下面小编给大家整理的高中数学教学设计,本文共19篇,欢迎阅读与借鉴!

篇1: 高中数学教学设计
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程设计
第一课时:四种命题
一、导入新课
【练习】1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的..我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.
【板书】原命题:若p则q;
否命题:若┐p则q┐.
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.
由此可以得原命题真,它的否命题不一定真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.
原命题是“若p则q”,则逆否命题为“若┐q则┐p.
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真.
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的逆否命题一定为真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.
教师活动:
三、课堂练习
1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.
教师活动:
篇2: 高中数学教学设计
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1、以故事形式入题
2、多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(1)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
(四)组织讨论:
让学生归纳什么是否命题,什么是逆否命题。
例1及例2
(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真
引导学生讨论原命题的真假与其他三种命题的真
假有什么关系?举例加以说明,同学们踊跃发言。
(六)课堂小结:
1、一般地,用p和q分别表示原命题的条件和结论,用Vp和Vq分别表示p和q否定时,四种命题的形式就是:
原命题若p则q;
逆命题若q则p;(交换原命题的条件和结论)
否命题,若Vp则Vq;(同时否定原命题的条件和结论)
逆否命题若Vq则Vp。(交换原命题的条件和结论,并且同时否定)
2、四种命题的关系
(1).原命题为真,它的逆命题不一定为真.
(2).原命题为真,它的否命题不一定为真.
(3).原命题为真,它的逆否命题一定为真
(七)回扣引入
分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:
第一句:“该来的没来”
其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。
第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。
第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。
同学们,生活中处处是数学,期待我们善于发现的眼睛
五、作业
1.设原命题是“若
断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判
2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.
篇3:高中数学如何教学设计
1、诊断学生,做到知彼。
俗话说:“知己知彼,百战百胜。”教学过程是师生互动的双边活动,教师要使课堂教学达到预期的目的,在进行教学设计时先要诊断学习的真正主人——学生。在教学过程中学生原有的知识、经验、能力水平、个性、爱好、兴趣必然影响着教学活动的展开和推进。因此,教师要尽可能多地了解学生,关注学生的年龄特征、心理特征和差异,预测学生学习时可能遇到的思维障碍,才能时机适宜地切入新知识,使新旧知识合理地衔接起来。
2、课堂小结要与三维目标相呼应
三维目标是课堂教学的出发点与归宿,课堂小结时要回应三维目标,要在教师引领下由学生合作完成小结。包括①在知识与技能方面的收获,②教学中是怎样研究学习新知识的,融合重点与难点的突破于其中,③提炼价值,升华感情。最后教师最好用知识网络的形式给以最后的总结。
3、恰当地选择教学手段
要根据教材的具体情况恰当地设计教学手段,力争做到形象生动,促使教学达到最佳的效果。例如在椭圆、双曲线和抛物线这样的课中,用教具演示来揭示它们的定义,更具有形象性。如在指数和对数函数性质的研究中,教师自制课件利用多媒体辅助教学,使学生看到随着底数a值的变化得到的函数和图像的动态变化,从而对这些函数的性质有深刻的认识和牢固的记忆。在使用计算机辅助教学盛行的今天,教师不要忘记板书,关键的知识要通过板书来呈现,使学生对知识的系统、结构在脑海中留下影像。
篇4:高中数学如何教学设计
做好课堂导入设计
首先,可以联系实际生活。数学知识在生活中有着广泛的应用,与实际生活有着广泛的联系,在进行课堂导入设计时,教师可以联系学生的实际生活,激发学生的好奇心。例如在学习抛物线的知识时,可以这样导入:让学生回想一下打篮球的情景,由于场地限制,在课堂上可以用乒乓球代替篮球,做投篮动作,让学生仔细观察篮球(乒乓球)落地时的轨迹,在学生积极参讨论时,引入抛物线的知识。在导入中联系实际生活,不仅能够激发学生的兴趣,并且能够拉近学生与数学之间的距离。
其次,教师可以利用数学史进行导入。数学教材中很多知识都与数学史相关,学生对这部分知识充满兴趣,因此在教学过程中,教师设计课堂导入时可以从这一点入手,先通过提问或者介绍的方式,让学生了解数学史上的重大事件和重要人物等,引起学生的敬佩和仰慕之情,然后引入相关的数学知识。兴趣是最好的老师,在学生的期待下展开数学教学,无疑会提高课堂教学效率。课堂导入的方式有很多种,在具体的操作环节,教师要注意导入方式的多样性,才能更好地激发学生的兴趣,在高中数学教学中教师要根据实际情况进行合理选择使用。
做好课堂提问设计
首先,教师要精心设计问题。提问的目的是为了激发学生的兴趣和思维,因此,教师提问的问题不能是单调、重复的,而应该是具有启发性和针对性,能够激发学生的思考,引导学生进行步步深入。最重要的是,教师提出的问题要符合学生的知识水平和认知能力,教师不仅应该了解教材,并且要全面了解学生,这样才能使提出的问题符合学生的需要。学生的数学水平是不同的,接受能力也有差异,因此教师要注意提出问题的层次性,并针对不同水平的学生设计不同难度的问题,促进每个学生获得进步和发展。
