下面小编为大家带来小学奥数模拟试题,本文共10篇,希望大家喜欢!

篇1:小学奥数模拟试题
小学奥数模拟试题
现在的奥数,其难度和深度远远超过了同级的义务教育教学大纲。而相对于这门课程,一般学校的数学课应该称为“普通基础数学”。特此为大家准备了关于如何放置的小学奥数六年级试题。
请将16个棋子分放在边长分别为30厘米、20厘米、10厘米的三个正方盒子里,使大盒子里的棋子数是中盒子里棋子数的2倍,中盒子里的棋子数是小盒子里棋子数的2倍,问:应当如何放置?
答案:①先分别在大、中、小盒子内装入4、8、4个棋子,然后把小盒子和中盒子都放在大盒子里,但小盒子不在中盒子内。
②先分别在大、中、小盒子内装入8、4、4个棋子,然后把小盒子放到中盒子里,再把中盒子放到大盒子里即可。
解析:把小盒子里的'棋子看作1份,那么中盒子就是2份,大盒子就是4份。这说明大盒子里的棋子数必须是4的倍数,并且还占总数的一大半。所以大盒子里的棋子数只能是12个或16个。
①如果大盒子里有12个棋子,中盒子里就有6个,小盒子里就有3个。可是这无论如何也无法满足一共有16个棋子这个条件。因为12+6=18,12+3=15。
②如果大盒子里有16个棋子,中、小盒子就分别是8个和4个棋子。这时就又分两种情况了:一种是小盒子放在中盒子里,那么就分别在中、小盒子里各放4个棋子,再把小盒子放到中盒子里;另一种就是小盒子不放在中盒子里,小盒子4个,中盒子8个。这样就得到了两个可能的结果:
篇2:六年级奥数模拟试题
六年级奥数模拟试题
一 、填空题。
1、恰好有两位数字相同的三位数共有个。
2、有许多边长是3 cm,2 cm,1 cm的正方形纸板。用这些正方形纸板拼成一个长5 cm,宽3 cm的长方形,一共有()种不同的拼法。(通过翻转能相互得到的拼法算一种拼法)
3、某厂计划全年完成1600万元产值,上半年完成了全年计划的 ,下半年比上半年多完成 ,这样全年产值可超过计划()吨。
4、一件工程甲单独做要6小时完成,乙单独做要10小时完成,如果按照甲、乙、甲、乙……顺序交替工作,每次工作1小时,那么要()分钟才能完成。
5、一个数的20倍减去1能被153整除,这样的自然数中最小的`是()。
6、有一个长方体,长、宽、高都是整厘米数。它的相邻三个面的面积分别是96平方厘米,40平方厘米和60平方厘米。这个长方体的体积是()立方厘米。
7、某校的学生人数是个完全平方数,的学生人数比上一年多101人,这个数字也是一个完全平方数。该校20的学生人数是()。
8、一个铁路工人在路基下原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用37.5秒,则这列火车每小时行()千米。
9、假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是()度。
二、解答题。
1、正义路小学共有1000名学生,为支援“希望工程”,同学们纷纷捐书,有一半男生每人捐了9本书,另一半男生每人捐了5本书;一半女生每人捐了8本书,另一半女生每人捐了6本书。全校学生共捐了多少本书?
2、在A医院,甲种药有20人接受试验,结果6人有效;乙种药有10人接受试验,结果只有2人有效。在B医院,甲种药有80人接受试验,结果40人有效;乙种药有990人接受试验,结果有478人有效。综合A、B两家医院的试验结果,哪种药总的疗效更好?
3、甲乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高 ,乙的工作效率比单独做时提高 ,甲乙合作6小时完成了这项工作。如果甲单独做需要11小时,那么乙单独做需要几小时?
4、一辆大货车与一辆小轿车同时从甲地开往乙地,小轿车到达乙地后立即返回,返回时速度提高 。出发2小时后,小轿车与大货车第一次相遇,当大货车到达乙地时,小轿车刚好走到甲乙两地中点。小轿车在甲乙两地往返一次需要多少时间?
