欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

应用一元一次方程打折销售课件

时间:2022-07-15 08:08:10 其他范文 收藏本文 下载本文

以下是小编整理的应用一元一次方程打折销售课件,本文共12篇,希望能够帮助到大家。

应用一元一次方程打折销售课件

篇1:应用一元一次方程打折销售课件

导学目标

1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;

2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力。

导学重点:用列方程的方法解决打折销售问题;

导学难点:是准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。

温故

一件衣服标价是200元,现打7折销售。问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?

链接:

1、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”

2、你是怎样理解某种商品打“六折”出售的'??

公式:

利润=卖出价-成本价

(或者:利润=销售价-成本价)

利润率=利润成本×100%

(3).算一算:

1。原价100元的商品打8折后价格为元;

2。原价100元的商品提价40%后的价格为元;

3。进价100元的商品以150元卖出,利润是元,利润率是;

4.原价X元的商品打8折后价格为元;

5。原价X元的商品提价40%后的价格为元;

6。原价100元的商品提价P%后的价格为元;

7。进价A元的商品以B元卖出,利润是元,利润率是。

新知

例.一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?

想一想:15元利润是怎样产生的?

拓展:一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这种夹克每件的成本价是多少元?

某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算?

新知:

例1:某文艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元。学生票5元/张,成人票8元/张。问:售出成人和学生票各多少张?

问题一:上面的问题中包含哪些等量关系?

成人票数+学生票数=1000张(1)

成人票款+学生票款=6950元(2)

问题二:设售出的学生票为x张,填写下表

学生成人

票数/张

票款/元

设所得学生票款为y元,填写下表:

学生成人

票款/元

票数/张

根据相等关系成人票数+学生票数=1000张,列方程得:

如果票价不变,那么售出1000张票所得票款可能是6930元吗?为什么?

拓展:

1、小明用172元钱买了两种书,共10本,单价分别为18元、10元。每种书小明各买了多少本?

2.一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?

3.我区某学校原计划向内蒙古察右后旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%.问:初中学生和高中学生原计划捐赠图书多少册?

篇2:一元一次方程简单课件

一元一次方程简单课件

一元一次方程简单课件

教学内容:

人教版七年级上册3.1.1一元一次方程

教学目标:

知识与技能:

1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用

新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,

认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:

建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:

根据具体问题中的相等关系,列出方程。

教学准备:

多媒体教室,配套课件。

教学过程:

设计理念:

数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念

师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25

师:同学们想学会这个魔术吗?生:想!

师:通过这节课的学习,同学们一定能学会!

【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】

二、突出主题,突出主体

1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,

(2)长方形的的长为a,宽比长少5,周长为36,则=36

(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180

师:这些式子小学学习过,它们是?生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】

2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到验证的'方法吗?

师:在阅读P/80例题1时老师做出友情提示:

(1)选择一个未知数x

(2)对于这三个问题,分别考虑:

用含x的未知数分别表示正方形的边长;

用含x的未知数表示这台计算机的检修时间;

用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程

学生讨论出上述答案后

师:大屏幕显示上述问题的答案

【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】

三、体现新时代教师是学生学习的合作者

在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)

(1)方程两边表示的是同一个数;

(2)左右两边表示的方法不同。

【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

四、给学生一个展示自己精彩的舞台

师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

设任意框出的四个数字的第一个为x,则:

生1:x+(x+1)+(x+7)+(x+8)=24;

生2:x+(x+1)+(x+7)+(x+8)=84

师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】

五、我的课堂,我做主,我来说

生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;

生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;

生3:我会检查一个数值是不是方程的解;

生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!

生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!

师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!

【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!】

六、课后反思:

数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。

篇3:打折销售

打折销售专题

打折销售专题

河南省宜阳县莲庄镇前进东区学校 师会先

打折问题在现实生活中可谓是司空见惯,每天的跳楼价、挥泪大甩卖冲撞着人们的视野,震撼着人们的心灵,诱惑着蠢蠢欲动的人们。作为中学生,往往被这些现象所蒙蔽。好在现在的数学是使用的数学、有价值的数学,学习数学的目的就是解决实际问题的,故掌握打折问题是生活的需要。其实要解决这类问题一点也不难,只要有心的你掌握一点技巧,就能所向无不披靡。聪明的你不妨一试。

一、明确一些概念

比如标价、原价、售价、进价(成本)、折扣、利润、利润率等。

二、掌握几个关系式

1.标价×折扣=售价

2.利润=售价-进价(售价=利润+进价,进价=售价-利润)

3.利润率=□X100% (利润=进价×利润率,进价=□)

三、巩固公式

1.一件衬衫进价是80元,售价是100元,则这件衬衫的利润是( )元,利润率是( )。

2.一件商品的进价是120元,销售后商家获得的利润率是20%,则商家获得的利润是( )元。

3.一件服装 原价是120元,按原价打8折售出,则这件服装的实际售价是( )元。

四、实战演习

1.某商品因换季准备打折出售。如果按定价的7.5折出售将陪25元,而按定价的9折出售将赚20元,求这种商品的定价。

提示:根据进价不变列方程。故设这种商品的定价为x元。

则可得方程:0.75x+25=0.9x-20 解得:x=300

2.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打7折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为多少元?

