下面是小编为大家整理的小学数学数形结合教学思想探析论文,本文共13篇,仅供参考,大家一起来看看吧。

篇1:小学数学数形结合教学思想探析论文
小学数学数形结合教学思想探析论文
摘要:小学是我国教育系统的重要组成部分,同时也是我国教育系统的基础,小学教育的质量将会影响到学生学习能力的培养,进而影响到学生以后的学习。数学是一门比较重要的学科。在小学阶段,大部分的学生都是刚开始正式接触数学学科,而数学知识的逻辑性又比较强,比较抽象,从而会使得一部分学生感觉到比较吃力。鉴于此,在小学数学教学过程中应结合小学生的生理特点和心理特点采用数形结合的教学思想,提高学生数学学习的效果。
关键词:小学;数学教学;数形结合
数形结合思想是数学思想的一种,在教学过程中采用数形结合的教学思想不仅可以降低知识点的难度,同时还可以提高学生学习的兴趣。因此,应将数形结合的教学思想应用于小学数学教学中。本文将结合小学数学教学的实际情况,分析和研究数形结合思想在小学数学教学中应用的方法,并提出在小学数学教学中运用数形结合思想应注意的问题,希望可以为以后的小学数学教学工作提供一些借鉴。
1数形结合思想在小学数学教学中的具体应用
数形结合思想就是指在数学学习过程中,可以通过数和形之间的变换来解决一些数学问题,采用这样的方式可以大大降低数学问题的难度。下文将具体介绍一下数形结合思想应用的方法。首先,在小学数学教学过程中应采用数形结合的思想可以将一些抽象的概念直观化,从而使得学生可以更好地理解概念。概念是数学学习的重要内容之一,但在数学中有一些概念是比较抽象的,对于小学生来说理解这样的概念是存在一定难度的。以往,教师为了让学生理解这些概念往往会采用死记硬背的方式,按照教师的观点,先记住概念,随着使用次数的增多自然就会理解了。但是,对于学生而言,光记住概念却不理解概念是难以将其应用于解题过程中的。因此,在教学过程中,教师可以采用数形结合的思想,通过“数”、“形”变换将这些抽象的概念以较为直观的方式表达出来,这样学生才能更好地理解概念,并将其应用于解题过程中。其次,在小学数学教学过程中教师应采用数形结合的思想将一些隐性的数学规律以形象化的方式表达出来,从而培养学生找规律的能力。数学知识的逻辑性比较强,同时也存在很大的规律性。有一些数学规律已经被视为公式,出现在数学教材中。但有一些数学规律则因各种因素的影响没有出现在教材中,而这些隐性的规律是学生难以发现的,但对于理解数学知识和解题来说是比较有用的。
因此,教师应将这些隐性的`数学规律告知学生。但在告知学生的过程中应掌握一定的方法技巧,培养学生独立寻找数学规律的能力。采用数形结合的思想,一方面可以更加清晰地展示数学规律,另一方面也更加容易让学生掌握这种寻找数学规律的方法。最后,在小学数学教学过程中教师应采用数形结合的思想来简化问题,从而降低问题的难度。在数学学习过程中,有很多数学问题都存在比较复杂的数量关系,对于处于小学阶段的学生来说他们难以理解这样复杂的数量关系,进而也就不知道该如何解题。在这种情况下,教师应教授学生利用数形结合思想解决问题的方法。采用数形结合思想一方面可以将一些复杂的问题简单化,另一方面也可以使得问题中的数量关系清晰化,更加有利于学生理解题目的含义。在小学数学教学中运用数形结合思想不仅可以提高学生数学学习的效果,同时还可以让学生养成用数形结合思想解决问题的习惯,从而使得学生的空间思维能力得到提升,这对学生以后的数学学习也会有很大的帮助。
2小学数学教学中运用数形结合思想应注意的问题
在小学数学教学中运用数形结合思想对于培养学生的数学思维能力具有重要的作用,但为了充分发挥数形结合教学思想的作用,在运用数形结合教学思想的过程中还应注意下述几方面的问题。首先,教师在小学数学教学的过程中不仅要采用数形结合思想,同时还应让学生养成用数形结合思想解决问题的习惯。准确地说,数形结合是一种数学思想,而不是教学思想。因此,为了提高学生的数学学习能力,在数学教学的过程中教师应有意识地培养学生运用数形结合思想解决数学问题的习惯,这样就会让学生养成一种思维习惯,遇到数学问题时就会想到这种解决问题的方法,这对学生以后的学习和生活都是具有积极作用的。其次,教师在运用数形结合教学思想的过程中应充分利用多媒体技术。正如上文所述,数形结合思想简单来说就是“数”、“形”变换的一种思想。利用多媒体技术可以更好地向学生展示“形”,还可以利用视频、动画、图片等多种方式来展示“数”“形”变换的具体过程,这样更加有助于学生理解数学知识。最后,在小学数学教学中运用数形结合的教学思想时应加强数学知识和现实生活之间的联系,最好用一些学生平时比较熟悉的事物来表现数形变换的过程,这样不仅可以加深学生对相关知识点的印象,同时还可以提高学生数学学习的兴趣。
3总结
总之,相比于传统的教学思想来说,数形结合的教学思想更加符合数学教学的实际情况。在小学数学教学的过程中采用数形结合的教学思想不仅可以将一些抽象的知识具象化,使得学生可以更好地理解数学知识,同时还可以提高学生的数学思维能力,使其更好地掌握数学知识。
参考文献
[1]袁婷.小学数学教学中数形结合思想的渗透研究[J].学周刊,2015,06:60-61.
[2]曹红涛.数形结合思想在小学数学教学中的渗透研究[J].中国校外教育,2015,28:129.
[3]张晓明.浅谈数形结合思想在小学数学中的应用[J].学周刊,2014,33:208.
