下面是小编给大家带来关于《平面向量》练习题及答案,本文共11篇,一起来看看吧,希望对您有所帮助。

篇1:《平面向量》练习题及答案
《平面向量》练习题及答案
一、教材分析
全章地位:平面向量基本定理是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理。这三个定理可以看成是在一定范围内向量分解的唯一性定理。
应用空间:平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。
二、教学目标
【知识与能力】(1)了解平面向量基本定理及其意义,会用基底表示一向量,掌握两向量夹角的定义及两向量垂直的概念,会初步求解简单两向量的夹角;(2)培养学生作图、判断、求解的基本能力。
【过程与方法】(1)经历平面向量基本定理的探究过程,让学生体会由特殊到一般的思维方法;(2)让学生体会用基底表示平面内一向量的方法、 求两简单向量的夹角的方法。
【情感态度与价值观】培养学生动手操作、观察判断的能力,体会数形结合思想。
三、教学重点
平面向量基本定理及其意义, 两向量夹角的'简单计算。
四、教学难点
平面向量基本定理的探究,向量夹角的判断。
五、学情分析
前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
六、学法指导
教师平等地参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员、全过程参与,保证学生的认知水平和情感体验分层次向前推进。
七、教学基本流程
定理探究
↓
形成定理
↓
定理思考与应用
↓
定义形成与应用
八、教学情境设计
篇2:平面向量加减法练习题
平面向量加减法练习题
平面向量加减法练习题
一、选择题
1.若a是任一非零向量,b是单位向量,下列各式①|a|>|b|;②a∥b; ③|a|>
0;④|b|=±1;⑤a= )
ab,其中正确的有(
A.①④⑤
B.③
C.①②③⑤
D.②③⑤
2.四边形ABCD中,若向量AB与CD是共线向量,则四边形ABCD( )
A.是平行四边形
B.是梯形
C.是平行四边形或梯形
D.不是平行四边形,也不是梯形
3.把平面上所有单位向量归结到共同的始点,那么这些向量的终点所构成的图形是(
A.一条线段
B.一个圆面
C.圆上的一群弧立点
D.一个圆
4.若a,b是两个不平行的非零向量,并且a∥c, b∥c,则向量c等于( )
A. 0
B. a
C. b
D. c不存在
5.向量(AB+MB)+(BO+BC)+OM化简后等于( )
A. BC B. AB C. AC D.AM
6. a、b为非零向量,且|a+b|=|a|+|b|则( )
A. a∥b且a、b方向相同 B. a=b
C. a=-b
D.以上都不对
7.化简(AB-CD)+(BE-DE)的结果是( )
A. CA
B. 0
C. AC
D. AE
8.在四边形ABCD中,AC=AB+AD,则( )
A.ABCD是矩形
B.ABCD是菱形
C.ABCD是正方形 D.ABCD是平行四边形
9.已知正方形ABCD的边长为1,AB =a,AC=c, BC=b,则|a+b+c|为( )
A.0
B.3
C.
2
D.2
2
10.下列四式不能化简为AD的是( )
A.( AB+CD)+ BC B.( AD+MB)+( BC+CM) C. MB+AD-BM
D. OC-OA+CD
11.设b是a的相反向量,则下列说法错误的是( )
A. a与b的长度必相等 B. a∥b C.a与b一定不相等 D. a是b的相反向量 12.如果两非零向量a、b满足:|a|>|b|,那么a与b反向,则( ) A.|a+b|=|a|-|b| C.|a-b|=|b|-|a|
二、判断题
1.向量AB与BA是两平行向量.( )
2.若a是单位向量,b也是单位向量,则a=b.( )
3.长度为1且方向向东的向量是单位向量,长度为1而方向为北偏东30°的向量就不是单位向量.( )
4.与任一向量都平行的向量为0向量.( )
5.若AB=DC,则A、B、C、D四点构成平行四边形.( )
7.设O是正三角形ABC的中心,则向量AB的长度是OA长度的( ) 3倍.