其次,课堂提问的方式要多样化。如同教学方式需要多样化一样,提问的方式也要具有多样化的特点,这样才能更好地激发学生兴趣,达到教学目的,否则,无论教师设计的问题多么巧妙,学生也会感到厌烦。根据问题的内容和学生实际情况,提问可以是直接问答;可以是导思式;可以教师提问、学生回答;也可以是学生提问、教师回答。在教学过程中教师要注意培养学生的问题意识,鼓励学生自己提出问题,问题是思考的开端,对于学生来说提出问题比解决问题更重要,因此,教师要为学生创造机会,让学生在认真阅读教材的基础上,根据自己的理解提出不懂的问题。提出的问题教师可以进行点拨,让学生思考,也可以组织学生进行讨论,培养学生分析问题和解决问题的能力。
篇5:高中数学如何教学设计
合理制定三维目标,明确重点与难点。
《普通高中数学课程标准》提出的三维教学目标是:知识与技能,过程与方法,情感态度与价值观。知识与技能目标包括学生要知道、了解、理解的基础知识、基本原理目标和学生必须达到的基本技能目标;过程与方法目标包括实现数学科学中的探究过程和探究方法、优化学生的学习过程,强调学生探索新知识的经历和获得新知识的体验;情感态度与价值观目标中包括学生的学习兴趣与热情、战胜困难的精神、认识数学之美感和塑造学生的人格。三维目标之间的关系是“在实现知识与技能的过程中有机地融合、渗透过程与方法目标、情感态度与价值观目标的达成。”三维目标是课堂教学活动的出发点与归宿。
教学设计时教师要依据教材的具体内容,结合学生的学习实际,以促进每一个学生的发展为本,合理地制订三维目标,注意体现三维目标的整体性,相辅相成。所谓重点,指一节课中最重要的新知识,即联动全局,带动全面的重要之点,是学生认知发生转折与质变的地方,是教学的重心所在,是课堂教学中需要解决的主要矛盾。所谓难点是一节课中学习起来最困难的地方,是学生的认知能力与知识要求之间存在较大矛盾、知识跨越最大的地方,是学生难于理解和掌握的内容。例如“等差数列前n项和”这节课中的重点是“等差数列前n项和公式”,难点是“等差数列前n项和公式的推导——倒序相加法”。只有合理制订三维目标和确定好重点与难点,才能围绕三维目标和重点与难点的突破,制定出出色的教学设计。
创设生活情景,使数学生活化
为学生提供充分从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学体验,将数学应用于生活,提高自主探究数学知识的能力和学生学习数学能力。
认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常使用的知识,有些已经进入了他们的潜意识。如果能把新知识巧妙地溶于生活情境中,那将会是学生非常欢迎的,一旦接受也会被牢固掌握。而现代教学手段比以往更容易让现实生活中的现象再现或模拟于课堂。因此,从学生的生活经验和知识背景出发,提供学生充分进行数学实践活动和交流的机会课堂效果一定会很好。用与学生年龄特征相适应的大众化、生活化的方式呈现数学内容,也是数学课程改革的一个基本思路。教师要敢于走出教材,走出课堂,走进丰富多彩的生活。比如在引入两个平面垂直的判定定理时,教师提出:建造一座大楼,怎样才能使墙面与地面垂直呢?学生很快会联想到建筑工人常常用一端系着铅锤的细绳让其垂直地面,并以这根绳子为参照,看看所砌的墙是否经过这条细绳。然后问:为什么若墙面经过这条绳子,所砌的墙就与地面垂直呢?还可以引导学生观察教室门板与地面的位置关系,它们是否垂直?转动门扇是否还与地面保持垂直,奇怪吗?为什么?到底隐藏着数学上的什么奥秘?由这些亲切真实情景,导出两个平面垂直的判定定理就水到渠成了。
篇6:高中数学如何教学设计
创设实验情境,培养数学创新能力和实践能力
高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。
此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。
巧设情境,增加学生的投入感
为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。 《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:
要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。
篇7:高中数学教学设计
一、学习目标与任务
1、学习目标描述
知识目标
(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。
(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。
能力目标
(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。
(B)通过知识的再现培养学生的创新能力和创新意识。
(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。
德育目标
让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。
2、学习内容与学习任务说明
本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。
学习重点:圆锥曲线的第一定义和统一定义。
学习难点:圆锥曲线第一定义和统一定义的应用。
明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。
抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。
充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。
二、学习者特征分析
(说明学生的学习特点、学习习惯、学习交往特点等)
l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。
高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在
l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。
高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。
三、学习环境选择与学习资源设计
1.学习环境选择(打√)