篇2:小学数学数形结合思想研究论文
摘要:数学是小学时期的一门主要课程,是一种以抽象思维为主的学科。小学生还处于形象思维的年龄段,要想培养他们的抽象思维,需要教师采取一定的教学策略与教学方法。数形结合是一种比较好的教学方法,通过将抽象的数学知识与形象的图形结合起来,可以让学生更好地理解抽象的数学概念,从而提升学生的数学思维能力,让学生逐步具备抽象思维能力,能够用数学思维来分析与解决问题。本文从数形结合的涵义入手,结合笔者多年的数学教学经验,分析了在小学数学教学中渗透数学结合思想的一些具体策略,以其为广大一线数学教师提供一些实践参考。
篇3:小学数学数形结合思想研究论文
数形结合是重要数学思想,所谓数形结合即“数”与“形”的相互转化,从而达到有效解决数学问题。简单来说就是将抽象的数学问题与直观的图形相互结合起来,通过深入分析数与形的内在关系来达到解决数学问题的目的,同时培养和发展学生的数学思维,提高学生分析问题,理解问题,解决数学问题的能力。本文就小学生在数学课程的学习中如何实现数形结合思想的渗透,提出了几点思考。
1数学中的基本概念,数形结合思想渗透,促进学生理解
小学生的思维能力处在发展时期,他们以形象思维为主,抽象思维不及形象思维,对于“数”这样一个抽象的概念可能理解起来较为困难。因此,数学教师要学会在“数”中渗透数形结合的.思想,用直观的图形加深学生对抽象概念的理解和把握,从而实现抽象认识到感性认识———感性认识到理性认识的理解,提高教学的有效性。例如,在初次接触分数的概念时,学生一时半会难以理解,此时如果教师通过直观形象的图形或者是符号来展开教学,教学效果就会明显改善。数学教师可以用与1/2启发学生,这个图形十分直观明了,中间的分割线代表了分号的涵义,学生对分数的认识也就更加清晰和准确了。当然,除了这种做法之外,教师还可以引用古人的智慧,将阿拉伯人、中国古人的分数表达方式展示给学生,学生会对分数表示方式的发展历史有一个大致的了解,通过“形”对“分数”这一概念的认识更加深刻。小学阶段有许多关于数的学习,教师要积极挖掘概念中“形”的内容,找准数学概念与图形的联结点,推进课堂教学的顺利展开。事物的规律和内在联系往往比较抽象,采用数形结合的方法,将复杂抽象的问题直观化能够获得较好的教学效果。在苏教版数学教材《乘法的初步认识》这一节的执教过程中,最初,学生对“乘法”的概念不是很理解,笔者首先用多媒体技术向学生展示了一张图片:有一条小木船,船上坐着三个人,接着后面又“划”来了第二条船、第三条船一直到第五条船,这时候再让学生用数学式子来表示,学生采取了同数相加的形式写出了式子。接着,向学生提出了一个问题:“同学们,如果现在的船增加到100条呢,你们还这样一个一个加起来吗?”学生一听到之后若有所思,都在试图找到一种简单的办法,笔者不失时机地提出了“乘法”的概念,帮助学生轻松的掌握了这一抽象的知识。在这个案例中我们充分看到了数形结合思想对学生概念形成的重要作用。
2数学运算过程中,数形结合思想渗透,提升学生运算技能
数学计算在小学数学中占了较大的比例,更是学生数学学习的重要基础,将数形结合的思想渗透在运算的过程中可以提高学生的计算能力。很多时候学生在进行两位数加两位数的计算时只是机械的计算,还未形成“以形促思”的学习习惯,无法实现算理到算法的过渡。小学数学教师必须有意识地培养学生数形结合的思想,例如,在17+16的运算中,教师先让学生拿出数棒在桌上摆一摆,接着教师再结合数棒摆出来的图形向学生解释“满十进一”,建立图与数的关联,揭示数学计算的本质。
3数学深度学习中,渗透数形结合思想,发展学生的数感
数感对于学生数学学习十分重要,在数形结合中发展学生的数感是每一个小学数学教师的职责。单纯的数字在小学生的眼里没有实际意义,因此学生容易缺乏数感,培养学生的数感对于学生后期数学的深入学习意义重大。教师可以将各种有形的实物引入课堂教学,将数字形象化,帮助学生把握数的本质,培养学生良好的数感。例如,学生最初接触数字1、2、3……教师就相应的展示与数字对应的实物如一支笔、两朵花、三张纸等,学生的数感就在这个过程中得以培养。总之,教师要吃透数学教材,仔细分析教材的内容,结合学生的实际学习情况有步骤的展开教学,渗透数形结合思想。
4数学几何图形学习中,数形结合思想渗透,拓展空间观念
在学习几何知识时,数学教师也应当渗透数形结合的思想,帮助学生准确把握几何概念,帮助学生拓展空间观念。例如,为了让学生把握三角形的特征,数学教师可以用多媒体播放现实生活中的“三角形”图片,给学生直观的视觉刺激,使学生的脑海里存储大量与三角形有关的直观图形。接下来,教师再提供大量反例图形,引起学生的认知冲突,让学生经过不断的认知冲突来加深对三角形的理解和认识,拓展学生的空间观念,强化学生的空间想象力。整个教学过程中,教师巧妙的将数形结合的思想渗透到了教学中,教师并没有不断的向学生灌输“三角形是由三条线段围成的”这一数学思想,而是引入了大量直观、形象的图形,促进学生深入的思考。
5结语
数学学习十分看重学生的数学思维,小学生的数学思维能力是小学数学课程的重要培养目标,在素质教育时代,数学教师必须摒弃过去的教学方式,让学生形成数形结合的思维能力,培养学生借助形来解决数的问题。当学生掌握了数形结合的思维方式,遇到数学问题,学生则更容易看到抽象数学问题反映的本质,而不至于被迷惑,陷入了数学的困境。总之,数学教师要以学生为本,循序渐进的将数形结合的思想渗透到教学中来,让学生在数学学习中获得成就感和满足感。
参考文献:
[1]李文玲.“数形结合”思想在小学数学教学中的应用分析[J].西部素质教育,(1):173.