B.|a-b|=|a|-|b| D.|a+b|=|a|+|b|
9.在坐标平面上,以坐标原点O为起点的单位向量的终点P的`轨迹是单位圆.( )
10.凡模相等且平行的两向量均相等.( )
三、填空题
1.已知四边形ABCD中,AB=
1DC,且|AD|=|BC|,则四边形ABCD的形状是 . 22.已知AB=a,BC=b, CD=c,DE=d,AE=e,则a+b+c+d= . 3.已知向量a、b的模分别为3,4,则|a-b|的取值范围为 . 4.已知|OA|=4,|OB|=8,∠AOB=60°,则|AB|= . 5. a=“向东走4km”,b=“向南走3km”,则|a+b|= . 四、解答题
1.作图。已知 求作(1)a?b(利用向量加法的三角形法则和
四边形法则)
(2)ab
b a
2.已知△ABC,试用几何法作出向量:BA+BC,CA+CB. 3.已知OA=a,OB=b,且|a|=|b|=4,∠AOB=60°, ①求|a+b|,|a-b|
②求a+b与a的夹角,a-b与a的夹角.
篇3:平面向量数量积练习题
平面向量数量积练习题
平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)
1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )
A.-2 B.2
C.-12 D.不存在
解析:由题设知:a=(m+1,-3),b=(1,m-1),
∴a+b=(m+2,m-4),
a-b=(m,-m-2).
∵(a+b)⊥(a-b),
∴(a+b)(a-b)=0,
∴m(m+2)+(m-4)(-m-2)=0,
解之得m=-2.
故应选A.
答案:A
2.设a,b是非零向量,若函数f(x)=(xa+b)(a-xb)的图象是一条直线,则必有( )
A.a⊥b B.a∥b
C.|a|=|b| D.|a|≠|b|
解析:f(x)=(xa+b)(a-xb)的图象是一条直线,
即f(x)的表达式是关于x的一次函数.
而(xa+b)(a-xb)=x|a|2-x2ab+ab-x|b|2,
故ab=0,又∵a,b为非零向量,
∴a⊥b,故应选A.
答案:A
3.向量a=(-1,1),且a与a+2b方向相同,则ab的范围是( )
A.(1,+∞) B.(-1,1)
C.(-1,+∞) D.(-∞,1)
解析:∵a与a+2b同向,
∴可设a+2b=λa(λ>0),
则有b=λ-12a,又∵|a|=12+12=2,
∴ab=λ-12|a|2=λ-12×2=λ-1>-1,
∴ab的范围是(-1,+∞),故应选C.
答案:C
4.已知△ABC中, ab<0,S△ABC=154,
|a|=3,|b|=5,则∠BAC等于( )
A.30° B.-150°
C.150° D.30°或150°
解析:∵S△ABC=12|a||b|sin∠BAC=154,
∴sin∠BAC=12,
又ab<0,∴∠BAC为钝角,
∴∠BAC=150°.
答案:C
5.(辽宁)平面上O,A,B三点不共线,设 则△OAB的面积等于( )
A.|a|2|b|2-(ab)2
B.|a|2|b|2+(ab)2
C.12|a|2|b|2-(ab)2
D.12|a|2|b|2+(ab)2
解析:cos〈a,b〉=ab|a||b|,
sin∠AOB=1-cos2〈a,b〉=1-ab|a||b|2,
所以S△OAB=12|a||b|
sin∠AOB=12|a|2|b|2-(ab)2.
答案:C
6.(2010湖南)在Rt△ABC中,∠C=90°,AC=4,则 等于( )
A.-16 B.-8
C.8 D.16
解析:解法一:因为cosA=ACAB,
故 cosA=AC2=16,故选D.
解法二: 在 上的投影为| |cosA=| |,
故 cosA=AC2=16,故选D.
答案:D
二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)
7.(2010江西)已知向量a,b满足|b|=2,a与b的夹角为60°,则b在a上的投影是________.
解析:b在a上的投影是|b|cos〈a,b〉=2cos60°=1.
答案:1
8.(2010浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.
解析:由于α⊥(α-2β),所以α(α-2β)=|α|2-2αβ=0,故2αβ=1,所以|2α+β|=4|α|2+4αβ+|β|2=4+2+4=10.
答案:10
9.已知|a|=2,|b|=2,a与b的夹角为45°,要使λb-a与a垂直,则λ=________.
解析:由λb-a与a垂直,(λb-a)a=λab-a2=0,所以λ=2.
答案:2
10.在△ABC中,O为中线AM上的'一个动点,若AM=2,则 )的最小值是________.
解析:令| |=x且0≤x≤2,则| |=2-x.
=-2(2-x)x=2(x2-2x)=2(x-1)2-2≥-2.
∴ 的最小值为-2.
