欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

一元一次方程和它的解法

时间:2022-10-15 08:43:26 其他范文 收藏本文 下载本文

下面小编为大家带来一元一次方程和它的解法,本文共10篇,希望大家喜欢!

一元一次方程和它的解法

篇1:数学教案-一元一次方程和它的解法

数学教案-一元一次方程和它的解法

一、素质教育目标

(一)知识教学点

1.要求学生学会用移项解方程的方法.

2.使学生掌握移项变号的基本原则.

(二)能力训练点

由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

(三)德育渗透点

用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

(四)美育渗透点

用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

二、学法引导

1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

2.学生学法:练习→移项法制→练习

三、重点、难点、疑点及解决办法

1.重点:移项法则的掌握.

2.难点:移项法解一元一次方程的步骤.

3.疑点:移项变号的掌握.

四、课时安排

3课时

五、教具学具准备

投影仪或电脑、自制胶片、复合胶片.

六、师生互动活动设计

教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习导入

师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

(出示投影1)

利用等式的性质解方程

(1) ; (2) ;

解:方程的两边都加7, 解:方程的两边都减去 ,

得 ,得  ,

即 . 合并同类项得  .

【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.

提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

(二)探索新知,讲授新课

投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.

(出示投影2)

师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

2.改变的项有什么变化?

学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.

师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.

【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.

师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

(三)尝试反馈,巩固练习

师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.

学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.

【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.

对比练习:(出示投影3)

解方程:(1) ; (2) ;

(3) ; (4) .

学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.

师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)

【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.

巩固练习:(出示投影4)

通过移项解下列方程,并写出检验.

(1) ; (2) ;

(3) ; (4) .

【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.

(四)变式训练,培养能力

(出示投影5)

口答:

1.下面的移项对不对?如果不对,错在哪里?应怎样改正?

(1)从 ,得到 ;

(2)从 ,得到 ;

(3)从 ,得到 ;

2.小明在解方程 时,是这样写的解题过程: ;

(1)小明这样写对不对?为什么?

(2)应该怎样写?

【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.

(出示投影6)

用移项解方程:

(1) ;(2) ;

(3) ; (4) .

【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.

学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.

(出示投影7)

解下列方程:

(1) ; (2) ;(3) ;

(4) ; (5) ; (6) .

【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的'目的,而互相评判更增加了课堂上的民主意识.

(五)归纳小结

师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.

八、随堂练习

1.判断下列移项是否正确

(1)从 得 ( )

(2)从 得 ( )

(3)从 得 ( )

(4)从 得 ( )

2.选择题

(1)对于方程 ,移项正确的是( )

A. B.

C. D.

(2)对于方程 移项正确的是( )

A. B.

C. D.

3.用移项法解方程,并写出检验

(1) ;

(2) ;

(3) .

九、布置作业

课本第205页A组1.(1)(3)(5).

十、板书设计

随堂练习答案

1.× × × √

2.D  C

3.略

作业答案

(5)

解:移项得

合并同类项得

检验:略

探究活动

运动与学习成绩

班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?

参考答案:

全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.

参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.

篇2:《一元一次方程和它的解法》复习教案

《一元一次方程和它的解法》复习教案

教学目的

1、使学生巩固等式与方程的概念。

2、使学生掌握等式的性质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。

教学分析

重点:熟练掌握一元一次方程的解法。

难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。

突破:多练习,多比较,多思考。

教学过程

一、复习

1、什么是一元一次方程?一元一次方程的标准形式是什么?它的'解是什么?

2、等式的性质是什么?(要求说出应注意的两点)

3、解一元一次方程的基本步骤是什么?

以解方程-2x+ = 为例,说明解一元一次方程的基本步骤与注意点,并口头检验。

二、新授

1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n的值。

分析:根据一元一次方程的定义,得|n|=1且n+1≠0,解得n=1。

解:略

2、下列说法中,正确的是( )。

A -3x=0的解是x=-3

B - x+1=4的解为x=-

C -1= 的解是x=1

D x2-x-2=0的解是x=2, x=-1(D正确)

3、x等于什么数时,代数式 x+5的值比 的值小2。

解:(解略,应根据题目的意思列出方程。)

4、根据下列条件列出方程,并求出方程的解。

(1) 某数x的3倍减去9,等于某数的3分之1加上6;