提示:利用利润相等列方程。故设标价为x元

则可列方程:80×5%=0.7x-80 解得:x=120

3.某件商品的进价是元,所标售价是3000元,商店要求以利润率为5%的售价打折出售,售货员出售此商品应打几折?

提示:利用利润相等列方程。故设应打x折

则可列方程:2000×5%=3000×0.1x-2000 解得:x=7

4.某书城开展对学生优惠售书活动,凡一次购书不超过200元的'一律9折,超过200元的,其中200按9折算,超过200的部分按8折算。某学生第一次去购书付款72元,第二次又去购书享受8折优惠。他查看了所买书的定价,发现两次共节省34元,求该学生第二次购书实际付款多少元?

提示:此题较复杂,但分步思考还是清晰的。 先求第一次节省了多少钱:设第一次应付x元,则0.9x=72 得x=80 故知第一次节省了80-72=8 (元)于是又得第二次节省了26元

再设第二次应付y元,根据节省了26元列方程

得:200×0.1+(y-200)×0.2=26 解得:y=230

最后再求第二次实际付款:230-26=204(元)

或:200×0.9+(230-200)×0.8=204

好了,经过以上练习,你对打折销售问题有了更深层次的认识,也掌握了解决这方面问题的方法、技巧,相信生活中的你会更独立、更有头脑、更快乐。

篇4:认识一元一次方程课件

认识一元一次方程课件

《认识一元一次方程》本节课是北师大版七年级上册第五章第一节的内容,主要的教学目标是归纳出一元一次方程的概念,掌握其特征,并且能从现实情境中提炼等量关系。下面为大家分享了认识一元一次方程的课件,欢迎借鉴!

一.教材依据

北师大版七年级数学上册第五章《一元一次方程》 第1课时:认识一元一次方程 。

二.设计思路

本文旨在给出教学思路,具体操作可以根据个人习惯加以细化。

指导思想:本节课遵循“自主、合作、探究”的课改理念,在效益和效率上追求课堂教学的“高效”,变老师的“满堂灌”为学生的“满堂学”,并注重学生学习能力的生成。教师的任务是为学生提供各种学习资源,引导学生自主学习。

设计理念:以学生为中心,学生成为教学活动的积极参与者和知识的建构者。在实际情境中进行教学,以导学案为载体为学生提供一个讨论,展示的课堂平台。

教材分析:“一元一次方程的认识”一课是北师大版七年级数学上册第五章《一元一次方程》 第1课时内容。学习这节课之前,学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。对方程已有初步认识, 但并没有学习“一元一次方程”准确的理性的概念。在这节课之后就要学习解一元一次方程,所以这节课的内容对整个章节的知识起到了承上启下的作用。

学情分析:学生经过初中一段的生活学习,基本有一定的自学能力,通过生活实例可以自己归纳总结出一元一次方程的概念,但是对但是概念的理解有一定的难度,从很多方程中不易辨别出一元一次方程,容易造成概念混乱。

三.教学目标

1.知识与技能

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

2.过程与方法

通过观察,归纳一元一次方程的概念.

3.情感、态度、价值观

体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决

教学重点

归纳一元一次方程的概念

教学难点

根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义.

四.现代教学手段的运用

多媒体课件、导学案

五.教学过程

【导入新课】

教师:请一位同学阅读章前图中关于“丟番图”的`故事。(大约1分钟)

丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶, 它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一, 又过十二分之一他两颊长出了胡须, 再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子, 可怜迟到的宁馨儿, 享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补, 又过四年,他也走完了人生的旅途.(多媒体展示)

教师提问:你知道丢番图的年领吗?

学生活动:小组讨论得到

解: 设丟番图的年龄为x岁,则:教师由上面的方程导入新课

【探究新知过程】

(一)合作探究,理解新知

学生活动一:

1.学生进行小组讨论学习,对提前独自做的导学案上的有疑惑的问题进行小组讨论探究。(多媒体展示讨论探究内容)

2.小组讨论结束后,每个小组在黑板上标记出本组内没有解决的

问题

教师活动一:根据学生标记的题目情况,为每个小组分配展示任务,每个组分配到自己会的题目,教师要指导学生分小组讲解展示导学案内容。(多媒体展示讲解展示的要求)