答案:-2
三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)
11.已知|a|=2,|b|=1,a与b的夹角为45°,求使向量(2a+λb)与(λa-3b)的夹角是锐角的λ的取值范围.
解:由|a|=2,|b|=1,a与b的夹角为45°,
则ab=|a||b|cos45°=2×1×22=1.
而(2a+λb)(λa-3b)=2λa2-6ab+λ2ab-3λb2=λ2+λ-6.
设向量(2a+λb)与(λa-3b)的夹角为θ,
则cosθ=(2a+λb)(λa-3b)|2a+λb||λa-3b|>0,且cosθ≠1,
∴(2a+λb)(λa-3b)>0,∴λ2+λ-6>0,
∴λ>2或λ<-3.
假设cosθ=1,则2a+λb=k(λa-3b)(k>0),
∴2=kλ,λ=-3k,解得k2=-23.
故使向量2a+λb和λa-3b夹角为0°的λ不存在.
所以当λ>2或λ<-3时,向量(2a+λb)与(λa-3b)的夹角是锐角.
评析:由于两个非零向量a,b的夹角θ满足0°≤θ≤180°,所以用cosθ=ab|a||b|去判断θ分五种情况:cosθ=1,θ=0°;cosθ=0,θ=90°;cosθ=-1,θ=180°;cosθ<0且cosθ≠-1,θ为钝角;cosθ>0且cosθ≠1,θ为锐角.
12.设在平面上有两个向量a=(cosα,sinα)(0°≤α<360°),b=-12,32.
(1)求证:向量a+b与a-b垂直;
(2)当向量3a+b与a-3b的模相等时,求α的大小.
解:(1)证明:因为(a+b)(a-b)=|a|2-|b|2=(cos2α+sin2α)-14+34=0,故a+b与a-b垂直.
(2)由|3a+b|=|a-3b|,两边平方得3|a|2+23ab+|b|2=|a|2-23ab+3|b|2,
所以2(|a|2-|b|2)+43ab=0,而|a|=|b|,所以ab=0,则-12cosα+32sinα=0,
即cos(α+60°)=0,
∴α+60°=k180°+90°,
即α=k180°+30°,k∈Z,
又0°≤α<360°,则α=30°或α=210°.
13.已知向量a=(cos(-θ),sin(-θ)),b=cosπ2-θ,sinπ2-θ,
(1)求证:a⊥b;
(2)若存在不等于0的实数k和t,使x=a+(t2+3)b,y=-ka+tb满足x⊥y,试求此时k+t2t的最小值.
解:(1)证明:∵ab=cos(-θ)cosπ2-θ+
sin(-θ)sinπ2-θ=sinθcosθ-sinθcosθ=0.
∴a⊥b.
(2)由x⊥y,得xy=0,
即[a+(t2+3)b](-ka+tb)=0,
∴-ka2+(t3+3t)b2+[t-k(t2+3)]ab=0,
∴-k|a|2+(t3+3t)|b|2=0.
又|a|2=1,|b|2=1,∴-k+t3+3t=0,
∴k=t3+3t,
∴k+t2t=t3+t2+3tt=t2+t+3
=t+122+114.
故当t=-12时,k+t2t有最小值114.
