这次小编给大家整理了《列代数式》七年级数学教案,本文共17篇,供大家阅读参考。

篇1:数学教案-列代数式
教学目标
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。
2.初步培养学生观察、分析和抽象思维的能力。
3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
教学建议
1.教学重点、难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比 的2倍大2的数。
分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
教学设计示例
列代数式
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
1?用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的`和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个?
三、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?
五、作业
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
篇2:《列代数式》教案
教学目标
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。
2.初步培养学生观察、分析和抽象思维的能力。
3.通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
教学建议
1.教学重点、难点
篇3:《列代数式》教案
教学目标
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2.初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
篇4:《列代数式》教案
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%((1+16%)x)
(应用引导的方法启发学生解答本题)
2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题
二、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和
分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个
三、课堂练习
1设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商
2用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数
3用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕
四、师生共同小结
首先,请学生回答:
1怎样列代数式?2列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握
五、作业
1用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
篇5:《列代数式》教案
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的`加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
教学设计示例
篇6:代数式的数学教案
代数式的数学教案
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法,数学教案-代数式。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2, 都是代数式.
(3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如 , ,等都是代数式,而 , , , 等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.如: 应写作
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语,初中数学教案《数学教案-代数式》。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
代数式
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.
教学重点和难点
重点:用字母表示数的意义
难点:学会用字母表示数及正确地说出代数式所表示的.数量关系
课堂教学过程设计
一、从学生原有的认知结构提出问题
1痹谛⊙我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律 a+b=b+a;
(2)乘法交换律 a·b=b·a;
(3)加法结合律 (a+b)+c=a+(b+c);
(4)乘法结合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
1、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
b表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
2、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
二、讲授新课
1贝数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2本倮说明
例1 填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 说出下列代数式的意义:
(1) 2a+3 (2)2(a+3); (3) (4)a- (5)a2+b2 (6)(a+b) 2
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(3) 的意义是c除以ab的商; (4)a- 的意义是a减去 的差;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点比绲(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3 用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
解:(1) ; (2)(m-5n)2 (3)2x+y; (4)3tν3
三、课堂练习
1碧羁眨(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____
2彼党鱿铝写数式的意义:(投影)
(1)2a-3c; (2) ; (3)ab+1; (4)a2-b2
3庇么数式表示:(投影)
(1)x与y的和;(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和
四、师生共同小结
首先,提出如下问题:
1北窘诳窝习了哪些内容?2庇米帜副硎臼的意义是什么?
3笔裁唇写数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
五、作业
1币桓鋈角形的三条边的长分别的a,b,c,求这个三角形的周长
2闭徘勘韧趸大3岁,当张强a岁时,王华的年龄是多少?
3狈苫的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4盿千克大米的售价是6元,1千克大米售多少元?
5痹驳陌刖妒荝厘米,它的面积是多少?
6庇么数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的 的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
篇7:<<列代数式>>教学目标
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的`词语用代数式表示出来。
>教学目标“ loading=”lazy“ src=”p.9136.com/0p/l/c4bfb1ea4_2.jpg">
2.初步培养学生观察、分析和抽象思维的能力。
3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
篇8:新湘教版列代数式教案设计
一、教学目标
1.经历探索规律并用代数式表示规律的过程.
2.能用字母和代数式表示以前学过的运算律和计算公式.
3.体会字母表示数的意义,形成初步的符号感.
二、教法设计
观察、启发、讨论分析
三、教学重点及难点
教学重点:能用字母和代数式表示基本数量关系
教学难点:体会字母表示数的意义
四、课时安排
1课时
五、师生互动活动设计
情景教学,合作学习.
六、教学思路
(一)、创设情景,呈现内容
1.搭1个正方形需要4根火柴棒。
(1)接上图的方式,搭2个正方形需要______根火柴棒,搭3个正方形需要_________根火柴棒。
(2)搭10个这样的正方形需要多少根火柴棒?
(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?
(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流。
上面数据转换的过程实际就是代数式求值的过程,请大家归纳求代数式的值的步骤。
(二)、合作交流,探索发现
1.根据你的计算方法,搭200个这样的正方形需要多少根火柴棒?
利用小明的计算方法,我们用200代替4+3(x-1)中的x,可以得到
你的结果与小明的结果一样吗?
2.请用字母表示以前学过的公式和法则。
(三)、合作解例
例1.用火柴棒按下面的方式搭图形:
(2)写n个图形需要多少根火柴棒?
例2:填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
学生活动:找一个学生口述,教师板书过程.