第一组:展示一元一次方程概念的形成过程内容

第二组:从下列方程中辨别出一元一次方程。

第三组:讲解一元一次方程解概念,并展示如何判断一个解是不是已知方程的解。

第四组   讲解拓展提高题。

注:以上的题目可根据内容自行编辑,只要符合目标即可。

学生活动二:对自己小组将要展示讲解的题目在小组内预展(先在小组内预习讲解)。

学生活动三:分组上黑板展示讲解分配到的题目。其余学生进行质疑补充。

小组互评:一个小组展示结束,另一个小组对展示过程进行评价。

教师活动二:学生在展示过程中,教师要注意及时引导,总结方法规律。

(二)课堂小结

教师提问:这节课你学到了什么?你还想知道什么? (多媒体展示)

学生回答:本节课我认识了一元一次方程并知道了什么是一元一次方程的解。

我还想知道如火如何解一个一元一次方程。(此回答只是一个,

教师可以根据学生的具体回答加以评价引导)

(三)当堂检测,拓展提高

学生活动:独自完成导学案达标检测的题目(题目紧扣目标即可,可以自行设计)

教师活动:汇总学生检测结果,进行评价解惑。

(四)课后反思

今天我上了一节公开课,上的是:人教版七年级上册第三章第一节《一元一次方程》 。现对本节课的教学进行反思:

一、成功之处

(1)能创设一个有趣的问题情境引入。一开始上课,我就跟同学们说:“让我们来进行一个比赛,看谁最先解决这个问题:我国数学家张广厚小时候曾解过一道有趣的‘吃面包’问题:一个大人一餐吃4个面包,四个小孩一餐合吃1个面包。现有大人和小孩共100人,一餐刚好吃完100个面包。聪明的同学们,你们能求出大人和小孩各有多少人?” 这样有助于保持学生参与学习的积极性。

(2)能进行一题多变,引发学生的认知失衡。我前面所提出的问题学生们很容易用小学所学的算术解法进行解答,但是我将问题中的100个面包改为40个面包,让同学们再比赛,很快有一个同学举手套用前面的解题思路来解这道题,但是在回答问题的过程中就有同学发现:假设1个大人4个小孩分成1组,每组可以吃5个面包,那么吃40个面包需要8组,这8组共有8个大人,32个小孩,他们的和是40而不是100,不符合题目要求。这时同学们都陷入沉思,他们努力寻找新方法。

(3)对学生进行了数学文化的渗透。方程的概念在小学已经出现过,初一再次学习方程应该让学生们更高一个层次认识方程,因此通过介绍字母表示未知数的文化背景,在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力。

(4)分层次设置练习题,逐步突破难点。我在“练一练”的环节里设置了a与b两组练习,a组练习的题目已经帮学生设定了未知数,重点训练学生找相等关系、列方程;b组练习的题目要求学生独立设未知数列方程,要求学生能突破用算术解法解应用题的思维定势,学会通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法。

(5)恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,使用了许多卡通动画效果,有效地吸引学生的注意力。

(6)营造了宽松、和谐的课堂氛围。本节课的教学从始至终,教师都是面带笑容地与学生进行互动,让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。

二、不足之处

(1)问题2设置的难度过高。尽管我用非常形象的动画(多媒体课件)展示了题目的含义,但是大部分学生仍然面对题目的一大堆文字表述不知所措,这表明初一学生的数学阅读与数学理解能力还不强。

(2)教学容量偏大,以致没有充分的时间引导学生对如何找相等关系进行总结归纳。

篇5:解一元一次方程课件

一、教学目标:

1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2、能力目标:培养学生的运算能力与解题思路。

3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二、教学的重点与难点:

1、重点:了解一元一次方程的.概念,解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三、教学方法:

1、教 法:讲课结合法

2、学 法:看中学,讲中学,做中学

3、教学活动:讲授

四、课 型:新授课

五、课 时:第一课时

六、教学用具:彩色粉笔,小黑板,多媒体

七、教学过程

1、创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2、探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数)

(抽同学起来回答,然后再由老师概括)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可)

3、例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2、解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)在我们前面学过的知识中,什么知识是关于有括号的、

2)复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)一起回顾合并同类项的法则:未知数的系数相加。

6)系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式、)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

篇6:解一元一次方程课件

去括号,移项,合并同类项,系数化为1。

4、巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5、小结:和同学们一起回顾我们这节课学习了什么?

篇7:初一一元一次方程课件

教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。

认识方程的解的概念。

掌握验根的方法。

体验用尝试法解一元一次方程的思想方法。

重点:一元一次方程的概念

难点:尝试检验法

教学过程:

1.,温故

方程是含有 ______的______.

归纳:判断方程的两要素:

①有未知数   ②是等式

(通过填空让学生简单回顾方程概念,并总结方程两要素)

2.知新

根据题意列方程:

(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?

设这件衣服的原价为x元,8折后售价为______

可列出方程                                .

