欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

小学一年级经典奥数试题

时间:2025-10-13 07:30:48 其他范文 收藏本文 下载本文

以下是小编为大家准备的小学一年级经典奥数试题,本文共11篇,仅供参考,大家一起来看看吧。

篇1:小学一年级奥数试题

看看这个类型的试题有什么规律,找到规律之后,在做这样的试题就可以迎刃而解了,祝你们成功!

有三个同样的立方体,每个立方体的六个面上分别写着“天”、“宇”、“学”、“校”、“优”、“秀”。根据下面三个图形,找出“宇”和“秀”的对面是什么。

答案:“宇”和“天”、“优”、“秀”、“学”相邻,只能和“校”相对;“秀”和“宇”、“优”、“学”相邻,且不能和“校”相对,则只能和“天”相对。所以“宇”的对面是“校”,“秀”的对面是“天”。

篇2:小学一年级奥数综合训练试题

小学一年级奥数综合训练试题

一、排队问题

1、人们排队坐缆车,玲玲前面有3个人,后面有5个人,共有( )人在排队。

画一画: 列式:

2、排队上车时,小花发现自己的前面有5人,后面有9人,一共有( )在排队。

画一画: 列式:

3、小朋友排队做操,平平排在队伍的中间,无论是从前往后数,还是从后往前数,都是第 9 个,这一排有( )个小朋友。

画一画: 列式:

4、10个小朋友排队做游戏,从前往后数,明明排第7个,从后往前数,明明排在第( )个。

画一画: 列式:

5、小朋友排队做操,从前数第4个是明明,从后数第4个是点点,点点排在明明的后面,中间还隔着2个小朋友,这一排一共有( )个小朋友在做操。

画一画: 列式:

6、16个同学排成一排,小吴站在第5个,小吴的后面还有( )个人。

画一画: 列式:

二、简单推理

1、填空

①5+○=13 △+○=15 ②○-☆=5 8+☆=16

○=( )△=( ) ○=( ) ☆=( )

③△+△=18 ☆+○=13 △+○=15

△=( ) ○=( ) ☆=( )

篇3:小学一年级奥数测试题

1、自然数:5、7、9、11、13、15、17的和是奇数还是偶数。

2、有10支铅笔要分给5个小朋友,要想让他们分到的铅笔数都是偶数可以吗。怎么分。

3、比40少9的数是。

4、13-11?10-8?7-5?4-2=

5、3?18?27?2?5?15=

6、外滩的钟6点钟的时候敲了6下用了5秒钟,那么12点钟的`时候敲12下用()秒。

7、□-△=8△-○=1□-○=

8、小刚比小明大2岁,小明比小强小4岁,那么小刚和小强谁大。大()。

9、

1个苹果重量=2个梨的重量

1个梨重量=2个香蕉重量

1个苹果重量=()个香蕉重量

10、有21个小朋友排队,从前往后数小超排在第7位,从后往前数小伟也排在第7位,他们俩人之间有()人。

11、有一组小朋友在玩捉迷藏的游戏,其中有8人已被捉住,还有4人没有捉住,问这组一共有()人在玩游戏。

12、学校的门口挂了一排灯笼,是从第一个开始:红、黄、红、黄……,问第25个灯笼是什么颜色。

13、有四个人一起玩牌,一共玩了30分钟,那么他们每人玩了()分钟。

14、哥哥和弟弟手里都有一些铅笔,哥哥给弟弟5支笔后俩人的笔数才相同,那么原来哥哥比弟弟多()支铅笔。

15、有一个数比14小5,这个数是()。

16、8和7的和减去9,得()。

17、有一个教室里的桌子上放着9支蜡烛,点着了3只,突然一阵风吹来,吹灭了2支,过了一天后教室里还有()支蜡烛。

18、小明家养了4只白兔,2只黑兔,每只小黑兔生了4只小兔,小明家一共有()只兔。

19、用1、2、3三个数可以组成()个不同的三位数,其中最小的数是()。

20、小强家住五楼,每一层楼有7级楼梯,小强放学回家要爬()级楼梯。

奥数专题之追及类型测试题

例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?

例2小张从家到公园,原打算每分钟走50米。为了提早10分钟到,他把速度加快,每分钟走75米。问家到公园多远?

例3一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶。如果速度是30千米/小时,要1小时才能追上;如果速度是35千米/小时,要40分钟才能追上。问自行车的速度是多少?

例4上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他。然后爸爸骑摩托车去追他,在离家4千米的地方追上了他。然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?

例5小华在8点到9点之间开始解一道题,当时时针,分针正好成一直线,解完题时两针正好第一次重合。问:小明解这道题用了多少时间?