篇3:奥数模拟试题及答案
奥数模拟试题及答案
【归一问题】
1、难度:
一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?
【解析】先求每小时航行多少千米,再求航行270千米需要几小时,最后求出共需多少小时。
每小时航行多少千米:108÷4=27(千米)
270千米需航行多少小时:270÷27=10(小时)
共需多少小时:10+4=14(小时)
综合算式:270÷(108÷4)+4=270÷27+4=10+4=14(小时)
结尾:以上为大家提供了小学二年级奥数模拟试题及答案:归一问题,希望能够真正的帮助到大家。
篇4:二年级奥数模拟试题
二年级奥数模拟试题
1、桌上放着一堆火柴,共16根。由甲、乙两人轮流拿,每人每次拿1至3根,拿到最后1根的人获胜。问甲该怎样拿才能保证获胜?
2、桌上放着一堆火柴,共30根。由甲、乙两人轮流拿,每人每次拿1至3根,拿到最后1根的人胜利。问甲该怎样拿才能保证获胜?
3、有69块糖,甲、乙两人轮流拿,每人每次可取不多于10块的'任意数,谁取完糖使对方再无糖可取为胜,如果让甲先取,问谁能取胜,怎样才能取胜?
4、抢十八,两人轮流报数,从1开始,每人每次报一个数或两个连续数,谁先报到18谁就获胜,问怎样报才能取胜?
5、有两堆火柴,一堆5根,一堆7根。两人轮流拿,规定一次只能在其中一堆中拿,拿几根不限,最后一个把火柴拿完的人获胜。问怎样才能获胜?
6、两人轮流报数,从1开始,每人每次报一个数或五个连续数,谁先报到62谁就获胜,问怎样报才能取胜?
篇5:济南小升初奥数模拟试题
济南小升初奥数模拟试题
试题预览
一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米。当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米。
请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数。让第二个是第一个的2倍,第3个是第一个的'3倍,第四个是第一个的4倍,第五个是第一个的5倍。
篇6:奥数试题
奥数试题
1、20个小朋友报数,单数一行,双数一行。单数第5个数是号,双数第10个数是()号。
2、天平板上有8个同样的乒乓球,左边4个,右边4个。如果拿掉1个球,板上还有()个球。
3、1+2+3+4+5+6+7+8+9+10=()
4、()-4=()-1
小朋友排队去公园,小华前面有4个人,后面有10个人。小华排在第()个,一共有()个小朋友去公园。
5、小动物开运动会,50米赛跑的'成绩表如下;请在跑得最快的动物下面打“√”,跑得最慢的打“×”。
动物名小兔()小鹿()小狗()小猪()
时间12秒8秒11秒15秒
6、张老师带了男女同学各10名去看电影,一共要买()张电影票。
7、把没有按规律写的数划去;
(1)1、3、5、6、7、9、11;(2)3、6、9、12、15、16、18;
(3)2、5、8、11、12、14、17;(4)1、5、6、9、13、17、21;
篇7:小学奥数竞赛试题
小学奥数竞赛试题
卖马
从前,有一个商人特别精明。有一次,他在马市上用10两银子买了一匹马,一转手以20两银子的价钱卖了出去;然后,他再用30两把它买进来,最后以40两的价钱卖出。在这次马的交易中,他赚了多少钱?
参考答案:
这次买卖可分为两次来看。第一次买进10两银子,卖出20两银子,所以赚了10两银子。第二次买进30两银子,卖出40两银子,因此也赚了10两银子。在马的交易中,商人共赚了20两银子。
人数
小亮走进教室,看见教室里只有8名同学,那么现在教室里一共有几名同学?
参考答案:
粗心的小朋友一看题目就认为是8名同学,但这个答案是错的,认真审题后可以发现,题中已经指出“小亮走进教室”,因此现在同学的人数应该包括小亮,所以一共有9名同学。
蜗牛爬井
一只蜗牛沿着10米深的井往上爬,白天向上爬5米,到夜里往下滑了3米,那么蜗牛什么时候可以爬出井口?
