欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

三年级奥数试题之正方体猜数

时间:2023-03-31 07:58:16 其他范文 收藏本文 下载本文

下面是小编为大家收集的三年级奥数试题之正方体猜数,本文共10篇,仅供参考,欢迎大家阅读,一起分享。

三年级奥数试题之正方体猜数

篇1:三年级奥数试题之正方体猜数

三年级奥数试题之正方体猜数

一个正方体木块有六个面,把这个木块放在桌面上,每一个面上都写着一个数,位于对面上的两个数之和都是13。小明能看到顶面和相邻的两个侧面上的数,这三个数的和是18;小青能看到顶面和另外的相邻的两个侧面上的数,这三个数的和是24。你知道贴着桌面、看不到的那个底面上的数是几吗?

答案与解析:

小明看到的三个面上的数的和加上小青看到的三个面上的`数的和共是18+24=42,也就是说,两个顶面上的数加上四个侧面上的数的和一共是42。题中告诉我们,四个侧面上的数的和是2个13,即26。

从42中减去26所得的结果,正好是顶面上的数的2倍;因此顶面上的数是

(42-26)÷2=8

由此得出,看不到的那个底面上的数是13-8=5。

答:看不到的那个底面上的数是5。

篇2:三年级奥数试题

三年级奥数试题分享

三年级奥数试题分享

奥数是一种理性的精神,使人类的思维得以运用到最完善的程度.让我们一起来阅读三年级奥数试题之自然数,感受奥数的奇异世界!

用2,3,4,5这四个自然数可以排出多少个不同的四位数?这些四位数中最大的是几?最小的是几?

点拨:按照千位、百位、十位、个位的顺序考虑所求的四位数。千位上的数字可以是2,3,4,5四个数字中的`任何一个,有3种方法;十位数字只能在剩下的两个数中选择,故有2种方法;个位数字只有1种方法。

解:4*3*2*1=24(个);最大的是5432,最小的是2345。

答:可排出24个不同的四位数,最大的是5432,最小的是2345.

篇3:奥数试题

奥数试题

1、20个小朋友报数,单数一行,双数一行。单数第5个数是号,双数第10个数是()号。

2、天平板上有8个同样的乒乓球,左边4个,右边4个。如果拿掉1个球,板上还有()个球。

3、1+2+3+4+5+6+7+8+9+10=()

4、()-4=()-1

小朋友排队去公园,小华前面有4个人,后面有10个人。小华排在第()个,一共有()个小朋友去公园。

5、小动物开运动会,50米赛跑的'成绩表如下;请在跑得最快的动物下面打“√”,跑得最慢的打“×”。

动物名小兔()小鹿()小狗()小猪()

时间12秒8秒11秒15秒

6、张老师带了男女同学各10名去看电影,一共要买()张电影票。

7、把没有按规律写的数划去;

(1)1、3、5、6、7、9、11;(2)3、6、9、12、15、16、18;

(3)2、5、8、11、12、14、17;(4)1、5、6、9、13、17、21;

篇4:三年级下学期奥数试题

1.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克.桶里原来有水多少千克?

180+80=260(千克),260×2-30=490(千克),490×2=980(千克).

2.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本.甲、乙两书架上各有图书多少本?

答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本).

3.小燕买一套衣服用去185元,问上衣和裤子各多少元?

裤子:(185-5)÷(2+1)=60(元);

上衣:60×2+5=125(元).

4.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?

如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188.如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍.同样,这时丙的年龄也是乙两倍.所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁.甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁).

5.小明、小华捉完鱼.小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍.如果我给你1条,咱们就一样多了.“请算出两个各捉了多少条鱼.

小明比小华多1×2=2(条).如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条).原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条).

6.小芳去文具店买了13本语文书,8本算术书,共用去10元.已知6本语文本的价钱与4本算术本的价钱相等.问:1本语文本、1本算术本各多少钱?

8÷4×6=12,即8本算术本与12本语文体价钱相等.所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角.

7.找规律,在括号内填入适当的数. 75,3,74,3,73,3,,().

答案:72,3.

8找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),().

奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4

9.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),().24,2.

10.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),().

