解答:15=2+3+4+6,2×3×4×6=144

2.将各位数字都不大于5的非0自然数,从小到大排列,第2010个数是多少?

解答:实际就是将六进制的数从小到大排列。

将2010转化为六进制。(2010)10=(13150)6

第2010个数就是13150。

六年级

1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?

解答:A钟走6个小时(即360分钟)的同时,B钟走了5小时50分钟=350分钟,可知A与B的速度比为36:35。B钟走了7个小时(即420分钟)的同时,C钟走了7小时20分钟=440分钟,可知B与C的速度比为42:44=21:22。

现在C钟共走了11个小时(即660分钟),B钟应该走660÷22×21=630分钟,A钟应该走630÷35×36=648分钟=10小时48分钟,所以A钟应该是10点48分。

2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?

解答:分针走一圈是60分钟,共走了360度,因此分针一分钟走360÷60=6度。时针60分钟只走一个刻度(即30度),一分钟走30÷60=0.5度。

16点整的时候,时针指向“4”的位置,分针指向“12”的位置,相差120度。16分钟里,分针追上时针16×(6-0.5)=88度,夹角还差120-88=32度。

奥数试题

奥数计数排列组合试题及答案剖析

小升初奥数试题及答案的内容

小学奥数试题

六年级奥数题及答案

六年级奥数题及答案

五年级奥数题及答案

三年级奥数题及答案

四年级奥数题及答案

小学奥数题及答案

《奥数试题及答案二次相遇(集锦12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档