欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

高中不等式知识点总结

时间:2022-07-29 08:24:53 其他范文 收藏本文 下载本文

以下是小编精心整理的高中不等式知识点总结,本文共12篇,仅供参考,希望能够帮助到大家。

高中不等式知识点总结

篇1:高中不等式知识点总结

高中不等式知识点总结

一、 知识点

1.不等式性质

比较大小方法:(1)作差比较法(2)作商比较法

不等式的基本性质

①对称性:a > bb > a

②传递性: a > b, b > ca > c

③可加性: a > b a + c > b + c

④可积性: a > b, c > 0ac > bc;

a > b, c < 0ac < bc;

⑤加法法则: a > b, c > d a + c > b + d

⑥乘法法则:a > b > 0, c > d > 0 ac > bd

⑦乘方法则:a > b > 0, an > bn (n∈N)

⑧开方法则:a > b > 0,

2.算术平均数与几何平均数定理:

(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)

(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则

重要结论

1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;

(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:

比较法:比较法是最基本、最重要的方法。当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。

分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。

4.不等式的解法

(1) 不等式的有关概念

同解不等式:两个不等式如果解集相同,那么这两个不等式叫做同解不等式。

同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做同解变形。

提问:请说出我们以前解不等式中常用到的同解变形

去分母、去括号、移项、合并同类项

(2) 不等式ax > b的解法

①当a>0时不等式的解集是{x|x>b/a};

②当a<0时不等式的解集是{x|x

③当a=0时,b<0,其解集是R;b0, 其解集是ф。

(3) 一元二次不等式与一元二次方程、二次函数之间的关系

(4)绝对值不等式

|x|0)的解集是{x|-a

o o

-a 0 a

|x|>a(a>0)的解集是{x|x<-a或x>a},几何表示为:

o o

-a 0 a

小结:解绝对值不等式的关键是-去绝对值符号(整体思想,分类讨论)转化为不含绝对值的不等式,通常有下列三种解题思路:

(1)定义法:利用绝对值的意义,通过分类讨论的方法去掉绝对值符号;

(2)公式法:| f(x) | > a f(x) > a或f(x) < -a;| f(x) | < a -a

(3)平方法:| f(x) | > a(a>0) f2(x) > a2;| f(x) | < a(a>0) f2(x) < a2;(4)几何意义。

(5)分式不等式的解法

(6)一元高次不等式的解法

数轴标根法

把不等式化为f(x)>0(或<0)的形式(首项系数化为正),然后分解因式,再把根按照从小到大的顺序在数轴上标出来,从右边入手画线,最后根据曲线写出不等式的解。

(7)含有绝对值的不等式

定理:|a| - |b|≤|a+b|≤|a| + |b|

? |a| - |b|≤|a+b|

中当b=0或|a|>|b|且ab<0等号成立

? |a+b|≤|a| + |b|

中当且仅当ab≥0等号成立

推论1:|a1 + a2 + a3| ≤|a1 | +| a2 | + | a3|

推广:|a1 + a2 +...+ an| ≤|a1 | +| a2 | +...+ | an|

推论2:|a| - |b|≤|a-b|≤|a| + |b|

二、常见题型专题总结:

篇2:高中不等式知识点总结

专题一:利用不等式性质,判断其它不等式是否成立

1、a、b∈R,则下列命题中的真命题是( C )

A、若a>b,则|a|>|b| B、若a>b,则1/a<1/b

C、若a>b,则a3>b3 D、若a>b,则a/b>1

2、已知a<0.-1

A、a>ab>ab2 B、ab2>ab>a

C、ab>a>ab2 D、ab>ab2>a

3、当0

A、(1a)1/b >(1a)b B、(1+a)a>(1+b)b

C、(1a)b >(1a)b/2 D、(1a)a>(1b)b

4、若loga3>logb3>0,则a、b的关系是( B )

A、0a>1

C、0

5、若a>b>0,则下列不等式①1/a<1/b;②a2>b2;③lg(a2+1)>lg(b2+1);④2a>2b中成立的是( A )