(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)
(6)其它
2、学习资源类型(打√)
(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库
(5)案例库(6)题库(7)网络课程(8)其它
3、学习资源内容简要说明
(说明名称、网址、主要内容等)
《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)
用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。
四、学习情境创设
1、学习情境类型(打√)
(1)真实性情境(√)(2)问题性情境(√)
(3)虚拟性情境(√)(4)其它
2、学习情境设计
真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。
问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。
虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。
五、学习活动的组织
1、自主学习设计(打√并填写相关内容)
(1)抛锚式
(2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。
使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。
学生活动:分析、操作、协作讨论、总结、提交结论。
教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。
(3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。
使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。
学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。
教师活动:讲解例题,总结点评学生做题过程中的问题。
(4)其它
2、协作学习设计(打√并填写相关内容)
(1)竞争
(2)伙伴(√)
相应内容:圆锥曲线的第一定义和统一定义
使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。
分组情况:每组三人
学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。
教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。
(3)协同(√)
相应内容:圆锥曲线定义的典型应用。
使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。
分组情况:每组三人。
学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。
教师活动:总结点评学生做题过程中的问题。
(4)辩论
(5)角色扮演
(6)其它
4、教学结构流程的设计
六、学习评价设计
1、测试形式与工具(打√)
(1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它
2、测试内容
教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。
学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。
(附)圆锥曲线专题网站设计分析
(1)设计思路
(A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。
(B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。
(C)突出知识的'再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。
(D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。
(E)突出和各学科的联系:如斜抛运动和行星运动等等。
(F)强调分层次的教学:
如在知识应用中的配置不同层次的例题和练习:
(2)网站导航图
篇8:高中数学教学设计
一、探究式教学模式概述
1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。
2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。
3、探究式教学模式的特征。
(1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。
(2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。
(3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。
二、教学设计案例
1、教学内容:数字排列中3、9的探究式教学。
2、教学目标。
(1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。
(2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。
(3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。
3、教学方法:谈话探究法,讨论探究法。
4、教学过程。
(1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?
(2)提出问题。
问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有
A、36个B、18个C、12个D、24个
问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
(3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。
教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?
学生:它们都满足“各位数字之和能被9整除”。
教师:此结论的正确性如何?
学生:老师,我们证明此结论的正确性,好吗?