(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?

设x年后树高为5m,

可列出方程_______

(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压. 当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压. 问当它承受压力增加到500个大气压时,它又继续下潜了多少米?

设它又继续下潜了x米,

x米增加大气压                个。

可列出方程                                          .

(教师引导学生列出方程)

80%x=72

观察比较方程:

(学生根据方程特点填空)

等式的两边的代数式都是_________;每个方程都只含有___个未知数;且未知数的指数是_____

(教师总结)这样的方程叫做一元一次方程.

(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)

1.两边都是整式

2.只含有一个未知数

3.未知数的指数是一次.

(教师引出课题——5.1一元一次方程)

3.(接下来一起将前面所学新知与旧知融会贯通)

1.下列各式中,哪些是方程?哪些是一元一次方程?

(1)5x=0         (2)1+3x

(3)y2=4+y      (4)x+y=5

(5)                (6)3m+2=1–m

(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的.不是方程。接着找出其中的一元一次方程,着重说说为什么(3)、(4)、(5)不是呢?引发学生套用一元一次方程三个特点说明,教师要补充的是(3)是二次方程,(4)是二元方程,(5)这种情况左边不是整式,进而进一步再强调一次什么是“元”什么是“次”。(3)错在未知数不能出现2次,(4)错在不能出现两个未知数)

4.概念提升(为了能够游刃有的掌握一元一次方程的概念,我们再对它做一次提升,大家请看下面两个问题。

1、方程3xm-2 + 5=3是一元一次方程,则代数式 m=_____。

2、方程(a+6)x2 +3x-8=7是关于x的

篇8:初一一元一次方程课件

(通过概念的强调对这题的理解有很大帮助,题1检验学生对一元一次方程中“一次”的理解,题2检验学生对“一元”的理解)

5.一元一次方程的根

思考:

当y为多少时一元一次方程6=y+4成立呢?(本题学生容易猜想得到,教师引出一元一次方程的解的概念)

篇9:初一一元一次方程课件

使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解,也叫做方程的根。

(引导学生掌握验根的方法,并指导学生完成验根过程书写步骤)

判断下列t的值能不能使方程2t+1=7-t  左右两边的值相等.

(1 )t=-2   (2) t=2

(先让学生口头检验,再叫学生说说得出结论的过程,进而引导学生一步步书写(1)步骤,学生齐答教师需要先板书步骤,完成后投影出示步骤,接下来让学生上黑板书写(2)的验根过程)

解: (1)把x=-2代入方程:

左边= 2×(-2)+1=-4+1=-3

右边=7-(-2)=7+2 =9

∵左边≠右边

∴x=-2 不是原方程的解.

6.尝试-检验法(光会验根还不够,我们还应学习怎样找到一元一次方程的根,大家请看这个问题)

一射箭运动员两次射击的成绩都是整数,平均成绩是6.5环,其中第二次射箭的成绩为 9环,问第一次射箭的成绩是多少环?

设第一次的射箭成绩为x环,可列出方程                   。

(请一学生回答得出的方程                      )

思考:同学们,请猜想一下,结合实际,x能取哪些数呢?

(学生可能会说出0.到10所有整数都可能若说不出再引导)(每次射箭最多是10环,

而且只能取整数环)(要检验11次有点多,能不能再把范围缩小一点呢?引导学生对比已知的一次成绩与平均成绩的高低,从而得出未知成绩应该比平均成绩小,学生得出可以代入检验7次):由已知得,x为自然数且只能取0,1,2,3,4,5,6.把这些值分别代入方程左边得。(让学生检验得到根,接下来课件梳理验根的结果)

篇10:一元一次方程应用教案设计

一元一次方程应用教案设计

一、教学分析:

本节课设计简析:本节课内容是列方程解应用题,主要是小学解应用题和中学解应用题的衔接,让学生感受数学与现实生活息息相关,并且体验数学的趣味性,提高学习数学的积极性。

二、教学目标:

(一)知识目标:

1、通过身边的故事,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。

2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。

(二)能力目标:

1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。

2、培养学生的观察、分析能力以及用方程思维解决问题的能力。

(三)情感目标:

1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。

2、在分析应用题的过程中,培养学生勇于探索、自主学习的精神。感受到生活中处处存在数学,体验数学的趣味性

教学重点、难点:

能分析题意,正确找出题中的等量关系,列出方程解决问题。

教学过程:

一、温故:

分别算出下列绳子的总长度

【设计意图:为下面的例题做好铺垫】

二、新课引入:

我今天给大家讲一个故事,故事的主人翁是丢番图,希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:

“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一:再过五年,他有了儿子,感到很幸福;可是,儿子只

活了他父亲全部生命的一半;儿子死后,他又在极度的悲伤中度过了四年,也与世长辞了。” 根据以上的信息,请你计算出: 丢番图死时多少岁;