A、①②③④ B、①②③ C、①② D、③④

(二)比较大小

1、若0<α<β<π/4,sinα+cosα=a,sinβ+cosβ=b,则( A )

A、ab C、ab<1 D、ab>2

2、a、b为不等的正数,n∈N,则(anb+abn)-(an-1+bn-1)的符号是( C )

A、恒正B、恒负

C、与a、b的大小有关D、与n是奇数或偶数有关

3、设1lg2x>lg(lgx)

4、设a>0,a≠1,比较logat/2与loga(t+1)/2的大小。

分析:要比较大小的式子较多,为避免盲目性,可先取特殊值估测各式大小关系,然后用比较法(作差)即可。

(三)利用不等式性质判断P是Q的充分条件和必要条件

1、设x、y∈R,判断下列各题中,命题甲与命题乙的充分必要关系

⑴命题甲:x>0且y>0, 命题乙:x+y>0且xy>0 充要条件

⑵命题甲:x>2且y>2, 命题乙:x+y>4且xy>4 充分不必要条件

2、已知四个命题,其中a、b∈R

①a2

3、“a+b>2c”的一个充分条件是( C )

A、a>c或b>c B、a>c或bc且b>c D、a>c且b

(四)范围问题

1、设60

2、若二次函数y=f(x)的图象过原点,且1≤f(1)≤2,3≤f(1)≤3,求f(2)的范围。

(五)均值不等式变形问题

1、当a、b∈R时,下列不等式不正确的是( D )

A、a2+b2≥2|a|?|b| B、(a/2+b/2)2≥ab

C、(a/2+b/2)2≤a2/2+b2/2 D、log1/2(a2+b2)≥log1/2(2|a|?|b|)

2、x、y∈(0,+∞),则下列不等式中等号不成立的是( A )

C、(x+y)(1/x+1/y)≥4 D、(lgx/2+lgy/2)2≤lg2x/2+lg2y/2

3、已知a>0,b>0,a+b=1,则(1/a21)(1/b21)的最小值为( D )

A、6 B、7 C、8 D、9

4、已知a>0,b>0,c>0,a+b+c=1,求证:1/a+1/b+1/c≥9

5、已知a>0,b>0,c>0,d>0,求证:

(六)求函数最值

1、若x>4,函数

5、大、-6

2、设x、y∈R, x+y=5,则3x+3y的最小值是( )D

A、10B、C、D、

3、下列各式中最小值等于2的是( )D

A、x/y+y/x B、 C、tanα+cotα D、2x+2-x

4、已知实数a、b、c、d满足a+b=7,c+d=5,求(a+c)2+(b+d)2的最小值。

5、已知x>0,y>0,2x+y=1,求1/x+1/y的最小值。

(七)实际问题

1、98(高考)如图,为处理含有某种杂质的污水,要制造一个底宽为2cm的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为am,高度为bm,已知流出的水中该杂质的质量分数与a、b的乘积ab成反比,现有制箱材料60m2,问当a、b各为多少米时,沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)。

解一:设流出的水中杂质的质量分数为y,

由题意y=k/ab,其中k为比例系数(k>0)

据题设2×2b+2ab+2a=60(a>0,b>0)

由a>0,b>0可得0

令t=2+a,则a=t-2从而当且仅当t=64/t,即t=8,a=6时等号成立。∴y=k/ab≥k/18

当a=6时,b=3,

综上所述,当a=6m,b=3m时,经沉淀后流出的水中该杂质的质量分数最小。

解二:设流出的水中杂质的质量分数为y,由题意y=k/ab,其中k为比例系数(k>0)

要求y的最小值,即要求ab的最大值。

据题设2×2b+2ab+2a=60(a>0,b>0),即a+2b+ab=30

即a=6,b=3时,ab有最大值,从而y取最小值。

综上所述,当a=6m,b=3m时,经沉淀后流出的水中该杂质的质量分数最小。

2、某工厂有旧墙一面长14米,现准备利用这面旧墙建造平面图形为矩形,面积为126 米2的厂房,工程条件是:①建1米新墙的费用为a元;②修1米旧墙的费用为a/4元;③拆去1米旧墙用所得材料建1米新墙的费用为a/2元.经过讨论有两种方案:⑴利用旧墙的一段x(x<14)米为矩形厂房的一面边长;⑵矩形厂房的一面长为x(x≥14).问如何利用旧墙,即x为多少米时,建墙费用最省?⑴⑵两种方案哪种方案最好?