教师:好。
学生:证明:不妨以n是一个四位数为例证之。
设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)
则n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可证定理的后半部分。
教师:看来上述结论正确。所以得到如下定理。
定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。
教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。
学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教师:启发学生观察这些数字有何特点?提问学生。
学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。
教师:请学生们继续尝试选取其他数字试一试。
学生:3+4+5+6=18是9的倍数。
教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。
故应选D。
(4)学以致用。
问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?
学生讨论:
学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。
学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。
学生3:第一类:5个数字中无0的五位偶数有。
第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。
学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。
(5)概括强化。
重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。
难点:数字排列知识的灵活应用。
关键:证明的思路以及定理的得出。
新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。
(6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。
总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。
篇9:高中数学教学设计
一、教学内容分析:
本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:
任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想
本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计
(一)知识准备、新课引入
提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??
提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]
(二)判定定理的探求过程
1、直观感知
提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?
生1:例举日光灯与天花板,树立的电线杆与墙面。
生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]
2、动手实践
教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]
3、探究思考
(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行
(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?
4、归纳确认:(多媒体幻灯片演示)
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??
温馨提示:
作用:判定或证明线面平行。
关键:在平面内找(或作)出一条直线与面外的直线平行。
思想:空间问题转化为平面问题
(三)定理运用,问题探究(多媒体幻灯片演示)
1、想一想:
(1)判断下列命题的真假?说明理由:
①如果一条直线不在平面内,则这条直线就与平面平行
②过直线外一点可以作无数个平面与这条直线平行( )
③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )
(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]
2、作一作:
设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?
先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。
[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]
3、证一证:
例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平
面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。
思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。
思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。
[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]
4、练一练:
练习1:见课本6页练习1、2
练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。
变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。
[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]
(四)总结
先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):
1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。
2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行
3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。
七、教学反思
本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。
篇10:高中数学教学设计
一.教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.
培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
篇11:高中数学集合教学设计
一、内容及其解析
(一)内容:集合间的基本关系。
(二)解析:本节课要学的内容有集合间的基本关系指的是集合间的包含和相等关系,其核心(或关键)是弄清楚集合中的元素之间的关系理解它关键就是分析清楚集合中的元素,学生已经学过了集合的含义与表示并且学习过实数间的大小关系。本节课的内容集合间的基本关系就是在此基础上的发展(或就是它的下位概念,就可以类比它,等等)(定起点)。由于它还与后续很多内容,比如圆锥曲线有思想方法上(都通过类比的想法来进行学习)联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是子集、真子集、等集和空集所以解决重点的关键是分析好集合间的关系、弄清楚集合中的元素。
二、目标及其解析
(一)教学目标
(1)理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;
(2)在具体情境中,了解空集的含义;
(二)解析
(1)理解集合之间包含与相等的含义,能识别给定集合的子集就是指集合两个集合之间是子集、真子集还是相等,掌握相应的含义以及数学表示、数学记号,并不致混淆;;
(2)在具体情境中,了解空集的含义。就是指要掌握空集的含义,能分析给出的集合是否为空集;对关于空集的规定即空集是任何非空集合的子集,是任何非空集合的真子集要牢记。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是解题中对空集是任意集合的子集这一条件容易忽略,产生这一问题的原因是对这一新规定接受度不强.要解决这一问题,就是要依据实例反复操练,其中关键是师生的互动要到位.
四、教学过程设计
一、导入新课
实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
二、提出问题
问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?
(1) ;
(2)设A为某中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;
(3)设
(4) .
问题2:同样是子集,会不会有差别呢?
(1) 请看幻灯片上的例子,你能发现什么问题吗?
(2) 这两种不同的情形该如何表述呢?
(3) 学生回答,师生共同归纳出真子集和集合相等的数学定义及数学语言表述。
问题3:请看幻灯片上给出的几个集合,你能发现什么问题?
(1) 这些集合有什么共同特征?
(2) 你能举出更多的空集的例子吗?
(3) 你认为空集和其它集合是什么关系?和非空集合又是什么关系
三.概念的巩固和应用
四.课堂目标检测
优化设计:随堂练习.