或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为84,168??但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让-卡尔门特,他在8月4日去世时享年122岁。所以丢番图的年龄为84岁。

【设计意图:这个题目有一定的难度和趣味性,可以在开课时吸引全班学生的注意力,同时这个题目可以用方程解法和算式解法,甚至还可以用以前学过的倍数来解决,解题方法多样性,可以锻炼学生的思维,也可以做到小学用算式和中学列方程解应用题的衔接。通过这个题目对比两种解法可以看出:算术解法是把未知量置于特殊地位,设法用已知量组成的混合运算式表示出来(在条件较复杂时,列出这样的式子往往比较困难);代数解法是把未知量与已知量同等对待(使未知量在分析问题的过程中也能发挥作用),找出各量之间的等量关系,建立方程.】

总结:列方程解应用题的一般步骤:

(1)“审”:审清题意; (2)“设”:设未知数并把有关的量用含有未知数的代数式表示;

(3)“列”:根据等量关系列出方程; (4)“解”:解方程; (5)“答”:检验作答。

三、巩固练习,提高能力

1、一只天鹅在天空中飞翔时遇到了一群天鹅,它向群鹅问好:“你们好啊,100只天鹅。”群鹅回答说:“我们不是100只,但是如果以我们这么多,再加上这么多,在加上我们的一半,再加上我们一半的一半,你也加进来,那么我们就是100只了,”问天上飞的群鹅有多少只?

解:设群鹅有x只。 【设计意图:这个题目和例题思路差不多,可以检验学生是否听懂例题,语言生活化,可以引起学生的兴趣。此题可以利用画线段来分析题意,列出方程。】

1、现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,请问多少年后父亲的年龄是儿子年龄的3倍。

解:设x年后父亲的年龄是儿子年龄的3倍

儿子 爸爸

现在的年龄 8 8×4

X年后的年龄 8+X 8×4+X 然后根据题意列出方程解答。

【设计意图:这个题目用算式解题较容易出错,但是用方程解很简单,让学生体验用方程成功解应用题的成就感】

3、我的地盘,我做主!

编题目:根据方程X+(X+8)= 40,编一道应用题。

【设计理念:学生具备了读懂题目,列出方程的能力,那么能不能根据一个方程自己编一道应用题呢?这是能力的提升!学生编完题后互相检验,又再一次锻炼了学生分析题意的能力】

四、小结:

今天你有什么收获?体验到方程有时候给我们解应用题带来很大的方便。

思考题:1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,如果再飞来5只鸽子,每个鸽笼刚好住8只鸽子,原有多少个鸽笼?多少只鸽子?

【设计理念:经典问题如何用方程解决】

2、有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍。”乙回答说:“最好还是把你的羊给我一只,我们的羊数就相等了,”两个牧童各有多少羊?

【设计意图:这个题目看起来比较简单,学生很容易说出答案4、6或者1,3等,但是经过列式计算发现是错的,这个题目可能有一些学生会用二元的方程解题,对用这种方法的同学提出表扬】

【设计理念:练习的设计体现了层次性和趣味性。同时也适合不同程度的学生,让学生在不同层次、不同类型的题目中得到锻炼,提高解题能力。同时让学生感受用方程的.方法解决问题的乐趣,拓展学生的思维。】

篇二、一元一次方程应用教案设计

教学目标:

一、知识与技能:

1、熟练运用列方程解应用题的一般步骤列方程;

2、让学生学会列一元一次方程解决与行程有关的实际问题。

二、过程与方法:

1、借助“线段图”分析行程问题中的数量关系,从而将实际问题转化为数学问题,体会转化等数学思想方法;

2、通过列方程解决实际问题,培养学生发现问题、提出问题的能力。激发学生的求知欲。

三情感态度与价值观:

1、在列一元一次方程解决与行程有关的实际问题过程中,让学生感知生活中的实际问题与数学的关系。

2、在探索和交流的过程中,培养学生小组合作的能力。懂得学习数学的重要性。

教学重难点:

重点:经历将实际问题转化为数学问题的过程中,发展学生发现问题、提出问题、分析问题和解决问题的能力。

难点:从不同的角度来找等量关系,列出一元一次方程。

前置作业:写出有关行程问题的公式。

教学过程:

一、问题导入

问题1、

(1)、若小红每秒跑4米,那么他5秒能跑___米。

(2)、小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分。

(3)、已知小强家离火车站米,他以5米/秒的速度骑车到达车站需要__秒。

问题2、知识回顾

在行程问题中,我们常常研究这样的三个量:

分别是:_________,________,_________.