[2]邝美兰.数形结合思想方法在小学数学教学中的应用策略初探[J].学周刊,(15):39-40.
篇4:浅谈数学教学中的数形结合思想论文
浅谈数学教学中的数形结合思想论文
随着教学改革的不断深入,针对数学中如何渗透数学思想方法,在教学界掀起了一个讨论、研究的热潮。数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理解认识,掌握这些思想可以为进一步学习高等数学打下良好的基础。关于数学思想归纳起来大致有如下几种:方程思想、分类思想、数形结合思想、整体思想、函数思想、化归思想等。在数学教学中数形结合思想是应用十分广泛的一种数学思想,在教学中注重数形结合思想的培养,是提高学生数学素质的一个重要途径。
数形结合是运用形和数的相互关系来解决数学问题的思想方法。“形”与“数”是数学中最基本的2个概念,是直观与抽象在数学中的体现,二者的有机结合,是数学魅力之所在。通过形数结合,可将抽象的数学语言与直观的图形相结合,把数量关系转化为图形的性质来研究,思路与方法便在图形中直观地显示出来。以形助教,可显现直观,简化解答,往往起到事半功倍的效果。数形结合的思想方法在中学数学中应用十分广泛。在数学中如何将数式的准确刻划同几何图形的直观描述有机地结合起来显得尤为重要,它对发展学生的创造性思维、完善学生的思维品质起着重要作用。
1数形结合思想的内涵及地位
由于数形结合思想通常是使复杂问题简单化,一般问题特殊化,抽象问题具体化,化复杂为简单,化新知为旧知,化未知为己知,最终使问题得以解决。而任何一个数学问题的提出都是待解决的,在解决的过程当中,经常要用到上述处理方法,这显示数形结合思想在众多数学思想中占据着十分重要的地位。数形结合作为一种常见的数学方法,沟通了代数、三角与几何的内在联系,借助图形直观地研究数学问题,不仅可以加深对数量关系的理解,而且还可以简化运算过程;借助数式关系,还可以简明地抽象出一些几何问题的证明思路。因此,数形结合,常常能为合理解决有关问题提供一条便于接受的思路,它有助于探求问题途径、避繁就简、巧妙地得出结论,是提高解决问题能力的一种重要手段。
在数学教学中,数形结合思想的确立,对培养学生的分析综合能力、空间观察能力、解决实际问题的能力都起着很重要的作用;数形结合思想的形成也是培养学生辩证唯物主义观点中“相互转化观点”的重要途径。因此,数形结合思想是在数学教学中要求学生确立的最基本的数学思想之一。
2数形结合思想在数学教学中的具体表现
2.1利用图形进行数形结合教学
在数学中有些不等式在求解时方法甚繁,而且有可能在转化时考虑不周反而会与题意不符,造成多解或失根。这就要求老师在教学时要注意树立数形结合的思想,要按照把复杂问题化简单的原则培养学生的视图观察能力,以培养其空间概念。
2.2结合几何解题进行数形结合教学
有些较难的几何证明题,学生看到后往往眼花缭乱,无从下手,此时若借助于代数的方法,可较快地寻求到解题途径。
2.3把握好数形结合的尺度
“数”与“形”是数学研究的两类基本对象,也是矛盾的双方,两者相互依存,既对立又统一。在运用数形结合的思想和方法时,如果片面夸大或抑制“数”或“形”中的一方,常常会使我们的'解题陷入困境或导致错误。
总之,正确理解“数”与“形”的相对性,使之有机地结合起来,掌握好度,对顺利解题很有好处。经验告诉我们,当寻找解题思路发生困难时,不妨用数形结合的观点去探索;当解题过程中的复杂运算使人望而生畏时,不妨用数形结合的观点去开辟新径。当然,要灵活运用数形结合的思想方法,就要熟悉某些问题的图形背景,熟悉有关数学式中各参数的几何意义,建立结合图形思考问题的习惯,在学习中不断摸索,积累经验,加深和加强对数形结合思想方法的理解和运用。
3数形结合思想的培养和发展
通过一些例题的讲解使学生首先对数形结合这一重要数学思想方法有一个初步认识,让学生们体会到其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。通过一些刻意准备和具有代表意义的练习使学生们深刻认识到数形结合的妙处。使之看到有的代数问题,通过把数量关系转化为图形性质问题讨论,或者有的几何问题把图形的性质问题转化为数量关系问题来研究,相应问题就会化抽象为直观,化难为易,一些原来看似很难的问题就会迎刃而解,使问题简捷地得以解决。这样学生学习兴趣上来了,积极性也提高了,这时老师可再准备一些习题让学生们有意识地训练,并在日后的教学当中教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题,解决问题,并要及时地启发学生注意数形结合与转换,让其对数形结合思想达到能够自觉运用的程度,从而提高学生的数学能力。
通过以上几个方面的探讨,我们己领略到数形结合在解题中的美妙所在了。数形结合思想在数学解题中运用很广泛,它蕴含在课本的字里行间之中,渗透在学习新知识和运用知识解决问题的过程之中。这就要求教师平常应加强数形结合的教学,强化化数为形,以形表数的意识,这样不但在解题时,可化难为易,简捷地得出结论,还可以发挥学生的想象力,将原有认识结构进一步提高,是深化思维的一种有效训练,使学生既学到了知识,又提高了能力,同时也増添了学习兴趣,使学习变得轻松愉快。
篇5:数形结合思想例证
数形结合思想例证
数量关系与现实世界空间形式是数学学科不可分割的一个整体,数与形的结合是数学学科最为突出的特点之一.因此,在数学的学习过程中我们必须逐步树立数形结合的.思想,逐步学会用数形结合的方法来解决数学问题,逐步养成以形想数、以数思形的良好思维品质.可以这样说,没有树立起数形结合思想、不会髓时灵活运用数形结合的方法来解决数学问题的人,一定学不好高中数学.相反,当我们树立起了数形结合的思想,将函数、方程、不等式、复数、向量、解析几何等知识有机地联系起来,并能随时灵活地运用数形结合的方法来解答数学问题,那么必定会使许多数学问题得到最直观、最简捷的解答,有时甚至会得到意想不到的收获.下面举几例加以说明.