(2) 已知-3m3(x-2)n与25m2+xn是同类项,求x的值;

(3) 已知代数式2[(x-1)+5]+x+1与代数式3[x-8(x-4)]+7的值互为相反数,求x的值。

5根据下列方程的特点解方程。

(题目见课本中P208、16的2,4)

三、练习

P209习题:20。

四、小结

1、略。

五、作业

1、P240 A:1,2,3,4。

2、B:1,2。

篇3:一元一次方程和它的解法复习课

教学目的

1、使学生巩固等式与方程的概念。

2、使学生掌握等式的性质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。

教学分析

重点:熟练掌握一元一次方程的解法。

难点:灵活地运用一元一次方程的.解法步骤,计算简化而准确。

突破:多练习,多比较,多思考。

教学过程

一、复习

1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?

2、等式的性质是什么?(要求说出应注意的两点)

3、解一元一次方程的基本步骤是什么?

以解方程 -2x+ = 为例,说明解一元一次方程的基本步骤与注意点,并口头检验。

二、新授

1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n的值。

分析:根据一元一次方程的定义,得|n|=1且n+1≠0,解得n=1。

解:略

2、下列说法中,正确的是(    )。

A -3x=0的解是x=-3

B - x+1=4的解为x=-

C -1= 的解是x=1

D x2-x-2=0的解是x=2, x=-1(D正确)

3、x等于什么数时,代数式 x+5的值比 的值小2。

解:(解略,应根据题目的意思列出方程。)

4、根据下列条件列出方程,并求出方程的解。

(1)       某数x的3倍减去9,等于某数的3分之1加上6;

(2)       已知-3m3(x-2)n与25m2+xn是同类项,求x的值;

(3)       已知代数式2[(x-1)+5]+x+1与代数式3[x-8(x-4)]+7的值互为相反数,求x的值。

5根据下列方程的特点解方程。

(题目见课本中P208、16的2,4)

三、练习

P209习题:20。

四、小结

1、略。

五、作业

1、P240 A:1,2,3,4。

2、B:1,2。

篇4:一元一次方程的解法的练习题

一元一次方程的解法的练习题

基础训练

一、选择题

1.若a=1,则方程=x-a的解是

A、x=1B、x=2C、x=3D、x=4.

2.方程+10=k去分母后得()

A、1-k+10=kB、1-k+10=6kC、1+k+10=6kD、1-k+60=6k.

3.把方程+10=-m去分母后得()

A、1-m+10=-mB、1-m+10=-12m

C、1+m+10=-12mD、1-m+120=-12m.

4.把方程1-=-去分母后,正确的是()

A、1-2x-3=-3x+5B、1-2(x-3)=-3x+5

C、4-2(x-3)=-3x+5D、4-2(x-3)=-(3x+5).

5.方程x=5-x的解是()

A、B、C、D、20.

二、天空题

6.数5、4、3的.最小公倍数是________________.

7.方程-1=去分母,得_________________.

三、解答题

8.下面方程的解法对吗?若不对,请改正.

-1=解:去分母,得:3(x-1)-1=4x

去括号,得:3x-1-1=4x

移项,得:3x+4x=-1-1

∴7x=-2,即x=-

学练点拨:

去分母时要注意(1)不要漏乘不含分母的项;(2)分子是多项式时,分子必须添加括号.

综合提高

一、选择题

9.解方程1-=-去分母后,正确的是()

A、1-5(3x+5)=-4(x+3)B、20-5×3x+5=-4x+3

C、20-15x-25=-4x+3D、20-15x-25=-4x-12.

10.把方程=1-去分母后,有错误的是()

A、4x-2=8-(3-x)B、2(2x-1)=1-3+x

C、2(2x-1)=8-(3-x)D、2(2x-1)=8-3+x.

11.解方程+=0.1时,把分母化成整数,正确的是()

A、+=10B、+=0.1

C、+=0.1D、+=10.

二、填空题

12.若代数式与-1的值相等,则x=____________.

13.若关于x的方程3x=x-4和x-2ax=x+5有相同的解,则a=__________.

三、解答题

14.解方程:

(1)=(2)(4-y)=(y+3)

(3)=x-(4)1-=.

15.解方程:-=0.5

16.当x为何值时,x-与1-的值相等.

17.已知方程-=1的解是x=-5,求k的值.