1。当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米。

2。一只兔子奔跑时,每一步都跑0.5米;一只狗奔跑时,每一步都跑1.5米。狗跑一步时,兔子能跑三步。如果让狗和兔子在100米跑道上赛跑,那么获胜的一定是多少。

3。骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要多少分钟,电车追上骑车人。

4。亮亮从家步行去学校,每小时走5千米。回家时,骑自行车,每小时走13千米。骑自行车比步行的时间少4小时,亮亮家到学校的距离是多少。

5。从时针指向4点开始,再经过多少分钟,时钟与分针第一次重合。

6。甲、乙两人在400米长的环形跑道上跑步。甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙。乙每分钟跑多少米。

篇4:一年级奥数竞赛试题

一年级奥数竞赛试题精选

一、两个跳舞的.小朋友是哪些数字组成的?

二、画出盒子里串的珠子

三、想一想,填一填

四、数数下面图形各有多少个小方块?

五、哪只兔子最先吃到萝卜?

答:_______只兔子先吃到。

六、把下列算式按得数由小到大排列起来

10-7

12-10

3+5

4+0

9+9

_____________________________________

八、填上数,使横行、竖行的三个数相加都得10

九、一只钟的对面有一面镜子,镜子里的钟表如下图,那么钟表上正确的时间是几时?

答:钟表上现在时间是___________。

篇5:小学奥数竞赛试题

小学奥数竞赛试题

卖马

从前,有一个商人特别精明。有一次,他在马市上用10两银子买了一匹马,一转手以20两银子的价钱卖了出去;然后,他再用30两把它买进来,最后以40两的价钱卖出。在这次马的交易中,他赚了多少钱?

参考答案:

这次买卖可分为两次来看。第一次买进10两银子,卖出20两银子,所以赚了10两银子。第二次买进30两银子,卖出40两银子,因此也赚了10两银子。在马的交易中,商人共赚了20两银子。

人数

小亮走进教室,看见教室里只有8名同学,那么现在教室里一共有几名同学?

参考答案:

粗心的小朋友一看题目就认为是8名同学,但这个答案是错的,认真审题后可以发现,题中已经指出“小亮走进教室”,因此现在同学的人数应该包括小亮,所以一共有9名同学。

蜗牛爬井

一只蜗牛沿着10米深的井往上爬,白天向上爬5米,到夜里往下滑了3米,那么蜗牛什么时候可以爬出井口?

参考答案:

小蜗牛白天爬上了5米,晚上又掉下了3米,那实际上每天只能爬上去2米,爬前6米小蜗牛用了3天,还剩4米,因此第4天就可以爬出去了。

赛跑

小动物们举行动物运动会,在长跑比赛中有4只动物跑在小松鼠的前面,有3只动物跑在小松鼠的后面,一共有几只动物参加长跑比赛?

参考答案:

这道题要明确问题的关键,我们可以把跑步的所有小动物看成一个队列,小松鼠前面有4只小动物,后面有3只小动物,在这个队列中,就是没有数松鼠自己,所以求这队的总数还要把小松鼠加上。4+3+1=8(只),一共有8只动物参加长跑比赛。

数萝卜

小灰兔有10个萝卜,如果小白兔给小灰兔3个萝卜,它俩的萝卜就一样多,小白兔有多少个萝卜?

参考答案:

如果小白兔给小灰兔3个萝卜,它俩的萝卜就一样多,一样多时都是13个,求小白兔原来额萝卜,就要把它给小灰兔的3个加上所以是16个。

自然数列趣题

本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它。

例1小明从1写到100,他共写了多少个数字“1”?

解:分类计算:

“1”出现在个位上的数有:

1,11,21,31,41,51,61,71,81,91共10个;

“1”出现在十位上的数有:

10,11,12,13,14,15,16,17,18,19共10个;

“1”出现在百位上的数有:100共1个;

共计10+10+1=21个。

例2一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字?

解:分类计算:

从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);

从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);

第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:

9+180+3=192(个)。

例3把1到100的一百个自然数全部写出来,用到的所有数字的和是多少?

解:(见图5—1)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:

如图5—1所示,宽竖条带中都是个位数字,共有10条,数字之和是:

(1+2+3+4+5+6+7+8+9)×10

=45×10

=450。

窄竖条带中,每条都包含有一种十位数字,共有9条,数字之和是:

1×10+2×10+3×10+4×10+5×10+6×10+7×10

+8×10+9×10

=(1+2+3+4+5+6+7+8+9)×10

=45×10

=450。

另外100这个数的数字和是1+0+0=1。

所以,这一百个自然数的数字总和是:

450+450+1=901。

顺便提请同学们注意的`是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力。比如说这道题就还有更简洁的解法,试试看,你能不能找出来?