其中,路程=______×______

速度=______÷______

时间=______÷______

二、探索过程

活动一:小组内完成例3,(1)先自己独立思考,再小组交流讨论。

(2)然后每个小组派一名组员展示,并说出解决问题的思路。

课件出示:

例3:某中学组织学生到校外参加义务植树活动。一部分学生骑自行车先走,速度为9千米/时;40分钟后其余学生乘汽车出发,速度为45千米/时,结果他们同时到达目的地。目的地距学校多少千米?

若设目的地距学校x千米,填表

路程/千米

速度/(千米/时)

时间/时

骑自行车

乘汽车

由此,可以得到等量关系:

问题3、想一想:题目中已知什么量?所求什么量?是直接设未知量还是间接设未知量?等量关系是什么?

学生活动:组织学生以小组为单位进行展示,结合表格说出解题思路,教师适时点拨,引导学生发现等量关系。

(设计意图:学生积极参与,紧跟老师的思路思考问题,从而培养了学生发现问题和提出问题的能力。)

预设1:设目的地距学校x千米,

列出方程:由学生讨论列出

预设2:求出方程的解,并板演解题过程。

(小组交流之后,把解题过程写在导学案上)

问题4、上述问题是否有其它的解法?如果有,又如何设未知数呢?等量关系又是什么呢?

预设3:设汽车从学校到目的地要行驶x小时

根据等量关系:汽车行程= 自行车行程

列出方程:学生交流讨论后列出方程

预设学生4:板演解题过程。

问题5、上面两种做法有什么不同?还有没有不同想法呢?学生交流

(设计意图:此环节充分发挥学生的发现问题和提出问题的能力,并让学生打开思维空间,目的在于让学生自己感受直接设元与间接设元的区别。)

活动二:归纳列一元一次方程解应用题的一般步骤

问题6、根据例3,能否归纳列一元一次方程解应用题的一般步骤是什么?

预设1: (1)审清题意; (2)设出未知数;(3)找出等量关系; (4)根据等量关系列方程;(5)解方程; (6)写出答案

预设2:这是实际问题,用需要检验吗?什么时候检验呢?

教师适时搭建支架:实际应用问题需要检验,解出方程就要检验,为了方便记忆,能否简记步骤?

预设3:列一元一次方程解实际问题的一般步骤:

1、审; 2、设; 3、找; 4、列;5、解; 6、验; 7、答

活动三:强化演练,巩固知识。

问题7、相遇问题: 1、两辆汽车从相距84千米的两地同时出发相向而行,甲车的速度比乙车的速度快每小时20千米.半小时两车相遇,两车的速度各是多少?

预设学生1:画线型图,分析相遇问题的等量关系:因为两人同时出发,相向而行,则等量关系:甲的路程+乙的路程=84千米

(学生活动:先独立思考,再小组交流,最后把过程整理在导学案上。)

问题8、追及问题:2、甲、乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑6.5米,那么甲经过几秒可以追上乙?

预设学生2:分析追及问题的等量关系:乙先跑的路程+乙后跑的路程=甲跑的路程

(设计意图:通过补充相遇问题和追及问题,让学生熟练掌握解决与行程问题有关的应用问题,并学会找等量关系,从而把实际问题转化为数学问题。)

活动四:尝试成功

1.A、B两地相距480千米,一慢车从A地开出,每小时走60千米,一快车从B地开出每小时走90千米,

(1)两车同时开出,相向而行,x小时相遇,则可列方程 ;

(2)两车同时开出,背向而行,x小时后两车相距630千米,则可列方程为 ;

(3)慢车先开出1小时,相向而行,快车开出x小时相遇,则可列方程为 ;

(4)若两车同时开出,同向而行,快车在慢车后面,

x小时后快车追上慢车,则可列方程为

学生活动:学生独立思考,小组交流后,小组代表展示。

(设计意图:通过尝试成功这一环节,用课件出示一题多问的问题,充分发挥学生的发散思维,让学生梳理各种问题的提法,目的在于让学生自己感受数学的多变性和趣味性,从而提高学生发现问题、提出问题和解决问题的能力;通过让学生抢答,体验成功的快乐,增强学生的自信心。)

三、课堂小结

问题9、今天我们学习了哪些知识?今天学习了哪些数学方法?通过这节课的学习,你有哪些收获和体会?

(学生活动:组员各抒己见,组长补充)

(设计意图:学生不仅会从知识上总结,而且还要会从探索过程和思想方法上进行总结。从探索过程来说,通过画线型图,找出等量关系,经历了发现问题、提出问题、分析问题、解决问题的过程;从思想方法上,会把实际问题转化成为数学问题,即转化的思想方法。)

四、布置作业

某同学在做作业时,不慎将墨水打翻,使一道题只能看到:“甲、乙两地相距160千米,摩托车的速度为每小时45千米,运货汽车的速度为每小时35千米, ? ”请试一试将这道题补充完整,并给出答案.