篇4:平面向量教案
平面向量教案
二、复习要求
1、 向量的概念;
2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律;
3、向量运算的运用
三、学习指导
1、向量是数形结合的典范。向量的几何表示法--有向线段表示法是运用几何性质解决向量问题的基础。在向量的运算过程中,借助于图形性质不仅可以给抽象运算以直观解释,有时甚至更简捷。
向量运算中的基本图形:①向量加减法则:三角形或平行四边形;②实数与向量乘积的几何意义--共线;③定比分点基本图形--起点相同的三个向量终点共线等。
2、 向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的.结果是向量,两个向量数量积的结果是数量。每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:
运 算 图形语言 符号语言 坐标语言
加法与减法
=
- =
记 =(x1,y1), =(x1,y2)
则 =(x1 x2,y1 y2)
- =(x2-x1,y2-y1) =
实数与向量
的乘积
=λ
λ∈r 记 第一文库网=(x,y)
则λ =(λx,λy) 两个向量
的数量积
・ =| || |
cos
记 =(x1,y1), =(x2,y2)
则 ・ =x1x2 y1y2
3、 运算律
加法: = ,( ) = ( )
实数与向量的乘积:λ( )=λ λ ;(λ μ) =λ μ ,λ(μ )=
(λμ)
两个向量的数量积: ・ = ・ ;(λ )・ = ・(λ )=λ( ・ ),( )・ = ・ ・
说明:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算,例如( ± )2=
4、 重要定理、公式
(1)平面向量基本定理;如果 是同一平面内的两个不共线向量,那么对于该平面内任一向量 ,有且只有一对数数λ1,λ2,满足 =λ1 λ2 ,称λ1 λ λ2 为 , 的线性组合。
根据平面向量基本定理,任一向量 与有序数对(λ1,λ2)一一对应,称(λ1,λ2)为 在基底{ , }下的坐标,当取{ , }为单位正交基底{ , }时定义(λ1,λ2)为向量 的平面直角坐标。
向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若a(x,y),则 =(x,y);当向量起点不在原点时,向量 坐标为终点坐标减去起点坐标,即若a(x1,y1),b(x2,y2),则 =(x2-x1,y2-y1)
(2)两个向量平行的充要条件
符号语言:若 ∥ , ≠ ,则 =λ
坐标语言为:设 =(x1,y1), =(x2,y2),则 ∥ (x1,y1)=λ(x2,y2),即 ,或x1y2-x2y1=0
在这里,实数λ是唯一存在的,当 与 同向时,λ>0;当 与 异向时,λ
|λ|= ,λ的大小由 及 的大小确定。因此,当 , 确定时,λ的符号与大小就确定了。这就是实数乘向量中λ的几何意义。
(3)两个向量垂直的充要条件
符号语言: ⊥ ・ =0
坐标语言:设 =(x1,y1), =(x2,y2),则 ⊥ x1x2 y1y2=0
(4)线段定比分点公式
如图,设
则定比分点向量式:
定比分点坐标式:设p(x,y),p1(x1,y1),p2(x2,y2)
则
特例:当λ=1时,就得到中点公式:
,
实际上,对于起点相同,终点共线三个向量 , , (o与p1p2不共线),总有 =u v ,u v=1,即总可以用其中两个向量的线性组合表示第三个向量,且系数和为1。
篇5:《平面向量》说课稿
一、 教材分析:
1、教材的地位和作用
向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.
结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:
2、教学目标
(1) 知识与技能目标
1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;
2)识记向量模的定义,会用字母和线段表示向量的模.
3)知道零向量、单位向量的概念.
(2) 过程与方法目标
学生通过对向量的学习,能体会出向量来自于客观现实 ,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.
(3)情感态度与价值观目标
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度.
3、教学重难点
教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量。
教学难点:向量的几何表示的理解,对零向量和单位向量的理解。
二、学情分析
(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想。
(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。
(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。
三、教法学法
教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学
学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程。
四、教学过程
课前:
为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:
1、你学过的其他学科中有没有可以称为向量的?
2、向量的特点是什么?有几种描述向量的表示方法?
3、零向量的特点是什么?
【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。
课上教学过程:
1、 创设情境
数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量
【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。
2、 形成概念
结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?
采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。
单位向量、零向量的概念
【即时训练】
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知。
3、 知识应用
本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力。
4、 学以致用
为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。
5、课堂小结
为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)
【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础
6、 布置作业
出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间。
篇6:《平面向量》说课稿
一、教材分析:
1、教材的地位和作用:
向量是沟通代数、几何与三角函数x的一种工具,有着极其丰富的实际背景。本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.