数与形相映

形和数的密切关系,在古代就被人们注意到了.古希腊人发现的形数就是非常有趣的例子.

例1 最初的数和最简的图相对应.

这是古希腊人的观点,他们说一切几何图形都是由数产生的.

例2 我国在春秋战国时代就有了“洛图”(见下图).图中也是用“圆点”表示数,而且还区分了偶数和奇数,偶数用实心点表示,奇数用空心点表示.你能把这张图用自然数写出来吗?见下图所示,这个图又叫九宫图.

例3 古希腊数学家毕达哥拉斯发现了“形数”的奥秘.比如他把1,3,6,10,15,…叫做三角形数.因为用圆点按这些数可以堆垒成三角形,见下图.

毕达哥拉斯还从圆点的堆垒规律,发现每一个三角形数,都可以写成从1开始的n个自然数之和,最大的自然数就是三角形底边圆点的个数.

第一个数:1=1

第二个数:3=1+2

第三个数:6=1+2+3

第四个数:10=1+2+3+4

第五个数:15=1+2+3+4+5

第n个数:1+2+3+4+5+…+n

指定的三角形数.比如第100个三角形数是:

例4 毕达哥拉斯还发现了四角形数,见下图.因为用圆点按四角形数可以堆垒成正方形,因此它们最受

毕达哥拉斯及其弟子推崇.

第一个数:1=12=1

第二个数:4=22=1+3

第三个数:9=32=1+3+5

第四个数:16=42=1+3+5+7

第五个数:25=52=1+3+5+7+9

第n个数:n2=1+3+5+9+…+(2n-1).

四角形数(又叫正方形数)可以表示成自然数的平方,也可以表示成从1开始的几个连续奇数之和.奇数的个数就等于正方形的一条边上的点数.

例5 类似地,还有四面体数见下图.

仔细观察可发现,四面体的每一层的圆点个数都是三角形数.因此四面体数可由几个三角形数相加得到:

第一个数:1

第二个数:4=1+3

第三个数:10=1+3+6

第四个数:20=1+3+6+10

第五个数:35=1+3+6+10+15.

例6 五面体数,见下图.

仔细观察可以发现,五面体的每一层的圆点个数都是四角形数,因此五面体数可由几个四角形数相加得到:

第一个数:1=1

第二个数:5=1+4

第三个数:14=1+4+9

第四个数:30=1+4+9+16

第五个数:55=1+4+9+16+25.

例7 按不同的方法对图中的点进行数数与计数,可以得出一系列等式,进而可猜想到一个重要的公式.

由此可以使人体会到数与形之间的耐人导味的微妙关系.

方法1:先算空心点,再算实心点:

22+2×2+1.

方法2:把点图看作一个整体来算32.

因为点数不会因计数方法不同而变,所以得出:

22+2×2+1=32.

方法1:先算空心点,再算实心点:

32+2×3+1.

方法2:把点图看成一个整体来算:42.

因为点数不会因计数方法不同而变,所以得出:

32+2×3+1=42.

方法1:先算空心点,再算实心点:

42+2×4+1.

方法2:把点图看成一个整体来算52.

因为点数不会因计数方法不同而变,所以得出:

42+2×4+1=52.

把上面的几个等式连起来看,进一步联想下去,可以猜到一个一般的公式:

22+2×2+1=32

32+2×3+1=42

42+2×4+1=52

n2+2×n+1=(n+1)2.

利用这个公式,也可用于速算与巧算.

如:92+2×9+1=(9+1)2=102=100

992+2×99+1=(99+1)2

=1002=10000.

篇6:小学奥数几何试题

小学奥数几何试题

有两个长方形,甲长方形的长是98769厘米,宽是98765厘米;乙长方形的长是98768厘米,宽是98766厘米。这两个长方形的面积哪个大?

分析与解利用长方形面积公式,直接计算出面积的大小,再进行比较,这是可行的,但是计算太复杂了。

可以利用乘法分配律,将算式变形,再去比较两个长方形的.面积大小,这就简便多了。

甲长方形的面积是:

98769×98765

=98768×98765+98765

乙长方形的面积是

98768×98766

=98768×98765+98768

比较98768×98765+98765与98768×98765+98768的大小,一眼便能看出:甲长方形的面积小,乙长方形的面积大。

篇7:小学二年级奥数经典试题参考

本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它。

例1小明从1写到100,他共写了多少个数字“1”?