作 者:杨屯云 作者单位:余庆县敖溪中学,贵州,余庆,564403 刊 名:考试周刊 英文刊名:KAOSHI ZHOUKAN 年,卷(期): “”(23) 分类号:G63 关键词:篇6:浅谈初中数学教学中的数形结合思想论文
数形结合是运用数与形的相互关系来解决问题的思想方法。其中“数”在初中阶段,主要包括实数和代数对象及其关系,它们是比较抽象的。而其中的“形”主要是指几何图形,它们是比较形象的。通过数形结合,利用数和形的各自优点,将抽象的数学语言与直观的图形相结合,使问题简单化、特殊化、具体化,从而使问题轻松得到解决。
一、数形结合思想的渗透过程
(一)有效导入数形结合思维
在初中数学课程教学的过程中,如何充分运用数形结合思维,将数形结合的作用有效发挥出来,最主要的就是在教学过程中巧妙导入数形结合思维。许多学生对数形结合的概念不够了解,因此教师在教学时,要自然巧妙导入数形结合思维.如在对正负数加以讲解时,教师可以先画出数轴,举出相应的数字让学生在数轴上进行寻找,从而使学生对数轴上正负数以及零有一个清晰的认知。另外,教师还可以利用数轴,让学生对正负数变化、象限以及绝对值有具体的了解,从而使学生拥有较为扎实的数学基础。
(二)有效展开数形结合思维
一般统计的数学概念是初中数学学习中的重点和难点,学生在学习的过程中往往会存在一些问题。因此教师在对此进行讲解时,可以有效引入数形结合思维,从而来简化求解过程.如在讲解统计的相关知识时,教师可以先画出相应的坐标,一般坐标上的数字即是离散的点,为了有效算出这些离散点的中位数、平均数以及众数,对数据波动的大小产生的方差以及标准差,教师可以充分利用数形结合,让学生对相关知识有一个清楚的认知。
(三)有效升华数形结合思维
一般初中数学教学过程中,函数是教学难点,教师在对函数课程进行讲解时,可以巧妙运用数形结合思维,从而提高教学效率。一般函数与函数图像联系较为紧密,两者相辅相成,因此教师在对函数的相关题型进行讲解时,可以让学生有效分离数与形,对函数图像进行直观观察,使学生有效掌握函数的特点以及主要参数,从而对变量与变量之间的'关系加以把握,从而学会知识的融会贯通。如教师在对三角函数进行讲解时,教师可以引申到解析三角形的应用上面来,从而有效体现出数形结合的优势。同时在对直角三角形进行求解时,教师可以借助多媒体设备来展现出三角函数的图像,从而将三角形函数的求解方法展示给学生,引导学生解决直角三角形的问题。
二、数学结合思想在初中数学知识中的具体展示
(一)有理数中的数学结合思想
数轴的引入是有理数内容体现数形结合思想的力量源泉。对于每一个有理数,数轴上都有唯一确定的点与它对应。因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此)。相反数、绝对值概念则是通过数轴上的点与原点的位置关系来刻画的。尽管我们学习的是有理数,但要时刻牢记它的形(数轴上的点),通过数形结合的思想方法的运用,帮助初一学生正确理解有理数的性质及其运算法则,相关内容的中考试题,应用数形结合的思想也可顺利得以解决。
例如:有理数的加法与减法教学时,安排下列数学活动:
1.把笔尖放在数轴的原点处,先向正方向移動3个单位长度,在向负方向移动2个单位长度,这时笔尖停在表示“1”的位置上。用数轴和算式可以将以上过程及结果表示。
2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式表示以上过程及结果。
这样设计教学让学生从“形”上感受有理数的加法运算法则,采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解。在学生充分自由活动的基础上,用“数形结合”的观点审视在数轴上的连续两次运动,探寻有理数加法的几何解释。由表示两次连续运动结果的点与原点的位置关系,确定两数和的符号;由表示两次连续运动结果的点到原点的距离,确定两数和的绝对值。
(二)方程中隐含的数形结合思想
列方程解应用题的难点是如何根据题意寻找等量关系列出方程,要突破这一难点,往往就要根据题意画出相应的示意图。这里隐含着数形结合的思想方法,例如:行程问题教学中,老师应渗透数形结合的思想方法,依据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。
(三)不等式中蕴藏着数形结合思想
教材在安排“解一元一次不等式组”的内容时,创设了这样的问题情境“杜鹃花种植问题”,意图是想让学生理解解一元一次不等式与二元一次方程组一样,需同时满足两个约束条件,让学生经历从问题到不等式组的建模过程。为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无数多个解,这里蕴藏着数形结合的思想方法。在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步,确定一元一次不等式组的解集时,利用数轴更为有效。
(四)函数及其图像内容凸显了数形结合思想
因为在直角坐标系中,有序实数对(x,y)与点P的一对应,使函数与其图像的数形结合成为必然。一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助。
总之,数形结合的思想逐渐深入初中数学教学中去,并且作为一种有效的数学教学方法,可以将抽象问题具体化,将复杂问题简单化,从而在具体数学教学过程中,解决了许多很难理解的、抽象的、复杂的问题,从而激发了学生对数学的学习兴趣,降低了数学学习的难度,提高了学生的分析和解决问题的能力,同时,也提高了初中数学的教学质量,增强了初中数学课堂的教学效果。