2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识与技能
了解向量夹角的概念,了解平面向量基本定理及其意义,掌握平面向量的正交 分解及其坐标表示。
(2)过程与方法
通过对平面向量基本定理的探究,以及平面向量坐标建立的过程,让学生体验数学定理的产生、形成过程,体验由一般到特殊、类比以及数形结合的数学思想,从而实现向量的“量化”表示。
(3)情感、态度与价值观
引导学生从生活中挖掘数学内容,培养学生的发现意识和应用意识,提高学习数学的兴趣,感受数学的魅力。
3、教学重点和难点:根据教材特点及教学目标的要求,我将教学重点确定为———平面向量基本定理的探究,以及平面向量的坐标表示。
教学难点:对平面向量基本定理的理解及其应用
二、教法分析:
针对本节课的教学目标和学生的实际情况,根据“先学后教,以学定教”原则,本节课采用由“自学—探究—点拨—建构—拓展”五个环节构成的诱导式学案导学方法。
三、学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。由于学生已经掌握了向量的概念和简单的线性运算,并且对向量的物理背景有初步的了解,我引导学生采用问题探究式学法。让学生借助学案,在教师创设的情境下,根据已有的知识和经验,主动探索,积极交流,从而建立新的认知结构。
四、重点说明本节课的教学过程:
本节课共设计了五个环节:发放学案,依案自学;分组探究 ,信息反馈;精讲点拨,解难释疑 ;归纳总结,建构网络 ;当堂达标,迁移拓展 。
1、发放学案,依案自学
学习并非学生对教师授予知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构。根据这一理念,我在课前下发“导学学案”,让学生以学案为依据,以学习目标、学习重点难点为主攻方向,主动查阅教材、工具书,思考问题,分析解决问题,在尝试中获取知识,发展能力。这是我编制学案的纲要。
经过学生的自学,在课堂上,我采用提问的方式,让学生对知识点进行简单概述,并阐述自己的学习方法和体会。其中,向量的夹角概念,学生基本上能独立解决,我会引导学生归纳出求两个向量夹角的要点:(1)两个向量要共起点,(2)两个向量的正方向所成的角。然后,通过学案上的练习题目1,检查学生的掌握程度。对本节课的重点和难点:平面向量基本定理的探究及坐标表示,我准备通过分组探究,精讲点拨,归纳总结三个方面来突破。
2、分组探究 ,信息反馈
这一环节,我先把学生分组,让其对定理及坐标表示,进行讨论、探究、交流,先组内互相启发,消化个体疑点,然后以组为单位提出疑问。如果某个问题,某个组已经解决,其它组仍是疑点,我让已解决问题的小组做一次“教师”,面向全体学生讲解,教师可以适当补充点拨,这也可以说是讨论的继续。
3、精讲点拨,解难释疑
本节课的目的是要帮助学生建立向量的坐标.要求先运用已有的知识去研究平面向量的基本定理,然后以这个定理为基础建立向量的坐标。对于定理的探究,有些学生只是从形式上加以记忆,缺乏对问题本质的理解,为了帮助学生改进学习方法,提升数学能力,我先提问学生如何把平面上任一向量分解成两个不共线向量的线性组合,学生会通过作图来说明这一问题。我们要强调的是,这里的向量是自由向量,其起点是可以移动的,将三个向量的起点放在一起可便于研究问题.类比物理上力的分解,利用平行四边形法则,我们把向量 分解成 ,根据向量共线定理 ,存在一对实数λ1,λ2 ,使 , 从而 =λ1 +λ2 ,教师再引导学生自主归纳,从而得出平面向量基本定理。为了加深对定理的理解,我设计了如下的几个问题,学生思考回答后,教师再利用几何画板作进一步的演示。当 , 共线时,与它们不共线的向量 不能用 , 当线性表示,所以共线向量不能作为基底;当不共线向量 , ,任意 确定后,λ1,λ2是唯一确定的;我们改变向量 的大小和方向,发现 仍然可以用 , 线性表示,说明了任意向量 能分解成两个不共线向量的线性组合;改变基底 , 的大小和方向,保持向量 不变,刚才的结论仍然成立,说明了同一个向量 能用不同的基底线性表示,由此说明基底不唯一,具有可选择性。
对于向量的坐标表示,我先用火箭速度的分解引入正交分解,然后提问:根据平面向量基本定理,基底是可以选择的,为了研究的'方便,我们应该选取什么样的基底呢?引导学生由一般到特殊,选择平面直角坐标系中 轴和 轴上,且方向与轴的正方向同向的单位向量 做基底,那么根据刚刚得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在数对(x,y)与向量a一一对应,从而得到平面向量的坐标表示。需要说明的两点是:第一,向量的坐标表示与其分解形式是等价的,可以互相转化。第二点说明:求向量坐标的关键是构造平行四边形,确定实数x、y。学生在理解起点不在坐标原点的向量的坐标表示时会出现障碍,其原因是在直角坐标系中点和点的坐标是一一对应的,到了向量时,向量的坐标只是和从原点出发的向量一一对应,必须使学生在这种特定的场合中明白:要求点 的坐标就是要求向量 的坐标.只要结合向量相等的条件学生应该容易克服这一难点。随后,通过学案上的练习2,让学生巩固所学知识。
4、第四个环节,归纳总结,建构网络
建构主义教学理论认为,知识是主体在与情境的交互作用中、在解决问题的过程中能动地构建起来的,学生应在教师指导下自主归纳出新旧知识点之间的内在联系,构建知识网络,从而培养学生的分析能力和综合能力。为此,我设计了如下的问题:
通过本节课的学习,你收获了什么?……
在学生回答的过程中,我及时反馈,评价学生课堂表现,起导向作用。
5、第五个环节,当堂达标,迁移拓展
本部分检测题,紧扣目标,当堂训练,而为了尊重学生的个体差异,满足多样化学习的需要,我又分必做和选做两部分来布置题目,允许学生根据个人情况来完成。
五、我说课的最后一部分是教学设计说明:
1、贯彻了学生主体、教师主导的原则
“学案导学”要求学生主动试一试,并给予学生充分自由思考的时间。学生在尝试中遇到问题就会主动地去自学课本和接受教师的指导。这样,学习就变成了学生自身的需要,使他们产生了“我要学”的愿望,在这种动机支配下学生就会依靠自己的力量积极主动地去学习。
教师通过启发、激励,诱导学生全员、全过程参与教学过程,体现教师的主导作用。
2、培养了自主探索,合作交流的能力
新的课程理念,要求学生的学习不仅仅是在理解基础上掌握和记忆知识,还要学习探索和解决问题的方法和途径。
本节课采用诱导式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学知识、形成数学能力,培养探索精神和团队意识。
我相信,通过本节课的学习,学生获取的将不仅仅是知识,获取知识的手段、途径和方法,以及勇于探索、合作交流的能力,才是他们最大的收获。
篇7:平面向量教学设计
平面向量教学设计
【学习目标】
1、理解平面向量和向量相等的含义,理解向量的几何表示;
2、掌握向量加、减法的运算,并理解其几何意义;
3、掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;
4、了解向量线性运算的性质及其几何意义。
【学习要点】
1、向量概念
________________________________________________________叫零向量,记作 ;长度为______的向量叫做单位向量;方向___________________的向量叫做平行向量。
规定: 与______向量平行;长度_______且方向_______的向量叫做相等向量;平行向量也叫______向量。
2、向量加法
求两个向量和的运算,叫做向量的加法,向量加法有___________法则与______________法则。
3、向量减法
向量 加上 的相反向量叫做 与 的差,记作_________________________,求两个向量差的运算,叫做向量的减法。
4、实数与向量的积
实数 与向量 的积是一个_______,记作________,其模及方向与____的值密切相关。
5、两向量共线的充要条件
向量 与非零向量 共线的充要条件是有且只有一个实数 ,使得__________。
【典型例题】
例1 在四边形ABCD中, 等于 ( )
A、 B、 C、 D、
例2 若平行四边形ABCD的对角线AC和BD相交于O,且 , ,则 、 表示向量 为 ( )
A、 + B、 ― C、― + D、― ―
例3 设 、 是两个不共线的向量,则向量 与向量 共线的充要条件是 ( )
A、 0 B、 C、 1 D、 2
例4 下列命题中:
(1) = , = 则 =
(2)| |=| |是 = 的必要不充分条件
(3) = 的充要条件是
(4) = ( )的充要条件是 =
其中真命题的有__________________。
例5 如图5-1-1,以向量 ,
为边作平行四边形AOBD,又 ,
,用 、 表示 、 和 。
图5-1-1
【课堂练习】
1、 ( )
A、 B、 C、 D、
2、“两向量相等”是“两向量共线”的( )
A、充分不必要条件 B、必要不充分条件
C、充要条件 D、既不充分也不必要条件
3、 已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A、C),则 等于 ( )
A、
B、
C、
D、
4、若| |=1,| |=2, =且 ,则向量 与 的夹角为( )
A、300 B、600 C、1200 D、1500
【课堂反思】
1.《长城》教学设计
2.《青花》教学设计
3.《春望》教学设计
4.《阳光》教学设计
5.社戏教学设计
6.《人生》教学设计
7.《秋思》教学设计
8.《燕子》教学设计
9.《春雨》教学设计
10.将心比心教学设计
篇8:高中数学平面向量教案
教学目的:
1 掌握平面向量数量积运算规律;
2 能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3 掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题
教学重点:平面向量数量积及运算规律
教学难点:平面向量数量积的应用
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量 与 ,作 = , = ,则∠aob=θ(0≤θ≤π)叫 与 的夹角
2.平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || |cos叫 与 的数量积,记作 ,即有 = | || |cos,
(0≤θ≤π) 并规定 与任何向量的数量积为0
3.“投影”的概念:作图
定义:| |cos叫做向量 在 方向上的投影
投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 | |;当 = 180时投影为 | |
4.向量的数量积的几何意义:
数量积 等于 的长度与 在 方向上投影| |cos的乘积
5.两个向量的数量积的性质:
设 、 为两个非零向量, 是与 同向的单位向量
1 = =| |cos;2 = 0
3当 与 同向时, = | || |;当 与 反向时, = | || |
特别的 = | |2或
4cos = ;5| | ≤ | || |
6.判断下列各题正确与否:
1若 = ,则对任一向量 ,有 = 0 ( √ )
2若 ,则对任一非零向量 ,有 0 ( × )
3若 , = 0,则 = ( × )
4若 = 0,则 、 至少有一个为零 ( × )
5若 , = ,则 = ( × )
6若 = ,则 = 当且仅当 时成立 ( × )
7对任意向量 、 、 ,有( ) ( ) ( × )
8对任意向量 ,有 2 = | |2 ( √ )
篇9:高中数学平面向量教案
教学准备
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
一、复习引入:
1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2.4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
P107习题2.4A组2、7题
板书
略
篇10:高中数学平面向量教案
第一教时
教材:向量
目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已
知向量相等,根据图形判定向量是否平行、共线、相等。
过程:
一、开场白:课本P93(略)
实例:老鼠由A向西北逃窜,猫在B问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了。 AB
二、 提出课题:平面向量
1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量
等
注意:1?数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大
小;
向量有方向,大小,双重性,不能比较大小。
2?从19世纪末到20体系,用以研究空间性质。
2. 向量的表示方法: a B
1?几何表示法:点—射线 (终点)有向线段——具有一定方向的线段 A(起点)
记作(注意起讫)
2?字母表示法:可表示为(印刷时用黑体字)
P95 例用1cm表示5n mail(海里)
3. 模的概念:向量 记作:|| 模是可以比较大小的
4. 两个特殊的向量:
1?零向量——长度(模)为0的向量,记作。的方向是任意的。注意与0的区别
2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?
答:不是。因为零上零下也只是大小之分。
例:与是否同一向量?
答:不是同一向量。
例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、 向量间的关系:
1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥∥
规定:与任一向量平行
2. 相等向量:长度相等且方向相同的向量叫做相等向量。 a 记作:=
规定:=
任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 ,
所以平行向量也叫共线向量。
OA=a OB=b OC=c
例:(P95)略
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在) 变式三:与向量共线的向量有哪些?(,,)
四、 小结:
五、 作业:P96 练习习题5.1
第二教时
教材:向量的加法
目的:要求学生掌握向量加法的意义,并能运用三角形法则和平行四边形法则作
几个向量的和向量。能表述向量加法的交换律和结合律,并运用它进行向量计算。
过程:
六、复习:向量的定义以及有关概念
强调:1?向量是既有大小又有方向的量。长度相等、方向相同的向量相等。2?正因为如此,我们研究的向量是与起点无关的自由向量,即任何
向量可以在不改变它的方向和大小的前提下,移到任何位置。
七、 提出课题:向量是否能进行运算?
5.某人从A到B,再从B按原方向到C,
A BC
则两次的位移和:??
6.若上题改为从A到B,再从B按反方向到C,
则两次的位移和:AB?BC?AC
7.某车从A到B,再从B改变方向到C,
则两次的位移和:AB?BC?AC
8.船速为AB,水速为BC,
则两速度和:??
提出课题:向量的加法 A B三、1.定义:求两个向量的和的运算,叫做向量的加法。
注意:;两个向量的和仍旧是向量(简称和向量)
2.三角形法则: a b b
a+ a b a+b A A C A B B
B
1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起
点
2?可以推广到n个向量连加
3
4?不共线向量都可以采用这种法则——三角形法则
3.例一、已知向量、,求作向量+
作法:在平面内取一点,
作? ?
则?? O b
b AB C C 4.加法的交换律和平行四边形法则 B
上题中+的结果与+是否相同 验证结果相同
从而得到:1?向量加法的平行四边形法则
2?向量加法的交换律:+=+
9.向量加法的结合律:(+) +=+ (+)
证:如图:使?, ?, ?
a+c
则(+) +=??
+ (+) =??