(学生思考后,说出各种补充方法)

(设计意图:通过设计开放性作业,让学由余力的学生有发展的空间,便于学生开展自主学习,同时学生根据自己的能力有选择地完成巩固新学的知识、技能和方法,开放性的作业可以满足不同层次学生的需要,从而使不同层次的学生得到不同的发展。)

篇11:实际问题与一元一次方程课件

实际问题与一元一次方程课件

一元一次方程是七年级上学期第三章的内容,学好这一章,是整个初中阶段学习实际问题与二元一次方程组、实际问题与一元二方程、实际问题与分式方程的基础,甚至是学习函数的基础,因为上面提到的这些内容都是要弄清题中的数量关系。下面是实际问题与一元一次方程课件,希望对大家有帮助。

一、内容和内容解析

1.内容

建立方程模型解决销售中的盈亏问题.

2.内容解析

随着市场经济的发展,经营活动越来越被人们重视.数学教学适当结合这方面问题,可以增加学生的经济知识和经营意识.乍看这个问题时,因为两件衣服的售出价格相同,其中一件盈利25%,另一件亏损25%,所以容易感觉“总的结果是不盈不亏”.但是经过用一元一次方程进一步探究,可知总的结果是亏损.这说明:直觉有时并不可靠,正确运用数学知识分析问题可以减少判断错误.通过这个问题让学生经历一个从定性考虑(估算)到定量考虑(计算)的过程,有助于增强他们对数学的应用价值的认识.通过这个问题的解决过程让学生进一步体验“建模解题”的过程,渗透建模思想.

选择了具有一定综合性的问题(“销售中的盈亏”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下的作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度.安排这节课的目的在于:一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的实际问题的应用题埋下伏笔.

基于对教材的分析,本节课的教学重点是:建立实际问题的方程模型,让学生知道商品销售中的盈亏的算法.通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.

二、目标和目标解析

1.目标

(1)让学生学会分析盈亏问题中的数量关系,并能正确列出方程.

(2)在解决问题的过程当中提高学生分析问题、解决问题的能力.

(3)通过对盈亏问题的探索,让学生体验数学与生活的密切关系,增强学数学、用数学的意识.

2.目标解析

达成目标(1)的标志是:进一步理解进价、售价、利润、利润率之间的数量关系.结合估算,列出一元一次方程解决销售中的盈亏问题,并能解释结果的实际意义及其合理性,掌握解决“盈亏问题”的一般思路.

达成目标(2)的标志是:通过对盈亏问题的探索,进一步体会“数学来源于生活,且服务于生活”的辩证思想.培养学生的建模能力,分析问题、解决问题的能力.

达成目标(3)的标志是:培养学生勤于思考、乐于探究、敢于发表自己观点的.学习习惯,从实际问题中体验数学的价值.

三、教学问题诊断分析

从学生学习的心理基础和认知特点来说,学生已经在前一阶段的学习中具备了根据实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用.虽然七年级学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍.因此,对本节课的设计是采用自主探究与合作交流相结合的模式,在本节的教学中,引导学生从身边的问题进行讨论,并更多地进行互相交流,在主动学习、探究学习的过程中获得知识.

基于对学情的分析,本节课的教学难点是:找盈亏问题中的相等关系,在探究中正确地建立方程.

四、教学过程设计

1.创设情境,回顾旧知

同学们平时有没有到商场买过东西?我们来看几张图片,什么叫做五折优惠?对你有吸引力吗?打折是不是一定就亏本了呢?打折不一定亏本,这只是商家的一种促销方式,那么商家在销售中究竟是盈利还是亏本?今天我们就一起来讨论这个问题(教师板书课题――销售中的盈亏问题).

师生活动:教师提出问题,引发学生思考,结合具体问题理解它们之间的数量关系.

问题1:同一件衣服,进价200元,当售价为260元时,利润是多少?当售价是160元时,利润又是多少?

学生回答,并说出计算过程.

教师:当售价>进价时,就是盈利,这时利润是正值;

当售价<进价时,就是亏损,这时利润是负值.

所以判断销售中是盈利还是亏损,关键是判断利润是正值还是负值.

问题2:甲乙两件衣服,甲进价为50元,乙进价为100元,利润都是20元,请问在成本一定的情况下,商家会选择购进哪件衣服的数量更多呢?

学生分析、讨论.

教师:这里涉及进价和利润的一个比值问题,出现的一个新名词:利润率.

利润率=■×100% 利润率是个百分数.

利润=进价×利润率=售价-进价(黄色笔板书)

问题3:一件衣服进价80元,利润率是20%,它的售价是多少?

师生活动:分析已知量和未知量,引导学生学会利用利润=售价-进价=利润率进行求解.

设计意图:教师通过从学生比较熟悉的身边问题开始,激发学生的探究欲望,给学生一种轻松的心理氛围,易于学生学习新知识,为本节课的继续探索做好准备,也让学生注重观察生活,知道数学来源于生活,应用于生活.