参考文献
[1]石丽娟.谈新课标下的初中数学“数形结合”思想[J].试题与研究:教学论坛,(34)
[2]王自英.试析初中数学数形结合思想的运用[J].新课程学习:下旬,2013(09)
篇7:数学教学中数形结合思想的渗透论文
数学教学中数形结合思想的渗透论文
摘要:初中数学教学不仅可以培养学生的数学思维,更能全方位提高学生的个人能力,让学生在生活中灵活运用数学知识。数形结合思想是数学教学中一种重要的教学思想,教师可以通过数形结合的授课形式培养学生的创新能力及自主学习能力。本文将对数形结合思想作简要概述,并探讨其在初中数学教学中的渗透应用。
关键词:初中数学;数形结合;思想;渗透;应用
随着教育环境的不断变化及新课程标准的实施应用,素质教育理念正在不断受到关注。初中数学教学在素质教育推行下逐渐暴露出相应的问题,给教学带来了严重阻碍。教师应当在初中数学教学中将传统模式的应试教育逐步转变为素质教育,并合理应用数形结合的教学思想,以此提高学生的数学学习能力。
1数形结合思想的概述
数学教学缺少图形的辅助,直观性会严重缺失,而图形与数学知识无法很好地结合,则会导致数学知识很难得到细致入微地体现,这是对数形结合最充分的概述。数形结合思想,主要就是教师将比较抽象的数学知识、数学语言等与较为清晰、直观的图形相结合,本质上是实现数学中的几何知识与代数知识互相转化。数形结合思想,是直观形象与抽象思维的紧密融合,可以将数学知识变得更加生动、形象、具体,有利于学生在学习中把握数学知识的内涵。初中数学教师应用数形结合思想,不仅可以提高学生的数学成绩,更主要的是培养学生的数学思维,让学生学会分析问题、解决问题、应用数学知识。这样,教师才会通过数学教学培养学生的探究能力及自主学习能力。
2数形结合思想在初中数学教学中的渗透应用
一般来说,初中数学教师若想将数形结合思想与数学教学相结合,可从以下几点入手,实现其渗透应用:2.1分析概念:初中数学教师在应用数形结合思想的时候,首先可从分析概念入手,让学生先了解数学概念。数学概念主要反映的是某一类数学知识的本质属性,是数学知识点的浓缩部分,也是数学知识中最为基本的元素之一。教师通过分析数学概念,可以引导学生进行后续的推理与判断,也可以在数学概念的基础上探讨数学定理、数学公式等,进而形成完善的数学思想。数学概念还能有效反映出数学知识中的'数量关系、空间关系等。教师在分析数学概念的过程中,可以根据概念的内容、本质来配合相应的图形,让学生利用图形找出数学概念中的重点之处,以此理解数学概念,为后续教学环节奠定基础。2.2开展实践教学:初中数学教学的实践性是较为重要的一个方面,教师如果可以合理开展实践教学,将数形结合思想与之相结合,可以让学生通过实践教学提高应用数学知识的能力。教师应当认识到,数学教学所应用的观察法、归纳法、类比法等都需要通过学生的实践操作才能得以应用。某教师在开展实践教学的过程中,给学生出了这样一道题目:“有A与B两艘快艇,l1与l2分别为B、A两艘快艇相对于海岸的距离,可用S表示,其中,A快艇先出发。当时间t为几分钟时,B快艇可以追赶上A快艇。”如上图1所示,该教师在讲解这道题目的时候,先运用题目中的相关信息,将l1与l2的函数表达式确定好。在此基础上,学生可以利用函数表达式,将其换算为方程组,再通过解方程组得到如上图1所示的交点坐标。这个交点坐标的具体坐标值,就是本题目的最终答案。也就是说,当时间t为15分钟,B快艇可以追上A快艇。正是由于该教师在实践教学的过程中将其与数形结合思想融合在一起,学生才通过数、形之间的配合成功求出题目答案,以此提高了个人的实践能力及数学知识的合理应用能力。2.3分析例题:除了上述两个方面之外,教师还可以将数形结合思想与例题分析相结合。数学教学中的例题,可以很好地展示数学教学中的新知识,教师通过分析、讲解例题就可以很好地帮助学生掌握数学知识及数学方法,学生通过例题还可以学会如何运用数学方法。某教师在讲解下道例题的时候,就将数形结合思想渗透其中,该题为“根据图形求出第n个图形应对应几个正方形”。教师在讲解该例题时,让学生仔细观察上图2,通过这三个图形找出相应的变化规律。学生发现,第二个图形中的正方形要比第一个图形多2个,第三个图形中的正方形要比第二个图形多3个,以此类推,第n个图形应当有1+2+3+4+5+6……+n=n(n+1)2个正方形。正是由于该教师在讲解例题的时候应用了数形结合的思想,因此学生才顺利通过图形求出相应的答案,不仅学会了分析数学问题,更培养了个人应用数学知识的具体能力。因此,教师在例题分析中应用数形结合思想,有助于学生理解例题并合理应用例题。
3结语
初中数学教师应在教学中推行素质教育理念,并不断提高学生的探究能力、自主学习能力、数学知识的应用能力等。若想达到这一目标,教师就需要将数形结合思想与数学教学紧密结合,加强数学概念分析、例题分析等。这样,学生在学习数学时通过数形结合的形式,可以更为直观、清晰地认识数学知识,以此提高个人的数学应用能力。
参考文献
[1]朱家宏.初中数学教学中数形结合思想的应用[J].科技视界,2015(09).
[2]鲁彦坤.浅谈数形结合的思想在初中数学教学中的渗透[J].黑龙江科技信息,2011(08).
[3]杨艳丽.数形结合思想在初中数学教学中的渗透探究[J].教育实践与研究(B),2011(05).
