欢迎来到千学网!
您现在的位置:首页 > 实用文 > 证明

法证明不等式

时间:2023-07-31 08:05:16 证明 收藏本文 下载本文

以下是小编为大家准备的法证明不等式,本文共9篇,欢迎大家前来参阅。

法证明不等式

篇1:法证明不等式

归纳法证明不等式

归纳法证明不等式

由于lnx>0 则x>1

设f(x)=x-lnx f'(x)=1-1/x>0

则f(x)为增函数 f(x)>f(1)=1

则 x>lnx

则可知道等式成立。。。。。。。。。(运用的是定理,f(x),g(x)>0. 且连续 又f(x)>=g(x).则 在相同积分区间上的积分也是>=)

追问

请问这个“定理”是什么定理?

我是学数学分析的,书上能找到么?

回答

能 你在书里认真找找,不是定理就是推论埃。。。。

叫做积分不等式性

数学归纳法不等式的做题思路 : 1、n等于最小的满足条件的值,说明一下这时候成立,一般我们写显然成立,无须证明

2、假设n=k的时候成立,证明n=k+1的时候也是成立的,难度在这一步。(含分母的一般用放缩法,含根号的.常用分母有理化。)

3、总结,结论成立,一般只要写显然成立。 这题大于号应该为小于号。 当n=1,1<2显然 假设n=k-1的时候成立 即 1+ 1/√2 +1/√3 +... +1/√(k -1)<2√(k-1) 则当n=k时,

1+ 1/√2 +1/√3 +...... +1/√(k-1)+1/√k<2√(k-1)+1/√k如果有2√(k-1)+1/√k<2√k就可,只要1/√k<2√k-2√(k -1)=2(√k-√(k -1)=2/[(√k+√(k -1)],即只要√(k -1<√k,而这显然。所以1+ 1/√2 +1/√3 +...... +1/√n >2√n

已知f(n)=1+1/2+1/3+...+1/n(n属于正整数),求证:当n>1时,f(2^n)>n+2/2

(1)n=2时 代入成立

(2)假设n=a时候成立

则n=a+1时

f(2^(a+1))=f(2^a)+1/(2^a+1)+1/(2^a+2)+1/(2^a+3)+……1/(2^(a+1))>

f(2^a)+1/(2^(a+1))+1/(2^(a+1))+1/(2^(a+1))+……1/(2^(a+1))

后面相同项一共有2^a个

所以上面又= f(2^a)+2^a/(2^(a+1))= f(2^a)+1/2

因为f(2^a)>(a+2)/2 故上面大于<(a+1)+2>/2

因此n=a时上式成立的话 n=a+1也成立

1/2^2+1/3^2+1/4^2+…+1/n^2<1-1/n(n≥2,n∈N+)

“1/2^2”指2的平方分之1

证明:数学归纳法:

1、∵当n=2时有1/2^2=1/4<1-1/2=1/2

∴符合原命题。

2、假设当n=k时1/2^2+1/3^2+1/4^2+…+1/k^2<1-1/k(k≥2,k∈N+)成立,

则当n=k+1时有1/2^2+1/3^2+1/4^2+…+1/k^2+1/(k+1)^2<1-1/k+1/(k+1)^2=(k^3+k^2-1)/(k(k+1)^2)<(k^3+k^2)/(k(k+1)^2)=k/(k+1)=1-1/(k+1) ∴原命题成立

综上可得1/2^2+1/3^2+1/4^2+…+1/n^2<1-1/n(n≥2,n∈N+)成立!!。

篇2:构造法证明不等式

构造法证明不等式

构造法证明不等式

由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的.应用.

一、构造一次函数法证明不等式

有些不等式可以和一次函数建立直接联系,通过构造一次函数式,利用一次函数的有关特性,完成不等式的证明.

例1 设0≤a、b、c≤2,求证:4a+b+c+abc≥2ab+2bc+2ca.

证明:视a为自变量,构造一次函数

= 4a+b+c+abc-2ab-2bc-2ca = (bc-2b-2c+4)a+(b+c-2bc),

由0≤a≤2,知表示一条线段.又= b+c-2bc = (b-c)≥0,

= b+c-4b-4c+8 = (b-2)+(c-2)≥0,

可见上述线段在横轴及其上方,∴≥0,即4a+b+c+abc≥2ab+2bc+2ca.