参考答案:
小蜗牛白天爬上了5米,晚上又掉下了3米,那实际上每天只能爬上去2米,爬前6米小蜗牛用了3天,还剩4米,因此第4天就可以爬出去了。
赛跑
小动物们举行动物运动会,在长跑比赛中有4只动物跑在小松鼠的前面,有3只动物跑在小松鼠的后面,一共有几只动物参加长跑比赛?
参考答案:
这道题要明确问题的关键,我们可以把跑步的所有小动物看成一个队列,小松鼠前面有4只小动物,后面有3只小动物,在这个队列中,就是没有数松鼠自己,所以求这队的总数还要把小松鼠加上。4+3+1=8(只),一共有8只动物参加长跑比赛。
数萝卜
小灰兔有10个萝卜,如果小白兔给小灰兔3个萝卜,它俩的萝卜就一样多,小白兔有多少个萝卜?
参考答案:
如果小白兔给小灰兔3个萝卜,它俩的萝卜就一样多,一样多时都是13个,求小白兔原来额萝卜,就要把它给小灰兔的3个加上所以是16个。
自然数列趣题
本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它。
例1小明从1写到100,他共写了多少个数字“1”?
解:分类计算:
“1”出现在个位上的数有:
1,11,21,31,41,51,61,71,81,91共10个;
“1”出现在十位上的数有:
10,11,12,13,14,15,16,17,18,19共10个;
“1”出现在百位上的数有:100共1个;
共计10+10+1=21个。
例2一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字?
解:分类计算:
从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);
从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);
第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:
9+180+3=192(个)。
例3把1到100的一百个自然数全部写出来,用到的所有数字的和是多少?
解:(见图5—1)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:
如图5—1所示,宽竖条带中都是个位数字,共有10条,数字之和是:
(1+2+3+4+5+6+7+8+9)×10
=45×10
=450。
窄竖条带中,每条都包含有一种十位数字,共有9条,数字之和是:
1×10+2×10+3×10+4×10+5×10+6×10+7×10
+8×10+9×10
=(1+2+3+4+5+6+7+8+9)×10
=45×10
=450。
另外100这个数的数字和是1+0+0=1。
所以,这一百个自然数的数字总和是:
450+450+1=901。
顺便提请同学们注意的`是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力。比如说这道题就还有更简洁的解法,试试看,你能不能找出来?
数与形相映
形和数的密切关系,在古代就被人们注意到了.古希腊人发现的形数就是非常有趣的例子.
例1 最初的数和最简的图相对应.
这是古希腊人的观点,他们说一切几何图形都是由数产生的.
例2 我国在春秋战国时代就有了“洛图”(见下图).图中也是用“圆点”表示数,而且还区分了偶数和奇数,偶数用实心点表示,奇数用空心点表示.你能把这张图用自然数写出来吗?见下图所示,这个图又叫九宫图.
例3 古希腊数学家毕达哥拉斯发现了“形数”的奥秘.比如他把1,3,6,10,15,…叫做三角形数.因为用圆点按这些数可以堆垒成三角形,见下图.
毕达哥拉斯还从圆点的堆垒规律,发现每一个三角形数,都可以写成从1开始的n个自然数之和,最大的自然数就是三角形底边圆点的个数.
第一个数:1=1
第二个数:3=1+2
第三个数:6=1+2+3
第四个数:10=1+2+3+4
第五个数:15=1+2+3+4+5
…
第n个数:1+2+3+4+5+…+n
指定的三角形数.比如第100个三角形数是:
例4 毕达哥拉斯还发现了四角形数,见下图.因为用圆点按四角形数可以堆垒成正方形,因此它们最受
毕达哥拉斯及其弟子推崇.
第一个数:1=12=1
第二个数:4=22=1+3
第三个数:9=32=1+3+5
第四个数:16=42=1+3+5+7
第五个数:25=52=1+3+5+7+9
…
第n个数:n2=1+3+5+9+…+(2n-1).
四角形数(又叫正方形数)可以表示成自然数的平方,也可以表示成从1开始的几个连续奇数之和.奇数的个数就等于正方形的一条边上的点数.
例5 类似地,还有四面体数见下图.