(四)、寓教于乐
观察等式
1+2+1=4
1+2+3+2+1=9
1+2+3+4+3+2+1=16
1+2+3+4+5+4+3+2+1=25
(1)写出和上面等式具有同样结构,等号左边最大数是10的式子。
(2)写出一个等式,要求它能代表所有类似的等式,清楚地反映出这类等式的特点。
分析:我们通过观察等式发现,这些式子右边都是一个自然数的平方,左边是一连串自然数相加,其中,最在的自然数的平方恰好是右边的数。即左边最大的数与右边二次幂的底数相同,要表示所有这类式子都具有的这种相等关系,只有使用字母。
解:(1)1+2+3+…+10+9+8+7+…+1=102。
(2) 列代数式教案 - 上善 - 若水
注意:题中所给的每一个式子都只是一个特殊的情况,多个这样的式子也能反映出普遍规律,但是比较麻烦。
要想用一个式子表示类似许多式子的规律性,只有用字母。
(五)、巩固练习
自编2道用字母表示数的题目,并解释它的背景。
学生活动:自己思考并解答,全班相互交流.
(六)、小结
这节课,你有什么收获吗?你对自己的学习还满意吗?你在学习的过程中有什么困难的地方吗?课后和同学交流一下.
自我评价
1.先进鲜明的教学理念.
2.和谐融洽的教学气氛.在整个教学过程的设计中师生是朋友,是合作者;教师的引导好象是在讲故事;讲解则是学生探索结果的概括;学生之间也充满合作.
3.紧张活泼的教学节奏.本课设计中安排了不同层次的提问与练习,而且采取了灵活多变的呈现方式,从而使教学过程呈现出紧张活泼的特点
[新湘教版列代数式教案设计]
篇9:提供列代数式测试题练习及答案参考
提供列代数式测试题练习及答案参考
◆随堂检测
1、“a的3倍与b的的和”用代数式表示为
2、被3除商为n余1的数是
3、某电影院第一排有x个座位,后面每一排都比前一排多2个座位,则第n排有个座位。
4、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P千米的路程(P>7)所需费用是
A、5+1.5PB、5+1.5C、5-1.5PD、5+1.5(P-7)
5、用代数式表示
(1)比a的倒数与b的倒数的和大1的数
(2)与的和的20%
(3)比x与y的积的倒数的4倍小3的数
(4)a,b两数的平方和除以a,b两数的和的平方
◆典例分析
例:用代数式表示:
(1)如果两数之和为20,其中一个数用字母表示,那么这两个数的积为 。
(2)设为整数,则三个连续的偶数: 。
(3)比的平方大的数 。
(4)某产品的生产成品由元下降后是 元
(5)梯形的上底是,下底是上底的倍,高比上底小,则这个梯形的面积为 。
解:(1);(2),,;(3);(4);(5)。
评析:(1)根据两数之和为20,先表示出另一个数为,然后将两个数相乘,但要注意不能忘记在上加上括号;
(2)首先是一个偶数的表示方法:,其次是相邻的两个偶数相差为2;
(3)一是注意先读先写,二是“大”的意思用符号表示为“+”;
(4)本例应注意避免将“由元下降”错误表示为“”。正确理解是在元的基础上下降了5%x元,即;
(5)先由题意分别表示下底=,高=,然后利用梯形面积公式列出式子:。
●拓展提高
1、百货大楼进了一批花布,出售时要在进价的基础上加上一定的利润,其数量x与售价y之间的关系如下表:
数量x(米)1234…
售价y(元)8+0.316+0.624+0.932+1.2…
下列用数量x表示与售价y的公式中,正确的是()
A、B、C、D、
2、一台电视机成本a元,销售价比成本价增加,因库存积压,所以就按销售价的出售,那么每台实际售价为()
A、B、
C、D、
3、比和的差的一半大的数应表示为 。
4、班会活动中,买苹果kg,单价元,买桔子kg,单价元,则共需 元,若再增加kg苹果,则要增加 元。
5、一同学在斜坡上骑自行车,上坡速度为km/h,下坡速度为km/h,则上下坡的'平均速度为 。
6、有一棵果树结了个果子,第一个猴子摘走,扔掉一个,第二个猴子又摘走剩下的,扔掉一个,第三个猴子又摘走剩下的又扔掉一个。用代数式表示三个猴子摘走和剩下的果子数。
7、如图,为一级梯阶的纵截面,一只老鼠沿长方形的两边A→B→D的路线逃路,一只猫同时沿梯阶(折线)A→C→D的路线去捉,结果在距C点0.6米的D处,猫捉住了老鼠,已知老鼠的速度是猫的速度的,求梯阶A→C的长度,请将下表的每一句话“译”成数学语言(写出代数式)。
设梯阶(折线)A→C的长度为x
AB+BC的长为
A→C→D的长为
A→B→D的长为
设猫捉老鼠所用的时间为t
猫的速度
老鼠的速度
●体验中考
1、(江苏镇江中考题)用代数式表示“的3倍与的差的平方”,正确的是()
A、B、C、D、
2、(新疆维吾尔自治区中考题)某商品的进价为元,售价为120元,则该商品的利润率可表示为__________。
3、(20天津市中考题改编)某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折。设一次购书数量为(x>10)本,付款金额为元,请用一次购书数量的代数式来表示=__________。