二、构造二次函数法证明不等式

对一些不等式证明的题目,若能巧妙构造一元二次函数,利用二次函数的有关特性,可以简洁地完成不等式证明.

例2 实数a、b、c满足( a+c)( a+b+c)<0,求证:( b-c )>4a( a+b+c).

证明:由已知得a = 0时,b≠c,否则与( a+c)( a+b+c)<0矛盾,

故a = 0时,( b-c )>4a( a+b+c)成立.

当a≠0时,构造二次函数= ax+( b-c )x+( a+b+c),则有

= a+b+c,= 2(a+c),而・= 2( a+c)( a+b+c)<0,

∴存在m,当-1

篇3:函数法证明不等式

函数法证明不等式

已知函数f(x)=x-sinx,数列{an}满足0

<1>证明 0

<2>证明an+1<(1/6)×(an)^3

它提示是构造一个函数然后做差求导,确定单调性。可是还是一点思路都没有,各位能不能给出具体一点的解答过程啊?

(1)f(x)=x-sinx,f'(x)=1-cosx

00,f(x)是增函数,f(0)

因为0

且an+1=an-sinan

(2)求证不等式即(1/6)an^3-an+1=(1/6)an^3-an+sinan>0①

构造函数g(x)=(1/6)x^3-x+sinx(0

g''(x)=x-sinx,由(1)知g''(x)>0,所以g'(x)单增,g'(x)>g'(0)=0

所以g(x)单增且g(x)>g(0)=0,故不等式①成立

因此an+1<(1/6)×(an)^3 成立。

证毕!

构造分式函数,利用分式函数的单调性证明不等式

【例1】证明不等式:≥ (人教版教材P23T4)

证明:构造函数f(x)= (x≥0)

则f(x)==1-在上单调递增

∵f(|a| + |b|)= f(|a + b|)=且|a| + |b|≥|a + b|

∴f(|a| + |b|)≥f(|a + b|) 即所证不等式正确。

点评:本题还可以继续推广。如:求证:≥。利用分式函数的'单调性可以证明的教材中的习题还有很多,如:

P14第14题:已知c>a>b>0,求证:

P19第9题: 已知三角形三边的长是a,b,c,且m是正数,求证:

P12例题2:已知a,b,m,都是正数,且a 二、利用分式函数的奇偶性证明不等式

篇4:函数法证明不等式

证明:构造函数f(x)=

∵f(-x)=

=f(x)

∴f(x)是偶函数,其图像关于y轴对称。

当x>0时,<0,f(x)<0;

当x<0时,-x>0,故f(x)=f(-x)<0

∴<0,即

三、构造一次函数,利用一次函数的单调性证明不等式

【例3】已知|a|<1,|b|<1,|c|<1,求证:a + b + c 证明:构造函数f(c)=(1-ab)c + a + b-2

∵|a|<1,|b|<1

∴-10

∴f(c)的(-1,1)上是增函数

∵f(1)=1-ab + a + b -2=a + bCab -1=a(1 - b)-(1 - b)=(1 - b)(a -1)<0

∴f(1)<0,即(1-ab)c + a + b-2<0

∴a + b + c 。

篇5:向量法证明不等式

向量法证明不等式

向量法证明不等式

高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变. 若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的`运算,则高中阶段的向量即为n=2,3时的情况.

设a,b是欧氏空间的两向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)

规定a・b=(x1,x2,…,xn)・(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.

(注:a・b可记为(a,b),表示两向量的内积),有

由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.

一、利用向量模的和与和向量的模的不等式(即

例1设a,b,c∈R+,求证:(a+b+c)≤++≤.

证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),

则由

综上,原不等式成立.

点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.