18.已知关于x的方程3x-2m+1=0与2-m=2x的解互为相反数,试求这两个方程的解及m的值.

探究创新

19.解方程:++---+=.

20.已知关于x的方程ax+5=的解x与字母系数a都是正整数,求a的值.

篇5:《一元一次方程的解法》的教学反思

熟练而准确地掌握一元一次方程的解法,是本章也是初中数学的重点和难点.因此,在教学过程设计时,注重了讲、练结合.同时在除了安排一定量的例题以外,还安排了相当数量的练习,从而使学生更好地达到上述要求.

在设计整个一元一次方程的解法的教学过程时,始终遵照“坚持启发式,反对注入式”的教学原则.即在课上,凡是学生自己努力能解的方程都应由学生自己解决完成

篇6:七年级数学《一元一次方程的解法》教案

七年级数学《一元一次方程的解法》教案

课题:一元一次方程的解法(去分母)

课时:第四课时

教学内容:P197-198.例5、例6

教学目的:掌握去分母的方法,解含有分母的一元一次方程

教学重点:去分母的方法及其根据

教学难点及其解决方法:

1.去分母时,正确解决方程中不含分母的项。

解决方法:注意分析去分母的根据,并在练习时加以强调。

2.正确理解分数线的作用。

解决方法:演示约分过程,使学生理解分数线除了代替除号外,还起到括号作用,所以去分母时,注意把分子作为一个整体,加上括号。

教法:启发式,讲练结合。

教学过程:

复习巩固上几节所学的一元一次方程解法

解方程:(学生练)5y-1=14①

解:移项,得5y=14+1

同并同类项,得5y=15

系数化为1,得y=3

(口算检验)

新课教授

1.引入有分母的一元一次方程(根据等式基本性质2,将方程①两边都除以6,仍得等式)(即例5)

思考:

(1)此方程如何求解?

若把方程左边看成(5y-1),再利用去括号求解可以吗?是否还有其它更好的方法?

(2)能否把它还原为原来的'方程①?

若能这样,就能避免在计算过程中出现通分过程。

(3)如何还原呢?(方程两边都乘以6)

(4)此过程的根据是什么?(等式基本性质2)

(5)其目的是什么?(消去分母,故此步骤称“去分母”)

解题过程:解:去分母,得5y-1=14(板书演示约分过程)

(以下步骤,略)

2.小结:去分母的基本方法:两边乘以各分母的最小公倍数。

其根据是什么?若乘以其它数能否达到“去分母”的目的?为什么要乘以最小公倍数?

3.练习:《掌握代数》P87.2(1)

4.引入例6

让学生试完成《掌握代数》P88.3(即例6)

提示:各分母的最小公倍数是什么?

评讲并提出注意事项:

解:去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12(板书演示P199的过程)

(以下步骤参照课文P198例6)

5.小结:针对解题过程中较易出现的错误,强调注意事项:

(1)去分母时,没分母的项不要漏乘。

(2)去分母时,应把分子作为一个整体加上括号。(标出P199.“注意”的关键语句)

6.练习:《掌握代数》P88.4(1)

总结:

1.去分母的方法及其根据

2.去分母时要注意的事项

练习:

1.《掌握代数》P90.(1)、(2)、(3)(评讲,强调注意事项)

2.《掌握代数》P90.(4)、(5)(口算检验)

作业:

《代数》P206.10

篇7:一元一次不等式和它的解法

教学建议

一、知识结构

二、重点难点分析

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

1q一元一次不等式和一元一次方程概念的异同点

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.

(3)同方程类似,我们把 或 叫做一元一次不等式的标准形式.

篇8:一元一次不等式和它的解法

相同点:步骤相同,二者都是经过变形,把左边变成 ,右边变为一个常数.

不同点:在进行第(1)步去分母和第(5)步将 项的系数化为1的变形时,要根据同乘(或同除)的数的正负,决定是否要改变不等号的方向.当然,如果不能确定同乘(或同除)的数的符号时,就要进行讨论.这正是解不等式时最容易发生错误的地方.

注意:(1)解方程的移项法则对解不等式同样适用.

(2)解不等式时,上述的五个步骤不一定都能用到,并且也不一定按照自上而百的顺序,要根据不等式形式灵活安排求解步骤.熟练后,步骤及检验还可以合并简化.