仔细观察可发现,四面体的每一层的圆点个数都是三角形数.因此四面体数可由几个三角形数相加得到:
第一个数:1
第二个数:4=1+3
第三个数:10=1+3+6
第四个数:20=1+3+6+10
第五个数:35=1+3+6+10+15.
例6 五面体数,见下图.
仔细观察可以发现,五面体的每一层的圆点个数都是四角形数,因此五面体数可由几个四角形数相加得到:
第一个数:1=1
第二个数:5=1+4
第三个数:14=1+4+9
第四个数:30=1+4+9+16
第五个数:55=1+4+9+16+25.
例7 按不同的方法对图中的点进行数数与计数,可以得出一系列等式,进而可猜想到一个重要的公式.
由此可以使人体会到数与形之间的耐人导味的微妙关系.
方法1:先算空心点,再算实心点:
22+2×2+1.
方法2:把点图看作一个整体来算32.
因为点数不会因计数方法不同而变,所以得出:
22+2×2+1=32.
方法1:先算空心点,再算实心点:
32+2×3+1.
方法2:把点图看成一个整体来算:42.
因为点数不会因计数方法不同而变,所以得出:
32+2×3+1=42.
方法1:先算空心点,再算实心点:
42+2×4+1.
方法2:把点图看成一个整体来算52.
因为点数不会因计数方法不同而变,所以得出:
42+2×4+1=52.
把上面的几个等式连起来看,进一步联想下去,可以猜到一个一般的公式:
22+2×2+1=32
32+2×3+1=42
42+2×4+1=52
…
n2+2×n+1=(n+1)2.
利用这个公式,也可用于速算与巧算.
如:92+2×9+1=(9+1)2=102=100
992+2×99+1=(99+1)2
=1002=10000.
篇8:小学奥数几何试题
小学奥数几何试题
有两个长方形,甲长方形的长是98769厘米,宽是98765厘米;乙长方形的长是98768厘米,宽是98766厘米。这两个长方形的面积哪个大?
分析与解利用长方形面积公式,直接计算出面积的大小,再进行比较,这是可行的,但是计算太复杂了。
可以利用乘法分配律,将算式变形,再去比较两个长方形的.面积大小,这就简便多了。
甲长方形的面积是:
98769×98765
=98768×98765+98765
乙长方形的面积是
98768×98766
=98768×98765+98768
比较98768×98765+98765与98768×98765+98768的大小,一眼便能看出:甲长方形的面积小,乙长方形的面积大。
篇9:小学二年级奥数经典试题参考
本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它。
例1小明从1写到100,他共写了多少个数字“1”?
解:分类计算:
“1”出现在个位上的数有:
1,11,21,31,41,51,61,71,81,91共10个;
“1”出现在十位上的数有:
10,11,12,13,14,15,16,17,18,19共10个;
“1”出现在百位上的数有:100共1个;
共计10+10+1=21个。
例2一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的.页码共用了多少个铅字?
解:分类计算:
从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);
从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);
第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:
9+180+3=192(个)。
篇10:小学奥数二年级试题参考
小学奥数二年级试题参考
第一题:运算符号
有甲乙两个水桶,乙桶里的水是甲桶里的水的3倍,从乙桶里面倒入一部分水到甲桶后,现在甲,乙桶里的.水一样多,都是22千克,原来甲桶、乙桶里各有水多少千克?
第二题:植树问题
在一条小路的一侧植树,每隔5米种一棵,共种了21棵,这条路有多长?后来小路又加长了30米,仍然每隔5米,现在这条路上一共种了多少棵树?
第三题:分糖
爸爸买了100块糖,他想放到10个盒子里,第一个盒子里放2个,第二个盒子里放4个,第三个盒子里放8个,第四个盒子里放16个,第五个盒子放32个……….,请问爸爸能办到吗?
答案解析:
第一题答案:
解:22×2=44(千克)
44÷(1+3)=11(千克)甲桶
11×3=33(千克)乙桶
第二题答案:
解:(1)路长:5×20=100(米)
(2)(100+30)÷5+1=27(棵)
第三题答案:
解:不能办到,因为2+4+8+16+32+64+………1024>100
★奥数试题
文档为doc格式