作单位向量j⊥AC

j(AC+CB)=jAB

jAC+jCB=jAB

jCB=jAB

|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)

即|CB|sinC=|AB|sinA

a/sinA=c/sinC

其余边同理

在三角形ABC平面上做一单位向量i,i⊥BC,因为 BA+AC+CB=0恒成立,两边乘以i得 i*BA+i*AC=0① 根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理 i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得 csinB-bsinC=0 所以b/sinB=c/sinC 类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB, 所以a/sinA=b/sinB=c/sinC

步骤1

记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i・a+i・b+i・c

=a・cos(180-(C-90))+b・0+c・cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a・sinB

CH=b・sinA

∴a・sinB=b・sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D. 连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

篇6:几何法证明不等式

[(a+b)/2]^2<(a^2+b^2)/2

(a,b∈R,且a≠b)

设一个正方形的边为C,有4个直角三角形拼成这个正方形,设三角形的一条直角边为A,另一条直角边为B, (B>A) A=B,刚好构成,若A不等于B时,侧中间会出现一个小正方形,所以小正方形的面积为(B-A)^2,经化简有(B+A)^2=4AB,所以有((A+B)/2)^2=AB,又因为(A^2+B^2)/2>=AB,所以有((A+B)/2)^2<=(A^2+B^2)/2,又因为A不等与B,所以不取等号

可以在直角三角形内解决该问题

=[(a+b)/2]^2-(a^2+b^2)/2

=<2ab-(a^2+b^2)>/4

=-(a-b)^2/4

<0

能不能用几何方法证明不等式,举例一下。

比如证明 SIN x不大于x (x范围是0到 兀/2,闭区间)

做出一个单位圆,

以O为顶点,x轴为角的一条边

任取第一象限一个角x,

它所对应的弧长就是1*x=x

那个角另一条边与圆有一个交点

交点到x轴的`距离就是 SIN x

因为点到直线,垂线段长度最小,

所以SIN x 小于等于 x,当且尽当x=0时,取等

已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;

能给出其他方法的就给分

(a1+a2+...+an)/n≥(a1a2...an)^(1/n)

一个是算术,一个是几何。人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^

搞笑归搞笑,我觉得可以这样做,题目结论相当于证

(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0

我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)

我们考虑各元偏导都等于0,得到方程组,然后解出

a1=a2=……=an

再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。

要的是数学法证明也就是代数法 不是用向量等几何法证明.....有没有哪位狠人帮我解决下

【柯西不等式的证明】 二维形式的证明

(a^2+b^2)(c^2+d^2)(a,b,c,d∈R)

=a^2・c^2 +b^2・d^2+a^2・d^2+b^2・c^2

=a^2・c^2 +2abcd+b^2・d^2+a^2・d^2-2abcd+b^2・c^2

=(ac+bd)^2+(ad-bc)^2

≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立。

一般形式的证明

求证:(∑ai^2)(∑bi^2) ≥ (∑ai・bi)^2

证明:

当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立

令A=∑ai^2B=∑ai・biC=∑bi^2

当a1,a2,…,an中至少有一个不为零时,可知A>0

构造二次函数f(x)=Ax^2+2Bx+C,展开得:

f(x)=∑(ai^2・x^2+2ai・bi・x+bi^2)=∑ (ai・x+bi)^2≥0

故f(x)的判别式△=4B^2-4AC≤0,

移项得AC≥B,欲证不等式已得证。

篇7:放缩法证明不等式

放缩法证明不等式

放缩法证明不等式

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..

(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如

(2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

2.放缩法

欲证 A≥B,可将 B适当放大,即 B1≥B,只需证明 A≥B1。相反,将 A适当缩小,即 A≥A1,只需证明 A1≥B即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

数学题目是无限的,但数学的思想和方法却是有限的'。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

篇8:判别式法证明不等式

判别式法证明不等式

判别式法证明不等式

x^2+y^2+z^2>=2xycosc+2zxcosb+2yzcosa

等价于(x-cosc*y-cosb*z)^2+(sinc*y-sinb*z)^2>=0

对于分式函数 y=f(x)=(ax^2+bx+c)/(dx^2+ex+f) :

由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程 y=(ax^2+bx+c)/(dx^2+ex+f) 有实数解,因此“求f(x)的值域。”这一问题可转化为“已知关于x的方程 y=(ax^2+bx+c)/(dx^2+ex+f) 有实数解,求y的取值范围。”