五.小结
1、集合之间的关系,子集,集合相等,真子集等概念;
2、Venn图的运用;
3、空集的定义和性质;
4、集合之间的基本关系的主要结论;
5、当一个集合有n个元素的时候,其子集有 个,真子集有 个,非空真子集有 个。
篇12:高中数学集合教学设计
一、知识结构
本小节首先从初中代数与几何涉及的实例人手,引出与的元素的概念,并且结合实例对的概念作了说明.然后,介绍了的常用表示方法,包括列举法、描述法,还给出了画图表示的例子.
二、重点难点分析
这一节的重点是的基本概念和表示方法,难点是运用的三种常用表示方法正确表示一些简单的.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解的概念和表示方法.
1.关于牵头图和引言分析
章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明和简易逻辑知识是高中数学重要的基础.
2.关于的概念分析
点、线、面等概念都是几何中原始的、不加定义的概念,则是论中原始的、不加定义的概念.
初中代数中曾经了解“正数的”、“不等式解的”;初中几何中也知道中垂线是“到两定点距离相等的点的”等等.在开始接触的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个,也简称集.”这句话,只是对概念的描述性说明.
我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.
3.关于自然数集的分析
教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.
新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算 仍属于自然数,其中 .因此要注意几下几点:
(1)自然数与非负整数是相同的,也就是说自然数集包含0;
(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;
(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用.
4.关于中的元素的三个特性分析
中的每个对象叫做这个的元素.例如“中国的直辖市”这一的元素是:北京、上海、天津、重庆。
中的元素常用小写的拉丁字母 ,…表示.如果a是A的元素,就说a属于A,记作 ;否则,就说a不属于A,记作
要正确认识中元素的特性:
(l)确定性: 和 ,二者必居其一.
中的元素必须是确定的.这就是说,给定一个,任何一个对象是不是这个的元素也就确定了.例如,给出{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个.如果说“由接近的数组成的”,这里“接近的数”是没有严格标准、比较模糊的概念,它不能构成.
(2)互异性:若 , ,则
中的元素是互异的.这就是说,中的元素是不能重复的,中相同的元素只能算是一个.例如方程 有两个重根 ,其解集只能记为{1},而不能记为{1,1}.
(3)无序性:{a,b}和{b,a}表示同一个.
中的元素是不分顺序的.和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而{1,0}和{0,1}表示同一个.
5.要辩证理解和元素这两个概念
(1)和元素是两个不同的概念,符号和是表示元素和之间关系的,不能用来表示之间的关系.例如 的写法就是错误的,而 的写法就是正确的.
(2)一些对象一旦组成了,那么这个的元素就是这些对象的全体,而非个别现象.例如对于 ,就是指所有不小于0的实数,而不是指“ 可以在不小于0的实数范围内取值”,不是指“ 是不小于0的一个实数或某些实数,”也不是指“ 是不小于0的任一实数值”……
(3)具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.
6.表示的方法所依据的国家标准
本小节列举法与描述法所使用的的记法,依据的是新国家标准如下的规定.
符号 | 应用 | 意义或读法 | 备注及示例 |
诸元素 构成的集 | 也可用 ,这里的I表示指标集 | ||
使命题 为真的A中诸元素之集 | 例: ,如果从前后关系来看,集A已很明确,则可使用 来表示,例如 |
此外, 有时也可写成 或
7.的表示方法分析
有三种表示方法:列举法、描述法、图示法.它们各有优点.用什么方法来表示,要具体问题具体分析.
(l)有的可以分别用三种方法表示.例如“小于 的自然数组成的”就可以表为:
①列举法: ;
②描述法: ;
③图示法:如图1。
(2)有的不宜用列举法表示.例如“由小于 的正实数组成的”就不宜用列举法表示,因为不能将这个中的元素—一列举出来,但这个可以这样表示:
①描述法: ;
②图示法:如图2.