三、教法建议

在讲一元一次不等式的解法时,应突出抓住与方程解法不同的地方,加强“去分母”和“系数化成l”这两个步骤的训练,因为这两个步骤会出现“在不等式两边都乘以(或除以)同一个负数,不等号的方向改变”的情况,为此可以同一元一次方程对照着讲.

解不等式的过程就是将不等式进行同解变形的过程,这也是一种运算.新大纲规定:“运算能力包括会根据法则公式等正确地进行运算,理解运算的算理,能根据题目条件寻求合理,简捷的运算途径.”要培养解不等式的能力首先要使学生理解和掌握算理,即掌握不等式的基本性质,正确理解不等式、不等式的解集等有关概念.

这节课是在复习一元一次方程的基本思想和步骤中学习解一元一次不等式的.要突出不等式基本性质3,这是解不等式容易出错的地方.同时还要反复提醒同学注意克服解方程变形中常犯的错误,在解不等式中 也要重现.

篇9:一元一次不等式和它的解法

2.注意问题:

①不等式性质3的正确使用.

②避免不等式变形中常见的错误(去分母时不要漏乘,移项要变号,书写不能连写不等号等).

八、布置作业

(一)必做题:P73 A组 1.(1)(2)(4)(5).

(二)选做题:P73~P74 A组2.(2)(4)(6);B组1.

参考答案

(一)1.(1) (2) (4) (5)

(二)2.(2) (4) (6)

1.

九、板书设计

6.3  一元一次不等式和它的解法(一)

一、一元一次不等式

1.概念:只含有一个未知数且未知数次数为1,系数不为0的不等式叫一元一次不等式.

注意:针对最简形式而言.

2.标准形式 或    (其中 )

二、解法(与一元一次方程进行对比)

1. 例1

解: 解:

2.例2

解:解:

三、小结

注意:1.不等式性质3.

2.变形中常见错误.

篇10:一元一次不等式和它的解法

(二)能力训练点

1.培训学生运用类比方法处理相关内容的能力.

2.培养学生用所学知识解决实际问题的能力.

(三)德育渗透点

通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立学生辩证唯物主义的思想方法.

(四)美育渗透点

通过本节课的学习,渗透不等式解集的奇异的数学美.

二、学法引导

1.教学方法:类化法、引导实践法、练习法.

2.学生学法:抓住解方程的一般解题步骤,归纳出解不等式的一般步骤.

三、重点・难点・疑点及解决方法

(一)重点

掌握一元一次不等式的解法、步骤并准确地求出解集.

(二)难点

正确运用不等式的基本性质3,避免变形中出现错误.

(三)疑点

弄清一元一次不等式与一元一次方程的异同.

(四)解决方法

观察比较一元一次方程与一元一次不等式解题步骤的区别及注意点,从而更准确地掌握一元一次不等式的解题步骤并重视易出错的环节.

四、课时安排

一课时.

五、教具学具准备

直尺、投影仪或电脑、胶片.

六、师生互动活动设计

1.通过复习一元一次方程的概念及一般解题步骤,为本节课新授一元一次不等式的求解打下良好的坚实基础.

2.通过类比的办法引入一元一次不等式的'概念及求解方法.教师一边示范一边提问让学生通过观察、类比从而加深对一元一次不等式求解的理解.

3.通过反复的练习,让学生掌握常见含字母的不等式的求解办法.从而达到熟能生巧的目的.

七、教学步骤

(一)明确目标

本节课将学习一元一次不等式的求解办法,并能熟练地解之.

(二)整体感知

让学生通过类比的方法既复习了一元一次方程的求解,又快捷地掌握一元一次不等式的求解,从而能更好地区分一元一次方程和一元一次不等式的求解过程的差异.

(三)教学过程

1.创设情境,复习引入

(1)提问:①什么叫一元一次方程?

②它的标准形式是什么?

③解一元一次方程的一般步骤是什么?

④一元一次方程一定有解吗?有几个解?

(2)解下列方程:① .

② ,并在数轴上表示它们的解.

(3)指出不等式 的解集,并在数轴上表示出来.

学生活动:第(1)题口答,第(2)题、第(3)题在练习本上完成,指定三个学生板演,完成后由学生判断是否正确.

教师活动:纠正,强调解方程时的常见错误及“・ ”与“。”的使用区别.然后指出,解不等式与解一元一次方程相比,最大的区别就是式子两边乘或除以同一个负数时,“不等号”需改变方向,“等号”不改变.除此之外的对式子进行的任何其他变形都是完全相同的.