把x作为未知量,y看作常量,将原式化成关于x的一元二次方程形式(*),令这个方程有实数解,然后对二次项系数是否为零加以讨论:

(1)当二次项系数为0时,将对应的y值代入方程(*)中进行检验以判断y的这个取值是否符合x有实数解的要求,……

(2)当二次项系数不为0时,∵x∈R,∴Δ≥0,……

此时直接用判别式法是否有可能产生增根,关键在于对这个方程去分母这一步是不是同解变形。

原问题“求f(x)的值域。”进一步的等价转换是“已知关于x的方程 y(dx^2+ex+f)=ax^2+bx+c 至少有一个实数解使得 dx^2+ex+f≠0,求y的取值范围。”

【举例说明】

1、当函数的定义域为实数集R时

例1 求函数y=(x^2-2x+1)/(x^2+x+1)的值域.

解:由于x^2+x+1=(x+12)^2+34>0,所以函数的定义域是R.

去分母:y(x^2+x+1)=x^2-2x+1,移项整理得(y-1)x^2+(y+2)x+(y-1)=0.(*)

(1)当y≠1时,由△≥0得0≤y≤4;

(2)当y=1时,将其代入方程(*)中得x=0.

综上所述知原函数的值域为〔0,4〕.

2、当函数的`定义域不是实数集R时

例2 求函数y=(x^2-2x+1)/(x^2+x-2)的值域.

解:由分母不为零知,函数的定义域A={x|x≠-2且x≠1}.

去分母:y(x^2+x-2)=x^2-2x+1,移项整理得(y-1)x^2+(y+2)x-(2y+1)=0. (*)

(1)当y≠1时,由△≥0得y^2≥0y∈R.

检验:由△=0得y=0,将y=0代入原方程求得x=1,这与原函数定义域A相矛盾,

所以y≠0.

(2)当y=1时,将其代入方程(*)中得x=1,这与原函数定义域A相矛盾,

所以y≠1.

综上所述知原函数的值域为{y|y≠0且y≠1}

对于分式函数y=f(x)=(ax^2+bx+c)/(x^2+mx+n):

由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程y=(ax^2+bx+c)/(x^2+mx+n)有实数解,

把“求f(x)的值域”这问题可转化为“已知x的方程y=(ax^2+bx+c)/(x^2+mx+n)有实数解,求y的取值范围”把x当成未知量,y当成常量,化成一元二次方程,让这个方程有根.先看二次项系数是否为零,再看不为零时只需看判别式大于等于零了.

此时直接用判别式法是否有可能出问题,关键在于对这个方程取分母这一步是不是同解变形。

这个问题进一步的等价转换是“已知x的方程y(x^2+mx+n)=ax^2+bx+c)到少有一个实数解使x^2+mx+n≠0,求y的取值范围”

这种方法不好有很多局限情况,如:定义域是一个区间的.定义域是R的或定义域是R且不等于某个数的还可以用.过程用上面的就可以了.。

篇9:换元法证明不等式

换元法证明不等式

换元法证明不等式

已知a,b,c,d都是实数,且满足a^2+b^2=1,c^2+d^2=4,求证:|ac+bd|≤2

a=cosA,b=sinA

c=2cosB,d=2sinB

|ac+bd|=2|cosAcocB+sinAsinB}=2|cos(A-B)|

<=2

得证

若x+y+z=1,试用换元法证明x+y+z≥1/3

解法一:(换元法)

证明:因为

(x-1/3)^2+(y-1/3)^2+(z-1/3)^2≥0

展开,得

x^2+y^2+z^2-2/3*(x+y+z)+3*1/9≥0

x^2+y^2+z^2-2/3+1/3≥0

x^2+y^2+z^2≥1/3。

其中等号当且仅当x=y=z=1/3时成立

解法二:

因为:x+y+z=1

所以:(x+y+z)=1

化解为:x+y+z+2xy+2xz+2yz=1

又因为:

x+y≥2xy;

x+z≥2xz;

y+z≥2yz;

所以x+y+z+2xy+2xz+2yz=1<=3(x+y+z)