解:设总费用为y元,利用旧墙的一面矩形边长为x米,则另一边长为126/x米。

⑴若利用旧墙的一段x米(x<14)为矩形的一面边长,则修旧墙的费用为x?a/4元,剩余的旧墙拆得的材料建新墙的费用为(14-x)?a/2元,其余的建新墙的费用为(2x+ 2?126/x-14)?a元,故总费用 当且仅当x=12时等号成立,∴x=12时ymin=7a(6-1)=35a。

⑵若利用旧墙的一段x米(x≥14)为矩形的一面边长,则修旧墙的费用为x?a/4元,建新墙的费用为(2x+ 2?126/x-14)?a元,故总费用

设f(x)=x+126/x, x2>x1≥14,则f(x2)-f(x1)= x2+126/x2-(x1+126/x1)

=(x2x1)(1126/x1x2)>0∴f(x)=x+126/x在[14,+∞)上递增,∴f(x)≥f(14)

∴x=14时ymin=7a/2+2a(14+126/14-7)=35.5a

综上所述,采用方案⑴,即利用旧墙12米为矩形的一面边长,建墙费用最省。

(八)比较法证明不等式

1、已知a、b、m、n∈R+,证明:am+n+bm+n≥ambn+anbm

变:已知a、b∈R+,证明:a3/b+b3/a≥a2+b2

2、已知a、b∈R+,f(x)=2x2+1,a+b=1,证明:对任意实数p、q恒有a?f(p)+b?f(q)≥f(ap+bq)

(九)综合法证明不等式

1、已知a、b、c为不全相等的正数,求证:

2、已知a、b、c∈R,且a+b+c=1,求证:a2+b2+c2≥1/3

3、已知a、b、c为不全相等的正数,且abc=1,求证:

4、已知a、b∈R+,a+b=1,求证:

(十)分析法证明不等式

1、已知a、b、c为不全相等的正数,求证:bc/a+ac/b+ab/c>a+b+c

2、已知函数f(x)=lg(1/x-1),x1、x2∈(0,1/2),且x1≠x2,求证:

3、设实数x,y满足y+x2=0,0

(十一)反证法、放缩法、构造法、判别式法、换元法等证明不等式

1、设f(x)=x2+ax+b,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1/2。

2、若x2+y2≤1,求证|x2+2xy-y2|≤.

3、已知a>b>c,求证:

4、已知a、b、c∈R+,且a+b>c求证:.

5、已知a、b、c∈R,证明:a2+ac+c2+3b(a+b+c)≥0,并指出等号何时成立。

分析:整理成关于a的二次函数f(a)=a2+(c+3b)a+3b2+3bc+c2

∵Δ=(c+3b)2-4(3b2+3bc+c2)=-3(b2+2bc+c2)≤0

∴f(a)≥0

6、已知:x2-2xy + y2 + x + y + 1=0,求证:1/3≤y/x≤3

7、在直角三角形ABC中,角C为直角,n≥2且n∈N,求证:cn≥an + bn

(十二)解不等式

1、解不等式:

2、解关于x的不等式:

篇3:不等式知识点总结

不等式知识点总结

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的.两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C

在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)

在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

篇4:高中不等式知识点课件

高中不等式知识点课件

一、目标与要求

1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

三、重点

1.理解并掌握不等式的性质;

2.正确运用不等式的性质;

3.建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程;

4.寻找实际问题中的不等关系,建立数学模型;

5.一元一次不等式组的解集和解法。

四、难点

1.一元一次不等式组解集的理解;

2.弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;

3.正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

五、知识点、概念总结

1.不等式:用符号,,,表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的`不等式表达出来,例如:x-12的解集是x3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x) G(x)与不等式 G(x)F(x)同解。

(2)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)

(3)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。

7.不等式的性质:

(1)如果xy,那么yy;(对称性)

(2)如果xy,y那么x(传递性)

(3)如果xy,而z为任意实数或整式,那么x+z(加法则)

(4)如果xy,z0,那么xz如果xy,z0,那么xz

(5)如果xy,z0,那么xzy如果xy,z0,那么xz

(6)如果xy,mn,那么x+my+n(充分不必要条件)

(7)如果x0,m0,那么xmyn

(8)如果x0,那么x的n次幂y的n次幂(n为正数)

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般顺序:

(1)去分母 (运用不等式性质2、3)

(2)去括号

(3)移项 (运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1 (运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10. 一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一一起,就组成

了一个一元一次不等式组。

12.解一元一次不等式组的步骤:

(1) 求出每个不等式的解集;

(2) 求出每个不等式的解集的公共部分;(一般利用数轴)

(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

13.解不等式的诀窍

(1)大于大于取大的(大大大);

例如:X-1,X2 ,不等式组的解集是X2

(2)小于小于取小的(小小小);

例如:X-4,X-6,不等式组的解集是X-6

(3)大于小于交叉取中间;

(4)无公共部分分开无解了;

14.解不等式组的口诀

(1)同大取大

例如,x2,x3 ,不等式组的解集是X3

(2)同小取小

例如,x2,x3 ,不等式组的解集是X2

(3)大小小大中间找

例如,x2,x1,不等式组的解集是1

(4)大大小小不用找

例如,x2,x3,不等式组无解

15.应用不等式组解决实际问题的步骤

(1)审清题意

(2)设未知数,根据所设未知数列出不等式组

(3)解不等式组

(4)由不等式组的解确立实际问题的解

(5)作答

16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

篇5:初中不等式知识点总结

初中不等式知识点总结

一、不等式的概念

1、不等式

用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集

对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

对于一个含有未知数的不等式, 它的所有解的集合叫做这个不等式的解的集合, 简称这个不等式的解集。

求不等式的解集的过程,叫做解不等式。

二、不等式基本性质

1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

三、一元一次不等式

1、一元一次不等式的概念

一般地,不等式中只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、一元一次不等式的解法

一般步骤:

(1)去分母;

(2)去括号;

(3)移项;

(4)合并同类项;

(5)将 x 项的系数化为 1。

四、一元一次不等式组

1、一元一次不等式组的概念

几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

求不等式组的解集的过程,叫做解不等式组。

当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

2、一元一次不等式组的解法

(1)分别求出不等式组中各个不等式的解集。

(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

第九章 不等式与不等式组

一、目标与要求

1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

二、知识框架

三、重点

理解并掌握不等式的性质;

正确运用不等式的性质;

建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程;

寻找实际问题中的不等关系,建立数学模型;

一元一次不等式组的解集和解法。

四、难点

一元一次不等式组解集的理解;

弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;

正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

五、知识点、概念总结

1.不等式:用符号“<”,“>”,“≤”,“≥”表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>”,“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”,“≤”连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的.表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性质:

(1)如果x>y,那么yy;(对称性)

(2)如果x>y,y>z;那么x>z;(传递性)

(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

(7)如果x>y>0,m>n>0,那么xm>yn

(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般顺序:

(1)去分母 (运用不等式性质2、3)

(2)去括号

(3)移项 (运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1 (运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10. 一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

了一个一元一次不等式组。

12.解一元一次不等式组的步骤:

(1) 求出每个不等式的解集;

(2) 求出每个不等式的解集的公共部分;(一般利用数轴)

(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

篇6:不等式的知识点总结

不等式的知识点总结

1.用符号

〉,=,〈号连接的式子叫不等式。

2.性质

①如果x>y,那么yy;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑥如果x>y>0,m>n>0,那么xm>yn;

⑦如果x>y>0,那么x的'n次幂>y的n次幂(n为正数),x的n次幂。或者说,不等式的基本性质有:

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

⑧倒数法则。

3.分类

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.不等式考点

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

注:不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)

不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)

不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)

篇7:初中不等式知识点总结

初中不等式知识点总结

考点一、不等式的概念

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法。

考点二、不等式基本性质

1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

考点三、一元一次不等式

1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1

考点四、一元一次不等式组

1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法

(1)分别求出不等式组中各个不等式的解集

(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

7、不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

篇8:高一不等式知识点总结

1、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

2、绝对值不等式的解法及其几何意义是什么?