篇8:数形结合论文参考文献
[1]赵景亮.数形结合在小学数学中的应用[J].学周刊,,15:150-151. [2]张晓明.浅谈数形结合思想在小学数学中的应用[J].学周刊,2014,33:208. [3]林颖.寓数于形,以形解数――论小学数学中的数形结合法[J].佳木斯教育学院学报,,06:248+259. [4]杨奇星.小学数学教学中“数形结合”探讨[J].当代教育论坛(教学研究),,02:68-70. [5]杜远堂.数形结合思想在初中数学教学中的应用[J].语数外学习:初中版下旬,2014(07). [6]沈凌云.初中数学教学中数形结合思想的培养[J].数学教学通讯,2014(31).
篇9:数形结合论文参考文献
[1]于宏坤.浅谈数形结合思想方法在解题中的应用[J].佳木斯教育学院学报,2012(01). [2]黄刚.初中数形结合思想教学过程探讨[J].曲靖师专学报(Z3). [3]肖鸣.浅谈初中数学中数形结合思想的教学[J].厦门教育学院学报,(02). [4]李延奎.数形结合思想在解题中的应用[J].山东教育(27). [5]钱建良,张菁.例说数形结合思想的`应用[J].中学生数学2014(09). [6]胡明星.等价转换一目了然数形结合思想复习指导与能力提升[J].中学理科,(01).
篇10:数形结合论文参考文献
[1]杜路敏.浅析高中数学教学中数形结合思想的运用和实施[J].学周刊,2013(22) [2]郑金才.高中数学教学衔接设计[J].中国教育技术装备,(14) [3]刘术青、田炳娟.转变高中数学教学理念,激发学生创新意识[J].才智,(8) [4]卢向敏.数形结合方法在高中数学教学中的应用[D].内蒙古师范大学,2013 [5]宋玉敏.高中数学教学中数形结合思想的融入[J].新课程(中学),(6) [6]郭飞.小学数学课堂教学有效性的研究[J].学周刊,(6).
篇11:在数学教学中如何数形结合
1在数学教学中如何数形结合
应用“数形结合”激发学生的学习兴趣
数学源于生活,又服务于生活,数学能给人线条美、流畅美的享受。这种美感在数与形上表现得十分完美。例如:反比例函数y=6/x的图象是双曲线:(如图1)。二次函数y=x2的图象是抛物线(如图2):教师在数学教学活动中,要充分运用这些材料,引导学生领会数学的美,使学生对数学产生强烈的情感、浓厚的兴趣和探讨的欲望,诱发学生对数学美的追求心理,从而消除对数学感到单调、乏味和恐惧的心理,产生对数学学习的兴趣和积极追求的欲望。
爱因斯坦说过:“兴趣是最好的老师”。培养学习的兴趣是克服数学学习困难的内在动力,把学生从“要我学”转变成“我要学”的良好的学习心理,从而有可能获得最佳的教学效果。将美感渗透于数学教学的过程中,这种审美心理活动能启迪和推动学生数学思维活动,启发学生的美感,使学生的聪明才智能得到充分发挥。
应用“数形结合”提高学生的能力
“数形结合”有助于对数学知识的记忆。我们知道,“记忆是智慧的仓库”。人的知识经验的积累、技能的形成、技巧的掌握、思维能力、创造能力的培养、事业的成就等,都离不开良好的记忆能力。中学教学知识是基础知识,要求学生牢固地记忆并掌握这些基础知识,能够做到灵活运用。在整个教学过程中,记忆正是掌握知识的手段,也是知识积累的过程。它有助于知识的深化,水平的提高。有的学生遇到一些数学问题束手无策,找不到解题的思路与方法,这与脑子里记忆的数学知识太少有关。只有对数学的基础知识记忆牢固,温故而知新,熟能生巧,才能进一步发展数学思维,提高创新能力和创造意识。教学中运用形象记忆的特点,使抽象的数学尽可能形象化,对学生输入的数学信息和映象就更加深刻,在学生的脑子中形成数学模型,可以形象地帮助学生理解和记忆。
例如:研究二次函数时,可以利用函数图象来记忆有关的知识。如函数的开口方向,对称轴、最大值等,图4函数y=1/2(x-1)2的图象,函数中自变量x的取值范围是全体实数,图象是抛物线,。开口向下,对称轴是x=1,有最大值,在对称轴的左侧,y随x的增大而增大,在右侧y随x的增大而减小。运用直观图形,使学生对此记忆深刻。
2数学有效性课堂教学
要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。
在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。
因材施教、分层教学,学会赏识自己的学生
学生在学习知识的过程,除智力因素外,还有非智力因素。因此教学还应根据每个学生的个体差异,从学生实际出发,有区别、有针对地进行教学,让不同层次的学生都有所提高。在课堂教学中,智商较高的学生提出的问题一般都能抓住问题的关键,对这一类学生,可以让他们去思考更深一层的问题,练习拓展性强的习题,促使这部分学生的思维能力向更高层次发展;
而智商稍低的学生,让他们掌握好基础,认真仔细地做好基础习题。在全面推广素质教育的今天,我们教师不但要注重优生的培养,而且更应该关心中差生。在课堂上对他们的点滴进步,我们都该及时给予表扬与肯定。教师适当的鼓励和赞美能给学生带来无穷的自信,激发他们的学习热情,让他们在教学过程中感受成功的喜悦,在不同程度上有所提高。
3激发学生的学习数学的动力
一、创设问题情境,激发学生的学习兴趣