答案:将原数列拆分成两列,应填:73,5.

篇5:三年级下学期奥数试题

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?

路分成100÷10=10段,共栽树10+1=11棵.

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?

3×(12-1)=33棵.

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?

200÷10=20段,20-1=19次.

4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?

从第一节到第13节需10×(13-1)=120秒,120÷60=2分.

5.在花圃的周围方式菊花,每隔1米放1盆花.花圃周围共20米长.需放多少盆菊花?

20÷1×1=20盆

6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米.从发电厂到闹市区有多远?

30×(250-1)=7470米.

7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费.他这个月收入多少元?

[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元.

8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?

1×2×2=4千米

9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工.问:这批零件有多少个?

(25+10)×2=70个,(70+10)×2=160个.综合算式:【(25+10)×2+10】×2=160个

10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米.问它几天可以长到4厘米?

16÷2÷2=4(厘米),16-1-1=14(天)

篇6:三年级奥数试题和解析

三年级奥数试题和解析

【网络综合 - 小学奥数试题】

这篇《三年级奥数试题及解析:百分数应用题》,是特地为大家整理的,希望对大家有所帮助!

王爷爷去年在自家小屋后面的山坡上种下150棵小树,过了一段时间发现枯死了10棵,于是又补种10棵,结果全部成活,王爷爷去年植树的'成活率是多少?

考点:百分率应用题.

分析:成活率是指成活的棵数占总棵数的百分数,先求出成活的棵数及植树总棵数,再用成活的棵数除以总棵数乘上100%即可.

解答:解:(150-10+10)÷(150+10)×100%,

=150÷160×100%,

=93.75%;

答:王爷爷去年植树的成活率是93.75%.

点评:此题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘百分之百,带入数据计算即可.

篇7:小升初奥数试题

有关小升初奥数试题

二年级

1.仔细观察,找出变化规律,想一想空格里应填什么图形?

△□○ □○△ ○△□

□○△ ○△□ △□○

○△□ △□○

2.把2、3、4、6、7、9分别填到下面六个圆圈中,使三个算式成立。

○+○=10,○-○=5 ,○+○=8

三年级

1.育才小学五年级举行数学竞赛,共10题,每做对一题得8分,错一题倒扣5分。张小灵最终得分为41分,她做对了多少题?

2.37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?

四年级

1.共有四人进行跳远、百米、跳高、铅球四项比赛,规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每一单项比赛中四人得分互不相同,总分第一名共获17分,其中跳高得分低于其它项得分,总分第三名共获11分,其中跳高得分高于其它项得分,总分第二名的人铅球得多少分?

2.在一场NBA篮球赛中,姚明开场后不久连连得分,已知他投中10个球(没有罚球),共23分,问姚明投中多少个2分球,多少个3分球?

五年级

1.计算:

(1)(101)2+(1011)2

(2)(1111)2+(1010)2+(1001)2

(3)(1011)2-(111)2

(4)(1011)2×(101)2

2.一个数列有如下规则,当数n 是奇数时,下一个数是(n+1);当n是偶数时,下一个数是n÷2。如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个是多少?

六年级

1.用10米长的钢筋做原料,来截取3米、4米长的的两种钢筋各100根,问至少要用去原料多少根?

2.一条小河流过A、B、C三镇。A、B两镇之间有汽船来往,汽船在静水中的速度为11千米/小时。B、C两镇之间有木船摆渡,木船在静水中的速度为 3.5千米/小时。已知A、C两镇水路相距50千米,水速度为1.5千米/小时。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船有顺流而下到C镇,共用8小时,那么A、B两镇的距离是多少千米?

二年级

1.仔细观察,找出变化规律,想一想空格里应填什么图形?

解答:是□○△。可以横着、竖着、斜着观察。

2.把2、3、4、6、7、9分别填到下面六个圆圈中,使三个算式成立。

○+○=10,○-○=5,○+○=8

解答::在2、3、4、6、7、9中相加等于8的只有2和6,先把2、6填在第三个算式中,剩下的就可填成3+7=10,9-4=5.

三年级

1.育才小学五年级举行数学竞赛,共10题,每做对一题得8分,错一题倒扣5分。张小灵最终得分为41分,她做对了多少题?