3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

4、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a》b》0,a

篇9:高一不等式知识点总结

解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式 高二,以及归纳法。

图形函数来帮助,画图建模构造法。

篇10:高中数学不等式知识点总结

高中数学不等式知识点总结:

1、用符号〉,=,〈号连接的式子叫不等式。

2、性质:

①如果x>y,那么y

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑥如果x>y>0,m>n>0,那么xm>yn;

⑦如果x>y>0,那么x的.n次幂>y的n次幂(n为正数),x的n次幂

或者说,不等式的基本性质有:

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

⑧倒数法则。

3、分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

篇11:高二数学不等式知识点

证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

不等式相关公式

a>b,b>c=>a>c;

a>b=>a+c>b+c;

a>b,c>0=>ac>bc;

a>b,c<0=>ac

;a>b>0,c>d>0=>ac>bd;

a>b,ab>0=>1/a<1/b

;a>b>0=>a^n>b^n;

基本不等式:(根号ab)≤(a+b)/2

那麽可以变为a^2-2ab+b^2≥0

a^2+b^2≥2ab

有两条哦!

一个是||a|-|b||≤|a-b|≤|a|+|b|

另一个是||a|-|b||≤|a+b|≤|a|+|b|

证明可利用向量,把a、b看作向量,利用三角形两边之差小于第三边,

两边之和大于第三边。

篇12:数学方程和不等式知识点

方程与不等式

[创新训练]

一、选择题

1.(05·陕西·4)一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元.设这件商品的成本价为 x元,根据题意,下面所列的方程正确的是()

A.x·40% ×80% =240 B.x(1+40%)×80% =240

C.240×40% ×80% =x D.x·40% =240×80%

2.(05·安徽·3)根据下图所示,对 a、b、c三种物体的重量判断正确的是()

A.ac D.b

3.(05·浙江·9)根据下列表格的对应值:

x3.233.243.253.26

ax2+bx+c-0.06-0.020.030.09

判断方程 ax2+bx+c=0(a≠0,a、b、c为常数)一个解 x的范围是()

A.3

4.(05·宁夏·7)买甲、乙两种 纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水 x桶,乙种水 y桶,则所列方程组中正确的是()

A.8x+6y=250

y=75{%xB.8x+6y=250

x=75{%yC.6x+8y=250

y=75{%xD.6x+8y=250

x=75{%y

5.(05·山东潍坊·8)若 x+1x=3,求x2x4+x2+1的值是()

A.18 B.110 C.12 D.14

6.(05·山东潍坊·9)为了改善住房条件,小亮的父母考察了某小区的 A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的总 房价相同,第3层楼和第5层楼每平方米的价格分别是平均价格的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设 A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息得出了下列方程组.其中正确的是()

A.0.9x=1.1yy-x{=24

B.1.1x=0.9y

x-y{=24

C.0.9x=1.1y

x-y{=24

D.1.1x=0.9y

y-x{=24

7.(05·广州·7)用计算器计算22槡 -12-1,32槡 -13-1,42槡 -14-1,52槡 -15-1,…,根据你发现的规律,判断 P=n2槡 -1n-1与Q=(n+1)2槡-1(n+1)-1(n为大于1的整数)的值的大小关系为()

A.P

C.P>QD.与 n的取值有关

8.(04·重庆北碚·7)关于 x的不等式2x-a≤-1的解集如图所示,则 a的取值是()

A.0 B.-3 C.-2 D.-1

9.(04·河北鹿泉·5)如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量 m(g)的取值范围,在数轴上可表示为()

10.(04·青海湟中·5)设A、B、C表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“B”、“C”这三种物体按质量从大到小的顺序排应为()

A.ABC B.CBA C.BAC D.BCA

二、填空题

1.(05·江西·6)若方程 x2-m =0有整数根,则 m 的值可以是(只填一个).