在数学课堂上,老师应着力营造师生之间和谐协调的气氛,把握好时机、节奏时快时慢,造成“惊、奇、险”之悬念,用数学的魅力吸引学生,激发他们的求知欲,同时,抓住青少年好表现的心理特点,紧扣教学内容,创设问题情境,用学生“跳一跳,能摘到”的教学模式增强学生学习数学的信心。在数学课前提出与本节课内容相关的问题,从而让学生产生悬念,急于要了解问题的结果。使学生一开始就对新问题的学习产生浓厚的兴趣,因而尽管这节课在后面的内容都是一些繁杂的运算,但学生在学习中热情高涨,兴趣盎然,得到了极大的满足。
二、利用丰富的数学史,提高学生学习兴趣
古今中外的数学家故事以及数学趣闻能激发学生学习数学的兴趣和培养学生学习数学的求知欲,因此教师应结合教材,在教学过程中,适时恰当地向学生介绍一些数学史,从古埃及的土地丈量到数学的形成;从圆周率到《九章算术》,从终生勤奋好学的祖冲之到才华横溢的华罗庚,一个个历史镜头会让学生深深沉浸在古人奋斗的情景中,它必激励学生追求真理、努力上进,同时,学生也会从数学家的成功与失败中得到不少启迪,从而产生学习数学的极大热情.要做到这一点,教师要多读点数学史。
三、一题多解,一题巧解培养学生兴趣
数学题中的解法甚多,恰当的使用一题多解对培养学生的非智力因素和智力因素都有好处。它可以使学生更深刻地理解课本知识,熟练掌握相当的解题方法和技巧,进而启迪思维,开发智力,发展能力。根据每节课不同的教学目标,可以采取不同的教学方法。诸如有指导的尝试法、动手操作法、探究法等。灵活多变的教学方法能更好地调动学生学习的积极性,发展学生的数学能力。好的解题方法不仅能事半功倍,而且还能促进对所学知识的融会贯通,伴随着巧解题目成功的喜悦,又必然激励学生去进一步攻克新的数学难关,使学生在“求技巧→兴趣→求技巧”的良性循环中对数学的爱好得到加强。
4数学自主学习能力的培养
构建和谐师生关系
在传统教学中,教师与教材都是作为一种权威而存在。学生在课堂以及平时的相处中都是处于一种被动的地位,更有甚者,有些教师不善于处理与学生之间的关系,导致师生关系不和谐,学生对教师有讨厌的态度。这些对于学生的自主学习意愿是很不利的,学生不愿意学、不主动学,学生在教师的课堂上没有一个轻松专注的环境,自然培养学生的自主学习能力也无从谈起。因此,教师应注意与学生培养一个和谐的师生关系,在保证知识的严谨性的同时要降低自身的权威性,鼓励学生大胆提问。
在不影响教学进度的情况下多于学生交流讨论,鼓励学生提出意见、大胆回答问题,对于学生的不同见解应理性分析,告知其见解的正确与否,同时对其作出鼓励,绝不能用不耐烦的态度草草敷衍。有一些学生拥有一些与众不同的见解或看法,教师要从学生的思维角度出发。如果一些学生的提问不符合数学观念或者常理,教师也不可训斥或者批评,学生与教师不是上下级关系,要有平等对话的观念。
培养学生的学习习惯
良好的学习习惯是学生拥有高水平的自主学习能力的基础,对于学生来说,拥有良好的学习习惯有助于学生更容易理解课堂所学习的新内容,对于以前学过的知识也更难忘记,同时保证了学生会花费自己的时间来进行数学学习。良好的学习习惯会孕育有效的学习方法,同时,养成良好的学习习惯对学生其他科目的学习乃至将来的学习生活都有很大的益处。而良好的学习习惯主要表现在以下几个方面。
第一:良好的预习习惯,预习不意味着需要在教师教学之前就掌握需要学习的内容,而是要对将要学习的知识有一个了解,对框架进行梳理,以便于在日后的学习中更全面的掌握知识。教师可在每一次教学前提醒学生进行预习,以此提高课堂效率。第二:做好课堂笔记。在课堂上要认真听取教师的讲课,配合老师,积极回答问题,对于教师在课堂上所讲解的知识做好记录,以便于日后的复习掌握。需要注意的是不要因为做笔记而耽误听课,本末倒置。教师应鼓励学生进行笔记的记录,也可以进行检查来了解学生学习状况,但应注意不要变成硬性要求,成为学生另一种形式上的作业。
篇12:数形结合思想在教学中的应用论文
数形结合思想在教学中的应用论文
《新课标》明确规定“初中数学的基础知识主要指代数、几何中的概念、法则性质、公理、定理以及由此内容反映出来的数学思想和方法”。可以看出,把数学思想作为基础知识的范畴是过去大纲所没有的,它既是我国数学教育多年研究的成果,也充分反映了数学思想的重要性。数学是一门思维的科学,培养学生的思维能力是数学科学的核心,而数学思想方法是对数学内容及其所使用方法本质的认识,在培养能力方面起着不可替代的作用,可以说是提高学生思维品质和能力最重要的途径。若学生在学习中能将抽象的数学语言与直观的图形符号结合起来,把抽象思维与形象思维结合起来,能用代数的方法去研究几何问题,会根据图形的性质及几何知识去处理代数问题,对培养学生数学思想和方法,对解决数学问题有很重要的作用。
1 对“数形结合”概念的理解
初中北师大版教材中数形结合的内容,不完全统计达到214处,可以看出数形结合思想在初中数学教学中占据的地位,对于学生来说,到高中将是不自觉的'应用过程,数学中大量数的问题后面隐含着形的信息,图形的特征也体现着数的关系,我们将抽象复杂的数量关系通过形的形象直接揭示出来,以达到“形帮数”的目的,同时我们又要运用数的规律,数值的计算来寻找处理性的方法,达到“数促形”的目的。
在数学思维过程中,逻辑思维是核心,形象思维是先导,但具体的数学思维过程往往是两者交叉运用,浓缩升华的过程。这就要求我们在教学中重视数形结合的数学思想渗透的目的,让学生逻辑思维和形象都得到提高。
2 利用“形解数”的数形结合