固x+y+z≥1/3

例1:已知a+b+c=1,求证:a2+b2+c2≥1/3

证明:令a=m+1/3,b=n+1/3,c=t+1/3,则m+n+t=0

∴a2+b2+c2=(m+1/3)2+(n+1/3)2+(t+1/3)2

=m2+n2+t2+2(m+n+t)/3+1/3

=m2+n2+t2+1/3

∵m2+n2+t2≥0, ∴a2+b2+c2≥1/3 得证。

换元的目的:转化、化简已知条件,使已知条件更易于使用。

例2:已知a>b>c,求证:1/(a-b)+1/(b-c)≥4/(a-c)

证明:令x=a-b,y=b-c,则a-c=x+y且x>0,y>0

∴原不等式转化为:1/x+1/y≥4/(x+y)

因此,只要证明:(x+y)/x+(x+y)/y≥4

只要证:1+y/x+1+x/y≥4

只要证:y/x+x/y≥2,而y/x+x/y≥2恒成立。

∴1/(a-b)+1/(b-c)≥4/(a-c) 得证。

换元的目的:

化简、化熟命题,把复杂的、不熟悉的命题化为简单的、熟悉的命题。

例3:已知(x2-y2+1) 2+4x2y2-x2-y2=0,求证:(3-√5 )/2≤x2+y2≤ (3 +√5 )/2

证明:令x2+y2=t

由(x2-y2+1) 2+4x2y2-x2-y2=0整理得:

(x2+y2) 2-3(x2+y2)+1=-4x2

∴(x2+y2) 2-3(x2+y2)+1≤0

∴t2-3t+1≤0,解之得:(3-√5 )/2≤t≤(3 +√5 )/2

∴ (3-√5 )/2≤x2+y2≤(3 +√5 )/2 得证。

换元的目的:转化条件,建立条件与结论间的联系。

例4:已知x-1=(y+1)/2=(z-2)/3,求证:x2+y2+z2≥59/14

证明:设x-1=(y+1)/2=(z-2)/3=k,

则x=k+1,y=2k-1,z=3k+2

∴x2+y2+z2=(k+1) 2+(2k-1) 2+( 3k+2) 2

=14k2+10k+6

=14(k2+5k/7)+6

=14(k+5/14) 2+59/14≥59/14

∴x2+y2+z2≥59/14 得证。

换元的目的:减少未知数的个数,直接利用已知条件。

例5:已知a>0,求证:(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5<[1+(1+4a) 0.5]/2

证明:设t1=a 0.5,t2=(a+a 0.5) 0.5,……,tn=(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5

tn=(a+ tn-1) 0.5

tn2=a+ tn-1,且tn>0,而tn>tn-1

∴tn20

∴tn<[1+(1+4a) 0.5]/2 原不等式得证。

换元的目的`:转换、化简命题

例6:已知a≥c>0,b≥c,求证:√c(a-c)+√c(b-c) ≤√ab

证明:要证明原不等式,只要证明:

√c(a-c)/ ab +√c(b-c)/ ab ≤1

只要证明:√(c/b)(1-c/a) +√c/a(1-c/b) ≤1

令sinα= √c/b ,sinβ=√c/a ,且α、β∈(0,π]

只要证明:sinαcosβ+cosαsinβ≤1

只要证明:sin(α+β)≤1,而sin(α+β)≤1显然成立

∴原不等式得证。

换元的目的:利用两个正数的和等于1进行三角换元,可以将原问题得到极大

程度的化简,在各种命题的解题中有着广泛的应用。

例7:已知a2+b2=c2,且a、b、c均为正数,求证:an+bn2且n∈N

证明:设a=csinα,b=ccosα。α∈(0,π/2)

则:an+bn=cnsinnα+ cncosnα=cn (sinnα+ cosnα)

∵0

判别式法证明不等式

不等式的证明

不等式的证明三

高二数学《不等式的证明》单元测试题

高中数学不等式的证明教案有哪些

不等式练习题

边界层函数法在微分不等式中的应用

基本不等式说课稿

初中不等式教案

认识不等式说课稿

《法证明不等式(精选9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档