2.(05·浙江·15)在日常生活中如取款、都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式 x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取 x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).

3.(05·浙江宁波·18)已知 a-b=b-c=35,a2+b2+c2=1,则 ab+bc+ca的值等于.

4.(05·福建厦门·15)一根蜡烛在凸透镜下成一实像,物距 u,像距 v和凸透镜的焦距f满足关系式:1u+1v=1f.若 f=6厘米,v=8厘米,则物距 u=厘米.

5.(04·青海湟中·12)正在修建的西塔(西宁———塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若设甲单独完成这项工程需要 x天.则根据题意,可列方程为.

三、解答题

1.(05·河南·16)有一道题“先化简,再求值:(x-2x+2+4_2-4)÷1x2-4,其中 x槡= - 3.”小玲做题时把“x槡= - 3”错抄成了“x 槡=3”,但她的计算结果也是正确的,请你解释这是怎么回事?

2.(05·安徽·19)2004年12月28日,我国第一条城际铁路———合宁铁路(合肥至南京)正式开工建设.建成后,合肥至南京的铁路运行里程将由目前的312km缩短至154km,设计时速是现行时速的2.5倍,旅客列车运行时间将因此缩短约3.13h.求合宁铁路的设计时速.

3.(05·浙江·23)据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知 A站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至 H站的里程数:车站名ABCDEFGH各站至 H站的里程数(单位:千米) 1500 1130 910622402219720

例如,要确定从 B站至E站火车票价,其票价为180×(1130-402)1500=87.36≈87(元).

(1)求 A站至F站的火车票价(结果精确到1元);

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).

4.(05·宁夏·20)已知方程 ax+12=0的解是 x=3,求不等式(a+2)x< -6的解集.

5.(05·山东潍坊·20)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?

共在多少个交通路口安排值勤?

6.(05·广东佛山·22)某酒店客房部有三人间、双人间客房,收费数据如下表.

普通(元/间/天)豪华(元/间/天)

三人间150300

双人间140400

为吸引游客,实行团体入住五折獉獉优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房,若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?

7.(05·浙江宁波·20)已知关于 x的方程a-x2=bx-33的解是 x=2,其中 a≠0且 b≠0,求代数式ab-ba的值.

8.(05·浙江宁波·24)已知关于 x的方程x2-2(m +1)x+m2=0.

(1)当 m 取何值时,方程有两个实数根;

(2)为 m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.

9.(04·四省(区)灵武、开福、曲沃、乌海·18)在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.

(1)在数轴上表示出四家公共场所的位置;

(2)列式计算青少年宫与商场之间的距离.

10.(05·黑龙江·27)某房地产开发公司计划建 A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:

AB

成本(万元/套)2528

售价(万套)3034

(1)该公司对这两种户型住房有哪几种建房方案?

(2)该公司如何建房获得利润?

(3)根据市场调查,每套 B型住房的售价不会改变,每套 A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润?

注:利润=售价-成本

11.(05·福建泉州·26)某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位坐.

(1)设原计划租用48座客车 x辆,试用含 x的代数式表示这两个年段学生的总人数;

(2)现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位.请你求出该校这两个年段学生的总人数.

[专项练习]

一、选择题

1.(05·河北·5)不等式2x>3-x的解集是()

A.x>3 B.x<3 C.x>1 D.x<1

2.(05·河北·8)解一元二次方程 x2-x-12=0,结果正确的是()

A.x1= -4,x2=3 B.x1=4,x2= -3

C.x1= -4,x2= -3 D.x1=4,x2=3

3.(05·黑龙江·19)不等式组5-2x≥-1

x{-1>0的解集是()

A.x≤3B.11

4.(05·江西·14)某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为 x元,则得到方程()

A.x=150×25% B.25%·x=150

C.150-_=25% D.150-x=25%

5.(05·安徽·7)方程 x(x+3)=x+3的解是()

A.x=1 B.x1=0,x2= -3

C.x1=1,x2=3 D.x1=1,x2= -3

6.(05·海南·4)方程 x2-4=0的根是()