2.1 数形结合在解不等式中的应用。在七年级教材(北师大版)第二章讲有理数及其运算时,引入数轴,这是点和数的一种对应,就是数形结合思想的体现,“数轴上的点”和“点所表示的数”是两个不同的概念,前者是图,后者是数,不等式解集可在数轴上表示出来,用数形结合比较形象直观,尤其是在解不等式组时,可将几个不等式解集表示在同一数轴上,这样就容易求出解集的公共部分,即不等式组的解集,举例如下:
例1:解不等式组
解:由(1)得x>1/3,解(2)得x<6,在同一数轴上表示(1)、(2)的解集 ∴原不等式组的解集为:1/3 2.2 数形结合在方程中的应用。二元一次方程图像解中也渗透了有关数形结合的思想,利用它可以使我们解题时直观明了。 例2:解方程组x-y=5 (1)y=3-x (2) 分析与解:由(1)得y=x-5在同一坐标系中作直线y1=x-5及直线y2=3-x的图像,有图像很直观,可得直线y1与直线y2交点P(4,-1)的横坐标、纵坐标分别为x、y的值,所以方程的解为x=4y=-1,当然这种做法的准确性依赖于作图的准确性,一般情况不太用。一元二次方程中有关根的问题同样与图像有密切关系。 例3:如果方程x2+2ax+a2-a+5=0两实根的大小在方程x2+2ax+a2+a-7=0两实根之间,试求a的取值范围。 分析:如果联想到一元二次方程与二次函数之间的关系,有函数y1=x2+2ax+a2-a+5与y2=x2+2ax+a2+a-7的图像开口向上,且形状相同,又有公共对称轴的两条抛物线。做草图如下: 这样把问题归结为两条抛物线顶点的纵坐标间关系问题,图像已清楚反映出来。同时要考虑顶点与x轴的位置关系,满足题设条件是抛物线y1的顶点纵坐标不小于等于零且大于抛物线y2的顶点坐标。即-a+5≤0-a+5>a-7解得5a<6 3 数形结合在函数问题中的应用 函数与平面图形的对应,建立一次函数y=kx+b(k≠0)中k、b的值与图像的相互对应关系,即k>0、b>0或k>0、b<0或k<0、b>0或k<0、b<0分别与图像的对应关系,二次函数y=ax2+bx+c(a≠0),a、b、c与图像的相互对应关系,即a、b、c的正负分别与图像的对应关系,都是数形结合的具体化。 例4:已知抛物线y=12x2+px+q(p≠0)与直线y=x交于两点A、B,与y轴交于点C且OA=OB,BC//x轴,求p、q的值。 分析:我们可依已知条件作草图,由直线的解析式y=x得出A、B两点的横、纵坐标相等,由此可以先设:点A坐标(t、t),点A与点B是否在一个象限呢?它们之间又有什么关系呢?再看条件“OA=OB”说明是两条线段的长度相等。但我们结合图形转化成几何语言,就是“点A、B关于原点对称”,那么刚才的一个小问题解决了,可以得点B的坐标为(-t、-t),但现在C点坐标还没有用t表示出来,能否找到相互的关系,“BC//x轴”迫使我们去结合图形来观察“B点、C点纵坐标相等”,那么点C坐标为(0、-t),有了A点、B点、C点的坐标,必然可以求出p、q的值。 已知条件尽管较多,却无从下手,这就迫使我们去观察所作的图形,可图形中又只有抛物线、直线一些线段等,令人感到山穷水尽,现在如果我们把已知条件和图形结合起来挖掘了一些隐藏在已知条件背后的图形特征,必然是柳暗花明又一村。 4 利用“数解形”的数形结合 数形结合中的数,除了指实数外,还泛指代数式、等式、不等式、方程、函数及运算等,借助运算也可把复杂几何问题代数化,轻易解决它。 例5:如过等腰三角形一个顶点做一条直线,将它分成两个小的等腰三角形,求这个等腰三角形的各内角。 分析:在这里没有明确这个等腰三角形是锐角、钝角还是直角,所以我们要把各种情况都考虑进去,这样又用到了分类讨论的数学思想,但每一步总是以图形为依托用代数求解几何问题。 如图(1)分别为90°、45°、45° 如图(2)AB=BD、AD=CD,设∠A=a、∠B=∠C=β∴∠BDA=2β∴a+2β=180°∴a=180°、β=36° 如图(3)AD=CD=BC、∠A=a、∠B=∠C=β、a+2β=180°、2a=β∴a=36°、β=72° 例6:如图,过正方形ABCD的顶点C任做一条直线与AB、AD的延长线分别交于E、F。求证:AE+AF≥4AB 分析:这是“形”的问题,但要直接从形入手较难,引导学生将结论变为:(AE+AF)2-4AB(AE+AF)≥0从形式上看,联想一元二次方程的判别式,从而把“形”转化为“数”的问题来解决就容易了。 证明:设AB=a,AE=m,AF=n,连接AC 则S△AEF=S△AFC+S△AEC即1/2mn=1/2am+1/2an∴mn=a(m+n),设m+n=p则mn=ap这时又可以联想一元二次方程根与系数关系,可以把m、n看作是方程x2-px+ap=0的两根,而m、n为两线断的长,应为实数,故此一元二次方程有实数根。即△=p2-4ap≥0,又∵p>0(m、n为线段长度)∴p>4a∴m+n>4a即AE+AF≥4AB。这道题完全体现了“数帮形”的作用,给学生有耳目一新的作用。 总之,揭示问题的本质,用“数”准确澄清“形”的模糊,用“形”直观启迪“数”的运算,解题过程使形和数各展其长,相辅相成,达到完美的统一。 数形结合思想与解题教学研究 做任何事情都要讲究方法.中学数学中掌握更多科学方法,是教师钻研教材的钥匙,县有积极的指导意义.数与形结合的思想,有助于学生思维的`开拓、创新,提高学生的学习效果,使问题的解决具有独特策略,把复杂问题简单化、抽象问题具体化,达到化难为易的目的.篇13:数形结合思想与解题教学研究
文档为doc格式