(3)用描述法表示,要特别注意这个中的元素是什么,它应该符合什么条件,从而准确理解的意义.例如:
① 中的元素是 ,它表示函数 中自变量 的取值范围,即 ;
② 中的元素是 ,它表示函数值。的取值范围,即 ;
③ 中的元素是点 ,它表示方程 的解组成的,或者理解为表示曲线 上的点组成的;
④ 中的元素只有一个,就是方程 ,它是用列举法表示的单元素.
实际上,这是四个完全不同的.
列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.
8.的分类
含有有限个元素的叫做有限集,如图1所示.
含有无限个元素的叫做无限集,如图2所示.
9.关于空集分析
不含任何元素的叫做空集,记作 .空集是个特殊的,除了它本身的实际意义外,在研究、的运算时,必须予以单独考虑.
篇13:高中数学集合教学设计
知识目标:
(1)使学生初步理解的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;
德育目标:
激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
教学重点:的基本概念及表示方法
教学难点 :运用的两种常用表示方法——列举法与描述法,正确表示一些简单的
授课类型:新授课
课时安排:2课时
教 具:多媒体、实物投影仪
教学过程 :
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.论的创始人——康托尔(德国数学家);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)中元素的特性是什么?
(一)的有关概念(例子见书):
1、的概念
(1):某些指定的对象集在一起就形成一个。
(2)元素:中每个对象叫做这个的元素。
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的。记作N
(2)正整数集:非负整数集内排除0的集。记作N_或N+
(3)整数集:全体整数的。记作Z
(4)有理数集:全体有理数的。记作Q
(5)实数集:全体实数的。记作R
注:
(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。记作N_或N+ 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_
3、元素对于的隶属关系
(1)属于:如果a是A的元素,就说a属于A,记作a∈A;
(2)不属于:如果a不是A的元素,就说a不属于A,记作 .
4、中元素的特性
(1)确定性:
按照明确的判断标准给定一个元素或者在这个里,或者不在,不能模棱两可。
(2)互异性:
中的元素没有重复。
(3)无序性:
中的元素没有一定的顺序(通常用正常的顺序写出)
注:
1、通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
2、“∈”的开口方向,不能把a∈A颠倒过来写。
练习题
1、教材P5练习
2、下列各组对象能确定一个吗?
(1)所有很大的实数。 (不确定)
(2)好心的人。 (不确定)
(3)1,2,2,3,4,5.(有重复)
阅读教材第二部分,问题如下:
1.的表示方法有几种?分别是如何定义的?
2.有限集、无限集、空集的概念是什么?试各举一例。
(二)的表示方法
1、列举法:把中的元素一一列举出来,写在大括号内表示的方法。
例如,由方程 的所有解组成的,可以表示为{-1,1}.
注:(1)有些亦可如下表示:
从51到100的所有整数组成的:{51,52,53,…,100}
所有正奇数组成的:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个,该只有一个元素。
描述法:用确定的条件表示某些对象是否属于这个,并把这个条件写在大括号内表示的方法。
格式:{x∈A| P(x)}
含义:在A中满足条件P(x)的x的。
例如,不等式 的解集可以表示为: 或
所有直角三角形的可以表示为:
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于104的实数}
(2)错误表示法:{实数集};{全体实数}
3、文氏图:用一条封闭的曲线的内部来表示一个的方法。
注:何时用列举法?何时用描述法?
(1) 有些的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
如:
(2) 有些的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
如: ;{1000以内的质数}
注: 与 是同一个吗?