解:分类计算:

“1”出现在个位上的数有:

1,11,21,31,41,51,61,71,81,91共10个;

“1”出现在十位上的数有:

10,11,12,13,14,15,16,17,18,19共10个;

“1”出现在百位上的数有:100共1个;

共计10+10+1=21个。

例2一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的.页码共用了多少个铅字?

解:分类计算:

从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);

从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);

第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:

9+180+3=192(个)。

篇8:小学奥数二年级试题参考

小学奥数二年级试题参考

第一题:运算符号

有甲乙两个水桶,乙桶里的水是甲桶里的水的3倍,从乙桶里面倒入一部分水到甲桶后,现在甲,乙桶里的.水一样多,都是22千克,原来甲桶、乙桶里各有水多少千克?

第二题:植树问题

在一条小路的一侧植树,每隔5米种一棵,共种了21棵,这条路有多长?后来小路又加长了30米,仍然每隔5米,现在这条路上一共种了多少棵树?

第三题:分糖

爸爸买了100块糖,他想放到10个盒子里,第一个盒子里放2个,第二个盒子里放4个,第三个盒子里放8个,第四个盒子里放16个,第五个盒子放32个……….,请问爸爸能办到吗?

答案解析:

第一题答案:

解:22×2=44(千克)

44÷(1+3)=11(千克)甲桶

11×3=33(千克)乙桶

第二题答案:

解:(1)路长:5×20=100(米)

(2)(100+30)÷5+1=27(棵)

第三题答案:

解:不能办到,因为2+4+8+16+32+64+………1024>100

篇9:小学四年级奥数试题

小学四年级奥数试题

有老师和甲、乙、丙3个学生,现在老师的年龄恰为3个学生的年龄之和;9年后,老师年龄为甲、乙两个学生年龄之和;又3年后,老师年龄为甲、丙两学生年龄之和;再3年后,老师年龄为乙、丙两学生年龄之和。问:现在各人的`年龄分别是多少岁?

答案与解析:

老师=甲+乙+丙,老师+9=甲+9+乙+9,丙的年龄是9岁;

老师+12=甲+12+丙+12,乙的年龄是12岁;

老师+15=乙+15+丙+15,丙的年龄是15岁;

所以,老师是9+12+15=36岁。

篇10:小学六年级奥数试题

小学六年级奥数试题

1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?

2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?

3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?

4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?

5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?

6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?

7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?

8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?

9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?

10.(周期问题)7月1日是星期六,求10月1日是星期几?

11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。0.8元一本的练习本有多少本?

12.(年龄问题)5年前父亲的年龄是儿子的7倍。后父亲的'年龄是儿子的二倍,父亲和儿子今年各是多少岁?

13.(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。求有多少个学生?有多少个笔记本?

14.(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果店里原来一共有多少个芒果?

15.(置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?

16.(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?

17.(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?

⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?

19. (鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?

20. (相遇问题)甲、乙两人同时从相距米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米?

篇11:小学奥数试题解析

小学奥数试题解析

1.找规律:根据规律填数

(1)2、4、6、8、()、

(2)1、4、7、()、

(3)30、25、20、()、

2.找规律:根据规律填数

(1)30、28、26、()、()……

(2)1、3、6、()……

(3)15、20、25、()……

3.题目:观察列的前面几项,找出规律,写出该数列的第100项来?

12345,23451,34512,45123,……

1.找规律答案:

(1)在这数列中,后一个比前一个数多2,根据这个规律,括号里里应该填10、12;

(2)在这个数列里,后一个比前一个数多3,根据这个规律,括号里里应该填10、13;

(3)在这个数列里,前一个数比后一个数多5,根据这个规律,括号里应填15、10。

2.找规律答案:

(1)在这数列中,前一个比后一个数多2,根据这个规律,括号里里应该填24、22、20;

(2)在这个数列里,第一个数加2是第二个数,第三个数加3是第三个数,依次规律,括号里应填10和15

(3)在这个数列里,前一个数比后一个数少5,根据这个规律,括号里应填30、35。

3.找规律答案:

为了寻找规律,再多写出几项出来:

12345,23451,34512,45123,51234,12345,23451,34512,45123,51234,12345,23451……

仔细观察,可发现该数列的.第6项同第1项,第7项同第2项,第8项同第3项……也就是说该数列各项的出现具有周期性,他们是循环出现的,一个循环节包含5项。100÷5=20

可见第100项与第5项、第10项一样(项数都能被5整除),即第100项是51234。

小学奥数试题

奥数试题

小学奥数模拟试题

奥数试题:颜色组合

小学五年级奥数综练习试题

一年级奥数补课教学计划

小学奥数课件

小学奥数知识点

奥数杯赛试题揭秘-几何

小学四年级植树问题的奥数试题

《小学一年级经典奥数试题(共11篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档