解答:假设全对得10×8=80(分);实际得41分,少得80-41=39分。因为每一题做对做错差13分:所以做错39÷13=3题,因此做对了10-3=7题。

2.37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?

解答:如果由37÷5=7……2,得出7+1=8次,那么就错了。因为忽视了至少要有1个人将小船划回来这个特定的要求。实际情况是:前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河。

因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,所以至少渡河[(37-5)÷4]×2+1=17(次)。

四年级

1.共有四人进行跳远、百米、跳高、铅球四项比赛,规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每一单项比赛中四人得分互不相同,总分第一名共获17分,其中跳高得分低于其它项得分,总分第三名共获11分,其中跳高得分高于其它项得分,总分第二名的人铅球得多少分?

解答:

如表:17=5+5+5+2,而且只有这种拆分方法,又因为第一名跳高得分低于其它项得分,所以第一名跳高得2分,其它3项得5分。

因为11=5+2+2+2=3+3+3+2并且第三名跳高得分高于其它项得分,所以第三名跳高得5分,其它三项得2分。

第二名和第四名共可得4??3+1??4=16分,第三名总分11分,第二名至少12分,每项各得3分。第四名至少得4分,每项各得1分。

所以第二名铅球得3分。

2.在一场NBA篮球赛中,姚明开场后不久连连得分,已知他投中10个球(没有罚球),共23分,问姚明投中多少个2分球,多少个3分球?

解答:假设投中的10个球全是2分球,得:2??10=20(分),比实际少:23-20=3(分)。

用1个3分球去换1个2分球差出:3-2=1(分),可以换3÷1=3(个)3分球,2分球有:10-3=7(个)。

五年级

1.计算:

(1)(101)2+(1011)2

(2)(1111)2+(1010)2+(1001)2

(3)(1011)2-(111)2

(4)(1011)2×(101)2

解答:

(1)(101)2+(1011)2=(10000)2

(2)(1111)2+(1010)2+(1001)2=(100010)2

(3)(1011)2-(111)2=(100)2

(4)(1011)2×(101)2=(110111)2

2.一个数列有如下规则,当数n是奇数时,下一个数是(n+1);当n是偶数时,下一个数是n÷2。如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个是多少?

解答:根据倒退规则最初那个数是奇数的只有43。

六年级

1.用10米长的钢筋做原料,来截取3米、4米长的的两种钢筋各100根,问至少要用去原料多少根?

解答:10米的钢筋有三种解法较省料:

(1)截成3米、3米、4米三段,无残料;

(2)截成3米、3米、3米三段,残料1米;

(3)截成4米、4米两段,残料2米;

由于截法(1)最理想,应该充分利用截法(1)。考虑用原料50根,可以截成3米长的100根,4米长的50根,还差50根4米长的钢筋。应用截法(3),截原料25根,可以得到50根4米长的钢筋。所以,至少需要原料75根,其中50根按截法(1)截取,25根按截法(3)截取。

2.一条小河流过A、B、C三镇。A、B两镇之间有汽船来往,汽船在静水中的速度为11千米/小时。B、C两镇之间有木船摆渡,木船在静水中的`速度为3.5千米/小时。已知A、C两镇水路相距50千米,水速度为1.5千米/小时。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船有顺流而下到C镇,共用8小时,那么A、B两镇的距离是多少千米?

解答:汽船的顺水速度是11+1.5=12.5(千米/小时)。木船顺水速度是3.5+1.5=5(千米/小时)。某人在船上的行驶时间为8-1=7(小时)。假设他从A到C均乘汽船,所走路程为12.5×7=87.5(千米)。此假设较实际A到C的距离多87.5-50=37.5(千米)。汽船与木船的速度差为12.5-5=7.5(千米/小时)。乘木船的时间为37.5÷7.5=5(小时),乘木船走的路程,即B到C的距离为5×5=25(千米)。所以A到B的距离是50-25=25(千米)。

篇8: 初中奥数试题

初中奥数试题

填空题:

①计算:定义一种新运算 a☆b 满足:a☆b=b×10+a×2.那么☆130=_____________.