2.探究新知,解决问题

出示探究1:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或者不盈不亏?

问题1:你估计盈亏情况是怎样的?

师生活动:教师让学生读题,引导学生猜想:你认为是盈还是亏?还是不亏不盈?学生纷纷发表个人见解时,教师先不表态,待学生说完后引导学生进一步思考下面的问题.

设计意图:通过这个问题让学生经历一个从定性考虑(估算)到定量考虑(计算)的过程,有利于增强他们对数学的应用价值的认识.   问题2:怎么判断是盈利还是亏损?

师生活动:教师提出问题,放开让学生谈个人的想法,允许学生交流、争论.引导学生总结:盈利还是亏损要看这家商店买进这两件衣服花的钱数与卖出这两件衣服的钱数的大小.如果进价大于售价则亏损,反之就盈利,相等则不盈不亏.

设计意图:引导学生总结判断盈亏的方法,提高学生分析总结的能力.

问题3:两件衣服的进价各是多少元?

师生活动:教师先引出问题,引导学生填空,学生先独立思考如何利用一元一次方程解决问题,教师巡视,然后小组合作交流解决问题,小组代表展示成果,师生共建方程模型,结合学生展示师生共同进行点评.

设计意图:引导学生用方程来解决问题,用填空的形式启发诱导,设计必要的铺垫,使学生初步感受“数学建模”的方法,能更好地发展学生有条理地进行思考和表达,从而突破本节课的难点.

3.及时反馈,巩固应用

问题1.某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价.

问题2.某商场把进价为800元的商品按标价的八折出售,仍获利20%,则该商品的标价为多少元?

师生活动:教师大屏幕出示题目,学生思考并独立完成,教师巡视,学生展示成果,其他学生进行适当补充、评价,教师给予适当点评。

设计意图:及时反馈,检测学生掌握情况,培养学生用数学的意识,巩固所学方法,渗透数学建模思想.

4.应用迁移,拓展提高

问题:一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆车仍获利50元,这种自行车每辆的进价是多少元?

生活动:教师大屏幕出示问题,学生先独立思考,教师巡视,然后小组合作交流解决问题,小组代表展示成果,其他学生可以评价补充,教师进行适当点评。

设计意图:提高学生应用所学知识分析问题、解决实际问题的能力,并养成用数学的思维和方法去解决生活中遇到的实际问题的能力。

5.畅谈收获,反思提高

问题:通过本节课的学习你有哪些收获?你有什么疑惑?

师生活动:教师引导学生从知识方法和学习体会与感受两层稍加思考后充分发表自己的见解.教师进行适当的点评,并着重指出本节课的重点是利用公式列出等量关系.

设计意图:由学生总结、归纳、反思,加深对知识的理解,获得解决问题的经验,培养学生良好的认知习惯、归纳总结能力和反思的能力.让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲.

6.布置作业

必做题:完成《能力培养》72-74页.

选做题:在本课探究的第一个问题中,假如你是商店老板,你能否设计一种方案,适当调整售价,使得销售这两件衣服时不亏本呢?

师生活动:教师布置作业,学生课下完成.

设计意图:必做题巩固所学知识,强化基本技能,检验学生掌握知识的情况,发现和弥补教与学中的遗漏与不足.选做题是对学生的一个挑战,培养了学生善于思考、勇于探索的精神,是为了使不同的人在数学上得到不同的发展.

五、目标检测设计

某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,这次买卖中,这家商店总的是盈利还是亏损,或者不盈不亏?

设计意图:考查学生解决销售中的盈亏问题的掌握情况.

篇12:解一元一次方程数学课件

解一元一次方程数学课件

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、 重点:弄清应用题题意列出方程。

2、 难点:弄清应用题题意列出方程。

教学过程:

一、复习

1、 什么叫一元一次方程?

2、 解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

分析:设应从A盘内拿出盐x,可列表帮助分析。

等量关系;A盘现有盐=B盘现有盐

完成后,可让学生反思,检验所求出的解是否合理。

(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

培养学生自觉反思求解过程和自觉检验方程的'解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

引导学生弄清题意,疏理已知量和未知量:

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=400

如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

6x+8(65-x)=400

也可以按照教科书上的列表法分析

三、巩固练习

教科书第12页练习1、2、3

第l题:可引导学生画线图分析

等量关系是:AC十CB=400

若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

由等量关系就可列出方程:

6(65-x)+8x=400

四、小结

本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

一元一次方程的应用课后练习题

一元一次方程应用评课稿

商品打折销售的调查报告

一元一次方程组的应用评课稿

作文 打折

计算机应用基础课件

一元一次方程说课稿

一元一次方程教案

《一元一次方程》说课稿

声音的应用教学课件

《应用一元一次方程打折销售课件(锦集12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档