A.x1=2,x2= -2 B.x=4 C.x=2 D.x= -2

7.(05·海南·5)不等式组x-2<0

x{> -1的解集是()

A.x> -1 B.x< -2 C.x<2 D.-1

8.(05·海南·6)要把分式方程32x-4=1x化为整式方程,方程两边需要同时乘以()

A.2x-4 B.x C.2(x-2) D.2x(x-2)

9.(05·青海·14)方程组x+2y=3

3x-2y{=1的解是()

A.x= -5

y{=3

B.x= -1

y{= -1

C.x=1

y{=1

D.x=3

y{= -5

10.(05·宁夏·4)把不等式组x-1≤0

-2x{<4的解集表示在数轴上,正确的是()

11.(05·山东潍坊·2)已知实数 a、b在数轴上对应的点如图所示,则下列式子正确的是()

A.ab>0 B.|a|>|b| C.a-b>0 D.a+b>0

12.(05·安徽芜湖·8)若使分式x2+2x-3x2-1的值为0,则 x的取值为()

A.1或-1 B.-3或1 C.-3 D.-3或-1

13.(05·江苏南通·6)不等式组2x-4<0,x+1≥{0的解集在数轴上表示正确的是()

14.(05·广州·5)不等式组x+1≥0,x-1>0{.的解集是()

A.x≥-1 B.x> -1 C.x≥1 D.x>1

15.(05·长春·7)刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为 x张、y张,则下面的方程组正确的是()

A.x+y2=10,

x+y=8{.

B.

1x+2y=8,

x+2y=10{.

C.x+y=10,

x+2y=8{.D.x+y=8,

x+2y=10{.

16.(05·湖南益阳·12)不等式组3x-2>4,-x≥{1的解集在数轴上表示为()

17.(05·广东佛山·6)方程1x-1=1x2-1的解是()

A.1 B.-1 C.±1 D.0

18.(05·浙江宁波·4)不等式2-x<1的解是()

A.x>1 B.x> -1 C.x<1 D.x< -1

19.(05·浙江宁波·6)一元二次方程 x2+2x-5=0的两个根的倒数和等于()

A.25 B.-25 C.52 D.-52

20.(05·广西桂林·15)把不等式组x> -1

x≤{1,的解集表示在数轴上,正确的是()

21.(05·内蒙古包头·2)若 x=0是一元二次方程 x2+3x+m =0的一个根,则 m 的值是()

A.0 B.-1 C.3 D.-3

22.(05·湖北黄冈·9)不等式组

-3(x+1)-(x-3)<8,2x+13-1-x2≤{1的解集应为()

A.x< -2 B.-2

23.(04·海口·4)把分式方程1x-2-1-x2-x=1的两边同时乘以(x-2),约去分母,得()

A.1-(1-x)=1 B.1+(1-x)=1

C.1-(1-x)=x-2 D.1+(1-x)=x-2

24.(04·辽宁大连·4)一元二次方程 x2+2x+4=0的根的情况是()

A.有一个实数根 B.有两个相等的实数根

C.有两个不相等的实数根 D.没有实数根

25.(05·辽宁大连·8)下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()

二、填空题

1.(05·山东·14)方程 x2-4x-3=0的解为.

2.(05·山西·4)关于 x的某个不等式组的解集在数轴上可表示为:则原不等式组的解集是.

3.(05·辽宁十一市·12)一元二次方程 x2-2x-1=0的根是.

4.(05·陕西·11)不等式2(x+1)>1-x的解集为.

5.(05·广东·7)方程 x2槡=2x的解是.

6.(05·四川·10)不等式3+2x≤-1的解集是.

7.(05·武汉·13)方程组x-3y=5,2x+y{=3的解为.

8.(05·广州·15)二元一次方程 x+y= -2的一个整数解可以是.

9.(05·广东佛山·12)不等式组2x-3<0,x{>0的解集是.

10.(04·重庆北碚·13)不等式组x<3,x+1≥{0的解集是.

11.(04·重庆北碚·14)方程2x+_+3=1的解是.