②从 年到 年的12 年中,物价涨幅为150%(即1999 年用100 元能购买的物品,2010 年要比原来多花150 元才能购买).若某个企业的一线员工这12 年来工资都没变,按购买力计算,相当于工资下降了 %.

③右图中大圆的半径是 20 厘米,7 个小圆的半径都是10 厘米.那么阴影图形的面积是平方厘米(π取3.14).

④某届“数学解题能力展示”读者评选活动初试共有1 名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的

___________.

⑤右图是一个除法竖式.这个除法竖式的被除数是___________.

⑥算式 1!×3-2!×4+3!×5-4!×6++!×2011-2010!×+2011!的计算结果是___________.

⑦春节临近,从2011 年1 月17 日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1 月31 日,厂里还剩下工人121 名,在这15 天期间,统计工厂工人的工作量是2011 个工作日(一人工作一天为1 个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1 月31 日,回家过年的工人共有___________人.

⑧有一个整数,它恰好是它的约数个数的2011 倍.这个整数的最小值是___________.

⑨一个新建 5 层楼房的一个单元每层有东西2 套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5 人在花园中聊天: 赵说:“我家是第3 个入住的,第1 个入住的就住我对门.” 钱说:“只有我一家住在最高层.”

孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.” 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106 号,104 号空着,108 号也空着.”

他们说的话全是真话.设第1、2、3、4、5 家入住的房号的个位数依次为A、B、C、D、E,那么五位数ABCDE =___________.

⑩6 支足球队,每两队间至多比赛一场.如果每队恰好比赛了2 场,那么符合条件的.比赛安排共有___________ 种.

0~9 可以组成两个五位数A 和B,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有___________ 个.

甲、乙两人分别从A、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B.当甲、乙两人第一次迎面相遇在C 地时,丙还有100 米才到C;当丙走到C 时,甲又往前走了108 米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A、B 两地间的路程是___________米.

如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为___________平方厘米.

用 36 个3×2×1 的实心小长方体拼成一个6×6×6 的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到___________个小长方体.

篇9:奥数试题解析

甲多开支100元,三年后负债600元.求每人每年收入多少?

S的末四位数字的和是多少?

一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

求和

证明:质数p除以30所得的余数一定不是合数.

若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.

如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.

答案解析:

所以 x=5000(元).

所以S的末四位数字的和为1+9+9+5=24.

因为

时,a-b0,即ab.即当b0或b0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则

由②有2x+y=20, ③

由①有y=12-x.将之代入③得

2x+12-x=20.

所以x=8(千米),于是y=4(千米).

5.第n项为

所以设p=30q+r,030.因为p为质数,故r0,即0

由①式得(2p-1)(2q-1)=mpq,即

(4-m)pq+1=2(p+q).

可知m4.由①,m0,且为整数,所以m=1,2,3.下面分别研究p,q.

(1)若m=1时,有

解得p=1,q=1,与已知不符,舍去.

(2)若m=2时,有

因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.

(3)若m=3时,有

解之得

故 p+q=8.

8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.

9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加

另一方面,S△PCD=S△CND+S△CNP+S△DNP.

因此只需证明

S△AND=S△CNP+S△DNP.

由于M,N分别为AC,BD的'中点,所以

S△CNP=S△CPM-S△CMN

=S△APM-S△AMN

=S△ANP.

又S△DNP=S△BNP,所以

S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.

篇10:奥数试题及答案

奥数试题及答案

一个等差数列的第2项是2.8,第三项是3.1,这个等差数列的第15项是()。

考点:等差数列.

分析:这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.

解答:解:公差是:3.1-2.8=0.3,

首项是2.8-0.3=2.5,

2.5+(15-1)×0.3,

=2.5+4.2,

=6.7;

故答案为:6.7.

点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).

奥数试题

小学奥数试题

小学奥数模拟试题

奥数试题:颜色组合

小学三年级奥数测试题

奥数教学计划

小学一年级经典奥数试题

奥数杯赛试题揭秘-几何

三年级奥数题及答案

奥数应用题训练

《三年级奥数试题之正方体猜数(推荐10篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档