【教法说明】由于一元一次不等式与一元一次方程在诸多方面都有联系,因此,教学时光复习一元一次方程的有关内容,然后引入一元一次不等式的相应内容,通过仿同求异对比来学习,这样既降低了学习难度,又强化了对新知识的理解.

2.探索新知,讲授新课

大家知道,不等式 的解集是 ,变形的理论依据是不等式基本性质1,相当于解方程的移项法则,实际上,解不等式就是运用不等式的三条基本性质,对不等式进行适当变形(去分母、去括号、移项、合并同类项、化系数为1)最终将不等式变形为 或 的形式,即求出不等式的解集.

大家知道,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,例如 .一元二次方程的标准形式是 .类似地,只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式,例如 .

一元一次不等式的标准形式为 或

注意问题:判断一个不等式是否为一元一次不等式,应先将它化成最简形式,再用定义判断.形如 的不等式不是一元一次不等式,而是矛盾不等式.

解一元一次不等式与解一元一次方程有类似的步骤,但一定要注意当不等式的两边同乘(或除以)同一个负数时,不等号要改变方向.

例1  解不等式 ,并把它们的解集在数轴上表示出来.

例2  解不等式 ,并把它们的解集在数轴上表示出来.

师生活动:教师板书例1,学生板书例2.(同桌交换练习,指出对方错误井纠正)

(1)解方程:

解:去括号,得

移项,得

合并同类项,得

化系数为1,得

方程的解在数轴上表示如下:

例1  解不等式:

解:去括号,得

移项,得

合并同类项,得

化系数为1,得

不等式的解在数轴上表示如下:

(2)解方程:

解:去分母,得

去括号,得

移项,得

合并同类项,得

化系数为1,得

方程的解在数轴上表示如下:

例2  解不等式

解:去分母,得

去括号,得

移项,得

合并同类项,得

化系数为1,得

不等式的解在数轴上表示如下:

【教法说明】①通过对比一元一次不等式与一元一次方程的解题步骤,一方面加深学生对相同点的认识,另一方面强化学生对不同点的理解、认识和记忆.

②教学时,教师要注意强调不等式性质3的应用、方程变形中常见的错误,及实心圆点与空心圆圈的区别.

3.尝试反馈,巩固知识

解下列不等式:

① ② ③ ④

⑤ (并在数轴上表示其解集)

答案:① ② ③ ④ ⑤

解⑤:去分母,得

去括号,得

移项,得

合并同类项,得

系数化为1,得

不等式的解集在数轴上表示如下:

【教法说明】教学时,①、②小题可作抢答题,③、④小题在练习本上完成,然后与投影出示的正确答案进行对比.⑤小题学生口述,这样既锻炼了学生的运算能力,强化了竞争意识,同时也检验了学生解不等式的能力.

4.变式训练,培养能力

(1)解下列不等式,并把它们的解集在数轴上表示出来.

① ②

答案:① ②

师生活动:首先学习练习,教师巡视,了解做题情况.接着与正确解题过程进行对比,最后教师对练习中的共性错误进行纠正和强调.

(2)单项选择题:

①下列各式中,是一元一次不等式的是( )

A. B.

C. D.

②不等式 的解集是( )

A. B. C. D.

③在解不等式 的过程中,①去分母得 ②移项得 ③合并得 ④解集为:

其中错误的是( )

A.① B.② C.③ D.④

④下列不等式中,解集不同的是( )

A. 与 B. 与

C. 与 D. 与

答案:D,C,D,D.

学生活动:分析思考,讨论完成,指名回答并说出理由.

教师活动:纠正错误及强调注意事项.

【教法说明】通过同桌(或前后桌)的分析讨论,各抒己见,即激发了学生的学习兴趣又强化了学生思维的灵敏性、科学性、主动性.

(四)归纳、扩展

1.本节重点:

一元一次方程解法教学设计

一元一次方程说课稿

一元一次方程教案

《一元一次方程》说课稿

一元一次方程组练习题

一元一次方程教学反思

解一元一次方程教案

七年级解一元一次方程教案设计

一元一次方程的概念的说课稿

七年级《一元一次方程》教学设计

《一元一次方程和它的解法(通用10篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档