答:不是。
是点集, = 是数集。
(三) 有限集与无限集
1、有限集:含有有限个元素的。
2、无限集:含有无限个元素的。
3、空集:不含任何元素的。记作Φ,如:
练习题:
1、P6练习
2、用描述法表示下列
①{1,4,7,10,13}
②{-2,-4,-6,-8,-10}
3、用列举法表示下列
①{x∈N|x是15的约数} {1,3,5,15}
②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)}
注:防止把{(1,2)}写成{1,2}或{x=1,y=2}
③
④ {-1,1}
⑤ {(0,8)(2,5),(4,2)}
⑥
{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}
三、小 结:
本节课学习了以下内容:
1.的有关概念:(、元素、属于、不属于、有限集、无限集、空集)
2.的表示方法:(列举法、描述法、文氏图共3种)
3.常用数集的定义及记法
四、课后作业 :教材P7习题1.1
篇14:高中数学概念教学设计
一、问题导入,引发探究
师:我在旅游时买回来一种磁性蛇蛋玩具(如图),所谓生活处处皆学问嘛,我把它运动过程中的轴截面用图形计算器做出了以下有趣的现象:
两个全等的椭圆形卵,相互依偎旋转(动画)。你能通过所学解析几何知识,构造出这种有趣的现象吗?
二、实验探究,交流发现
探究1:卵之由来——椭圆的形成
(1)单个定椭圆的形成
椭圆的定义:平面内到两定点、的距离之和等于常数(大于)的点的轨迹叫做椭圆。(即若平面内的动点到两定点、的距离之和等于常数(大于),则点的轨迹为以、为焦点的椭圆。)
思考1:如何使为定值?
(不妨将两条线段的长度和转化为一条线段,即在线段的延长线上取点,使得,此时,为定值则可转化为为定值。)
思考2:若为定值,则点的轨迹是什么?定点与点轨迹的位置关系?
(以定点为圆心,为半径的圆。由于>,则点在圆内。)
思考3:如何确定点的位置,使得,且?
(线段的中垂线与线段的交点为点。)
揭示思路来源:(高中数学选修2-1P497)如图,圆的半径为定长,是圆内一个定点,是圆上任意一点,线段的垂直平分线l和半径相交于点,当点在圆上运动时,点的轨迹是什么?为什么?
(设圆的半径为,由椭圆定义,(常数),且,所以当点在圆周上运动时,点的轨迹是以为焦点的椭圆。)
图形计算器作图验证:以圆与定点所在直线为轴,中垂线为轴建立直角坐标系,设圆半径,,即圆,点,则点轨迹是以以为焦点的椭圆,椭圆方程为。
(2)单个动椭圆的形成
思考4:构造一种动椭圆的方式
(由于椭圆形状不变,即离心率不变,而长轴长为定值,则也要为定值,因此可将圆内点取在圆的同心圆上,当点在圆上动时,即可得到动椭圆。)
图形计算器作图验证:当圆内动点取在圆的同心圆上,运动点,即得到动椭圆。
(3)两个椭圆的形成
观察两个椭圆相互依偎旋转的几个画面,分析两椭圆的位置关系。判断两个椭圆关于对称轴对称,且直线过两椭圆公共点,所以直线为两椭圆的公切线。
因而找到公切线,作椭圆关于切线的对称椭圆即可。
探究2:卵之所依——切线的判断与证明
线段的垂直平分线与椭圆的位置关系
(1)利用图形计算器中的“图象分析”工具直观判断与椭圆的位置关系.设圆上动点,则线段的中垂线的方程为,将动点的横坐标保存为变量,纵坐标保存为变量,随着点的改变,在Graphs中画出相应的动直线.用图形计算器中的“图象分析”工具找出椭圆所在区域内的直线与椭圆的交点,拖动点,动态观测交点个数的变化,发现无论点在何处,动直线与椭圆只有一个交点,因此判断直线与椭圆相切,并可求出该切点的坐标.也可以将椭圆方程与直线方程联立,用“代数”工具中的solve求出方程组的解,从而判断根的情况.
(2)证明椭圆与直线相切.
不妨设直线:,其中,,与椭圆方程联立,得,因此
,
将,,代入上式,用“代数”工具中的expand()化简式子,得,所以椭圆与直线相切,切点为.