∴(a+b) +c=a+ (b+c)
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。
四、例二(P98—99)略
五、小结:1?向量加法的几何法则
2?交换律和结合律
3?注意:|+| > || + ||不一定成立,因为共线向量不然。
六、作业:P99—100练习P102习题5.2 1—3
第三教时
教材:向量的减法
目的:要求学生掌握向量减法的意义与几何运算,并清楚向量减法与加法的关系。 过程:
八、复习:向量加法的法则:三角形法则与平行四边形法则
向量加法的运算定律: 例:在四边形中,??? 解:CB?BA?BA?CB?BA?AD?CD
九、 提出课题:向量的减法 A B
1.用“相反向量”定义向量的减法
1?“相反向量”的定义:与a长度相同、方向相反的向量。记作 ?a 2?规定:零向量的相反向量仍是零向量(?a) = a
任一向量与它的相反向量的和是零向量。a + (?a) = 0
如果a、b互为相反向量,则a = ?b, b = ?a, a + b = 0
3?向量减法的定义:向量a加上的b相反向量,叫做a与b的差。
即:a ? b = a + (?b)求两个向量差的运算叫做向量的减法。
2.用加法的逆运算定义向量的减法:
向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作a ? b
3.求作差向量:已知向量a、b,求作向量
∵(a?b) + b = a + (?b) + b = a + 0 = a
a 作法:在平面内取一点O, 作= a, = b
则= a ? b b b a?b
即a ? b可以表示为从向量b的终点指向向量a的终点的向量。
注意:1?表示a ? b。强调:差向量“箭头”指向被减数
2?用“相反向量”定义法作差向量,a ? b = a + (?b)
显然,此法作图较繁,但最后作图可统一。
B’ ?b a
b A b
4.a∥b∥c B a ? b = a + (?b) a ? b
a?b O B A B’ O B
a?b O
A ?b B 十、例题: 例一、(P101 例三)已知向量a、b、c、
d,求作向量a?b、c?d。
解:在平面上取一点O,作= a, = b, = c, = d,
作, ,则= a?b, = c?d
A b C
B 例二、平行四边形中,,用表示向量,
解:由平行四边形法则得:
= a + b, = ? = a?b
变式一:当a, b满足什么条件时,a+b与a?b垂直?(|a| = |b|)
变式二:当a, b满足什么条件时,|a+b| = |a?b|?(a, b互相垂直)
变式三:a+b与a?b可能是相当向量吗?(不可能, 十一、 小结:向量减法的定义、作图法|
十二、 作业: P102 练习
P103习题5.2 4—8
第四教时
教材:向量、向量的加法、向量的减法综合练习《教学与测试》64、65、66课
篇11:高中数学平面向量教案
一、教学目标
(一)知识与能力
1.了解平面向量的概念;
2.学会平面向量的表示方法;
3.理解向量、零向量、相等向量的意义。
(二)过程与方法
用联系的方法、类比的观点研究向量。
(三)情感态度与价值观
使学生自然地实现概念的形成,培养学生的唯物辩证思想。
二、教学重难点
(一)教学重点
向量及其几何表示,相等向量、平行向量的概念。
(二)教学难点
向量的概念及对平行向量的理解。
三、教学过程
(一)引入
1.类比法:引入概念
师:在物理中,位移与距离是同一个概念吗?为什么? 在物理中,我们学到位移是既有大小、又有方向的量,像这种既有大小、又有方向的量叫做矢量。在数学中,把只有大小,没有方向的量叫数量,把既有大小、又有方向的量叫做向量。
2.联系法:激活学生的相关经验,加深印象
师:能否举出一些生活中既有大小又有方向的量?
(二)平面向量的表示方法
1.代数表示
一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如。
2.几何表示
向量可以用有向线段的起终点字母表示:。
3.坐标表示
在直角坐标系内,任取两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
(三)相关概念
1.向量的模
有向线段AB的长度叫做向量的模,记作|AB|。
2.单位向量
引入:用有向线段表示向量,大家所画线段长短不一是为什么呢?(由单位长度引入单位向量)
总结:模等于1个单位长度的向量叫做单位向量,通常用e表示。
3.零向量
长度等于0的向量叫做零向量,记作或0。
4.平行向量(共线向量)
两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,记作0//。
5.相等向量
设计活动:传花游戏(通过游戏调动兴趣,让学生体会相等向量的本质特征)
总结:长度相等且方向相同的向量叫做相等向量。
本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。具体教学中,要设计一个能让学生领悟概念的过程,引导他们联系具体事例,体会概念的本质特征。要使学生意识到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。
文档为doc格式