4、(20湖南益阳中考题改编)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为__________。
参考答案:
◆随堂检测
1、2、3、4、D
5、(1);(2);(3);(4)。
◆课下作业
●拓展提高
1、B2、B3、4、,5、
6、第一个猴子摘走个,还剩个,第二个猴子摘走个,还剩个,第三个猴子摘走个,还剩个。
7、自上而下依次填入:x米,(x+0.6)米,(x-0.6)米,米/秒,
米/秒,由于老鼠的速度是猫的速度的,将有关代数式连起来得:=。
●体验中考
1、A
2、
3、
4、(50n+10)厘米
篇10:列代数式数学课后的教学反思
列代数式数学课后的教学反思
《列代数式》是数学课程标准中“数与代数”领域的一部分,教材没有单独编排,只是在习题中渗透。这是一个课时,主要让学生通过探索发现最简单图形的变化规律、及某些数变化规律。
一、注重过程和体验,让学生自己去“感悟”。
这部分内容活动性和探究性比较强,注重过程体验,同时在过程体验中,培养学生观察、猜测、实验、推理等能力。《 数学新课程标解读》中关于“推理能力”的培养有这样一段阐述:“能力的形成并不是学生‘懂’了,也不是学生‘会’了,而是学生自己‘悟’出道理、规律和思考方法??”所以我想有必要给学生足够的时间去思考问题。回答时暴露其思维过程。
我是这样导入的:
片段1:
1、尝试当一回词作家;下面是一首歌词,你能把这首歌词补充完整吗?
1 只青蛙1 张嘴,2 只眼睛 4 条腿,1 声扑通跳下水;
2 只青蛙2 张嘴,4 只眼睛8 条腿, 2 声扑通跳下水;
3 只青蛙3 张嘴,6 只眼睛12 条腿,3 声扑通跳下水;??
n 只青蛙 张嘴, 只眼睛, 条腿, 声扑通跳下水。 答案:n、 2n、 4n、 n
设计意图:这首儿歌反映了青蛙的只数和青蛙的嘴数、腿数之间的关系,用字母表示后它们之间的关系更简明了,通过儿歌,促进了这次探究活动,加深了规律性的认识,既复习了上节用字母表示数的内容,又有利于引起这节课的`引入。
师顺势利导:现实生活中有许多数量关系,都可以用数学式子来表示,下面请大家来做一做。
2、填空:
(1)某种瓜子的单价为16元/千克,则n千克需要 _____元;
(2)小刚上学步行速度为5千米/小时,若小刚到学校的路程为s千米,则他上学需____小时。
(3)钢笔每枝a元,铅笔每枝b元,买2支钢笔和3支铅笔共需_______元。 答案:16n 、 、 (2a+3b)。
设计意图:借助于一些学生熟悉的用字母表示数的实例,让学生体会,用字母表示数的意义,同时为引入代数式的概念作准备。
二、加强动手操作,让学生自己去“做数学”。
数学教学应不断提供学生动手操作的机会,这样才能有利于理解和让学生感兴趣,
三、蕴涵情感和数学简洁美,让学生自己去“感受”。
在日常生活中,很多有规律的事物总能给人一种简洁美的享受,如座位安排中有一定的规律,用火柴棒搭正方形中也有一定的规律,这些都为从数学的角度去探索事物的规律提供了素材。
这一节课当中,学生始终处在一种积极的学习状态中:看得专心、听得仔细、想得认真、做得投入、说得流畅、合作得愉快。真正体现了以积极的情感投入,极大的调动思维活动,学生成为学习的真正主体。一节课下来,学生都沉浸在数学的简洁美当中,感悟着各种有规律的数学简洁美。
本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.
无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验。
篇11:七年级数学教案
教学目标:
1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。
2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。
3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。
教学重难点:
重点:解一元一次方程的基本步骤和方法。
难点:含有分母的一元一次方程的解题方法。
教学过程:
一、新课导入:
请同学们和老师一起解方程:
并回答:解一元一次方程的一般步骤和最终的目的是什么?
二、讲授新课
请给同学们介绍纸草书(P95)。
问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个
数是多少?
并引入让同学运用设未知数的方法,列出相应的方程。
并回答:这个方程和我们以前学习的方程有什么不同?
同学们和老师一起完成解上述方程,并引入去分母。
例1、
例2、
活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?
看一看你会不会错:
(1)解方程:
(2)解方程:
典型例题:解方程:
想一想:去分母时要注意什么问题?