(3)证明由任意圆上的动点和圆内一点确定的椭圆与线段中垂线均相切(反证法)
因为椭圆是点的轨迹,而点是直线与线段中垂线的交点,所以点既在椭圆上,也在直线上。因此,直线与椭圆至少有一个公共点,即直线与椭圆相切或相交。
假设直线与椭圆相交,设另一个交点为(与不重合).因为,所以;又因为,
所以为定值,而,矛盾.因此直线与椭圆相切。
探究3:两卵相依——对称旋转椭圆的形成与动画
当圆内动点取在圆的同心圆上,作椭圆关于切线的对称椭圆,运动点,隐藏相关坐标系与辅助圆等图形,呈现两卵相互依偎旋转的有趣效果。
改变一些问题条件,进行深入探究与发现。
探究4:改变点位置,探究点轨迹
(1)曲线判断:利用TI图形计算器作图分析,拖动点,当点在定圆内且不与圆心重合时,交点的轨迹是椭圆;当点在定圆外时,则,交点的轨迹是双曲线;当点与圆心重合时,点的轨迹是圆的同心圆;当点在圆周上时,点的轨迹是是一点(圆心).
(2)方程证明:圆,设点,可解得点的轨迹方程为
当或时,点的轨迹为圆心;
当且时,点的轨迹方程为
当时,点的轨迹为圆:;
当且时,点的轨迹为椭圆;
当或时,点的轨迹为双曲线。
探究5:改变切线位置,探究由切线得到的包络图形
查阅有关参考书籍,了解圆锥曲线的包络线,并利用图形计算器作出椭圆、双曲线的包络图形,自主探究抛物线的包络线(将定圆改为定直线)。
结论:所谓包络图,就是指有一条曲线按照一定运动规律运动,保留其所有瞬间位置的影像,会有一条曲线能够和该运动曲线所有位置相切,这条曲线就成为该运动曲线的包络线。
探究6:拓展延伸:椭圆切线的几个性质及其应用
性质1:是椭圆的两个焦点,若点是椭圆上异于长轴两端点的任一点,则点的切线平分的外角。
性质1′:点处的法线(过点且垂直于切线)平分。(即为椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上。)
课后探究:阅读数学选修2-1P75阅读与思考——圆锥曲线的光学性质及其应用,了解双曲线、抛物线的光学性质。
练习1:已知为椭圆的左、右焦点,点为椭圆上任一点,过焦点向作垂线,垂足为,则点的轨迹是_____________,轨迹方程是_______________。
解:(1)直观判断:作轨迹
(2)严谨证明:圆的定义
由此得到:
性质2:是椭圆的两个焦点,是长轴的两个端点,过椭圆上异于的任一点的切线,过做切线的垂线,垂足分别为,则在以长轴为直径的圆上。
练习2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线与椭圆相切与点,且到的垂线长分别为,求证:为定值。
解:(1)直观判断:作图
(2)严谨证明:利用性质2及圆的相交弦性质,
由此得到:
性质3:已知椭圆为,则焦点到椭圆任一切线的垂线长乘积等于。
课后探究2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线过点,且到的垂线长分别为,则
①当时,直线与椭圆的位置关系;(相交)
②当时,直线与椭圆的位置关系。(相离)
(类比直线与圆位置关系的几何法,此为直线与椭圆位置关系的几何法)
课后探究:双曲线、抛物线的切线是否有类似性质?
篇15:高中数学概念教学设计
一、学习目标与任务
1、学习目标描述
知识目标
(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。
(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。
能力目标
(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。
(B)通过知识的再现培养学生的创新能力和创新意识。
(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。
德育目标
让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。
2、学习内容与学习任务说明
本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。
学习重点:圆锥曲线的第一定义和统一定义。
学习难点:圆锥曲线第一定义和统一定义的应用。
明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。
抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。
充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。
二、学习者特征分析
(说明学生的学习特点、学习习惯、学习交往特点等)
l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。
高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在
l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。
高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。
三、学习环境选择与学习资源设计
1.学习环境选择(打√)
(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)
(6)其它
2、学习资源类型(打√)
(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库
(5)案例库(6)题库(7)网络课程(8)其它
3、学习资源内容简要说明
(说明名称、网址、主要内容等)
篇16:高中数学集合教学设计
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
篇17:高中数学集合教学设计
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
篇18:高中数学集合教学设计
1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
篇19:高中数学集合教学设计
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合G
文档为doc格式