12.(04·辽宁大连·10)关于 x的一元二次方程x2+bx+c=0的两根为 x1=1,x2=2,则 x2+bx+c分解因式的结果为.

三、解答题

1.(05·北京海淀·15)解方程组x-4y= -1,2x+y{=16.

2.(05·北京海淀·16)解不等式2x-1≥10x+16.

3.(05·山西·21(1))解方程:3x2-6x+1=0.

4.(05·江西·18)解方程组:x+13=2y,2(x+1)-y=11{.

5.(05·江西·19)设关于 x的一元二次方程x2-4x-2(k-1)=0有两个实数根 x1、x2,问是否存在 x1+x2

6.(05·安徽·16)解不等式组1-x>0,2(x+5){>4.

7.(05·广东·12)解方程x+1x-2+1x+1=1.

8.(05·浙江·17(2))解方程:5x-1=3x+1.

9.(05·海南·21)小刚家去年种植芒果的收入扣除各项支出后结余5000元.今年他家芒果又喜获丰收,收入比去年增加了20%,由于实行了科学管理,今年的支出比去年减少了5%,因此今年结余比去年多1750元.求小刚家今年种植芒果的收入和支出各是多少元.

10.(05·青海·24)近年来,国家为了加快贫困地区教育事业的发展步伐,进一步解决贫困地区学生上学难的问题,实行了“两免一补”政策,收到了良好效果.某地在校学生獉獉獉獉比原来增加了4217名,其中[小学在校生]增加了10%,[初中在校生]增加了23%,现[在校中小学生]共有32191名.求该地原来[在校中小学生]各有多少人?

11.(05·安徽芜湖·17)解不等式组:2x-3<5

3x+2≥{-1

12.(05·江苏南通·20)解方程:x-34-x-1=1x-4.

13.(05·武汉·17)解方程:x2+5x+3=0.

14.(05·南京·20)解方程:1x-2-3x=0.

15.(05·广州·19)解方程:_-1+5x-2x2-x=1.

16.(05·广州·21)某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?

17.(05·贵阳·18)小明的爸爸用50万元购进一辆出租车(含经营权).在投入营运后,每一年营运的总收入为18.5万元,而各种费用的总支出为6万元.

(1)问该出租车营运几年后开始赢利?

(2)若出租车营运期限为10年,到期时旧车可收回0.5万元,该车在这10年的年平均赢利是多少万元?

18.(05·湖南益阳·17)解一元二次方程:3x2-4x-1=0.

19.(05·广西桂林·24)已知一元二次方程 x2-4x+k=0有两个不相等的实数根.

(1)求 k的取值范围;

(2)如果 k是符合条件的整数,且一元二次方程 x2-4x+k=0与 x2+mx-1=0有一个相同的根,求此时 m 的值.

20.(05·广西桂林·25)小明和小芳同时从张庄出发,步行15千米到李庄,小芳步行的速度是小明步行速度的1.2倍,结果比小明早到半小时.

(1)设小明每小时走 x千米,请根据题意填写下表:

每小时走的路程(千米)走完全程所用的时间(小时)

小明x

小芳

(2)根据题意及表中所得到的信息列方程,求二人每小时各走几千米?

21.(05·江苏苏州·19)解方程组:

x2-y+13=1,

3x+2y=10{.

22.(05·湖南湘西·22)解不等式组

2x-33<1

x{+5>3

并将解集在数轴上表示出来.

23.(05·湖北黄冈·13)(非课改)张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?

24.(04·重庆北碚·23②)解方程组:x-y=4,

2x+y=5{.

25.(04·辽宁大连·18)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?

26.(04·辽宁大连·17)解方程组y=x,

x2+y-2=0{.

27.(04·成都郫县·16(3))解方程:2_-2=1.

28.(04·山东潍坊·21)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50% 的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?

29.(04·深圳南山·18)解方程:2x+_+3=1.

数学方程和不等式知识点

高中文言文知识点总结

高中数列知识点总结

高中函数知识点总结

化学知识点高中总结

高中向量知识点总结

高中光学知识点总结

高中的知识点总结

高中氓知识点总结

高中物理学知识点总结

《高中不等式知识点总结(集锦12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档