(1)方程两边每一项都要乘以各分母的最小公倍数
(2)去分母后如分子中含有两项,应将该分子添上括号
选一选:
练一练:当m为何值时,整式和的值相等?
议一议:如何解方程:
注意区别:
1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。
2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。
课堂小结:
(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。
有没有疑问:不是最小公倍数行不行?
(2)去分母的依据是什么?
等式性质2
(3)去分母的注意点是什么?
1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。
2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。
(4)解一元一次方程的一般步骤:
布置作业:P98,习题3.3第3题
补充作业:解方程:
(1)
(2)
板书设计:
教学反思:
篇12:七年级数学教案
学习目标:
1.会用正.负数表示具有相反意义的量.
2.通过正.负数学习,培养学生应用数学知识的意识.
3.通过探究,渗透对立统一的辨证思想
学习重点:
用正.负数表示具有相反意义的量
学习难点:
实际问题中的数量关系
教学方法:
讲练相结合
教学过程
一.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国―6.4%,德国1.3%,
法国―2.4%,英国―3.5%,
意大利0.2%,中国7.5%.
三.巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四.阅读思考1页
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五.小结
1.本节课你有那些收获?
2.还有没解决的问题吗?
六.应用与拓展
1.必做题:
教科书5页习题4.5.:6.7.8题
2.选做题
1).甲冷库的温度是―12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.
2.)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
篇13:七年级数学教案
学习目标:
1、学会用计算器进行有理数的除法运算.
2、掌握有理数的混合运算顺序.
3、通过探究、练习,养成良好的学习习惯
学习重点:有理数的混合运算
学习难点:运算顺序的确定与性质符号的处理
教学方法:观察、类比、对比、归纳
教学过程
一、学前准备
1、计算
1)(―0.0318)÷(―1.4)2)2+(―8)÷2
二、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算法,再算法。
3、结合问题1,阅读课本P36―P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是?
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、18―6÷(―2)×2)11+(―22)―3×(―11)
3)(―0.1)÷×(―100)
2、师生小结
四、回顾与反思
请你回顾本节课所学习的主要内容
3页
五、自我检测
1、选择题
1)若两个有理数的和与它们的积都是正数,则这两个数
A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数
2)下列说法正确的是()
A.负数没有倒数B.正数的倒数比自身小
C.任何有理数都有倒数D.-1的倒数是-1
3)关于0,下列说法不正确的是()
A.0有相反数B.0有绝对值
C.0有倒数D.0是绝对值和相反数都相等的数
4)下列运算结果不一定为负数的是()
A.异号两数相乘B.异号两数相除
C.异号两数相加D.奇数个负因数的乘积
5)下列运算有错误的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列运算正确的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、计算
1)6―(―12)÷(―3)2)3×(―4)+(―28)÷7
3)(―48)÷8―(―25)×(―6)4)
六、作业
1、P39第7题(4、5、7、8)、第8题
2、选做题:P39第10、11、12、1314、15题
篇14:七年级数学教案
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
公式
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
篇15:七年级数学教案
人教版七年级数学教案
师:今天我们已经是七年级的学生了,我是你们的'数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。
篇16:七年级数学教案
一、素质教育目标
(一)知识教学点
1.使学生理解近似数和有效数字的意义
2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字
3.使学生了解近似数和有效数字是在实践中产生的.
(二)能力训练点
通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.
(三)德育渗透点
通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想
(四)美育渗透点
由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.
二、学法引导
1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识
2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习
三、重点、难点、疑点及解决办法
1.重点:理解近似数的精确度和有效数字.
2.难点:正确把握一个近似数的精确度及它的有效数字的个数.
3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片
六、师生互动活动设计
教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.
七、教学步骤
(一)提出问题,创设情境
师:有10千克苹果,平均分给3个人,应该怎样分?
生:平均每人千克
师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?
生:不能
师:哪怎么分
生:取近似值
师:板书课题
【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性
(二)探索新知,讲授新课
师出示投影1
下列实际问题中出现的数,哪些是精确数,哪些是近似数.
(1)初一(1)有55名同学
(2)地球的半径约为6370千米
(3)中华人民共和国现在有31个省级行政单位
(4)小明的身高接近1.6米
学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.
师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?
启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.
以开始提出的问题为例,揭示近似数的有关概念
板书:
1.精确度
2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.
例如:3.3有二个有效数字
3.33有三个有效数字
讨论:近似数0.038有几个有效数字,0.03080呢?
【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②
例1.(出示投影2)
下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?
(1)43.8(2).03086(3)2.4万
学生口述解题过程,教者板书.
对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.
【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.
巩固练习见课本122页练习2、3页
例2(出示投影3)
下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?
篇17:七年级数学教案
【教学目标】
知识与技能:了解并掌握数据收集的基本方法。
过程与方法:在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
文档为doc格式