以下是小编为大家准备的七年级数学第一测试题,本文共8篇,欢迎大家前来参阅。

篇1:七年级数学第一测试题
七年级数学第一测试题
一、选择题(每题3分,共30分)
1.绝对值不大于3的非正整数有 ( )
A.1个 B.3个 C.6个D.4个
2.-的相反数是 ( ) 11 D. 20112011
a|a|3.如果a是不等于零的有理数,那么化简的结果是 ( ) 2aA.2011 B.-2011C.
A.0或1 B.0或-1C.0 D.1
4.下列说法正确的是 ( )
A.-|a|一定是负数 B.互为相反数的两个数的符号必相反
C.0.5与2是互为相反数 D.任何一个有理数都有相反数
5.下面不等式正确的是( ) A.2313 B.| | | C.(8)2(7)2D.-0.91<-1.1 34611
11 B.-2 C. D.2 226.若a的相反数等于2,则a的倒数的相反数是 ( ) A.7.如果a、b都是有理数,且a-b一定是正数,那么( )
A.a、b一定都是正数 B.a的绝对值大于b的绝对值
C.b的绝对值小,且b是负数D.a一定比b大.
8.在数轴上,把表示-4的`点移动2个单位长度后,所得到的对应点表示的数是( )
A.-1B.-6 C.-2或-6D.无法确定
9.若x与3互为相反数,则|x|+3等于 ( )
A.-3B.0C.3 D.6
10.一个数的立方等于它本身,这个数是 ( )
A.1 B.-1,1C.0 D.-1,1,0
二、耐心填一填(4小题,共20分)
11、如果代数式 有意义,那么x的取值范围是______________。
12、若关于x的一元二次方程(m -1)x2 + 5x + m2-3m+2=0的一个根是0,则m的值是______________。
13、一元二次方程 和x2-5x+7=0所有实数根的和为__________。
14、方程 的根是 。
三、解答题(每题8分,共16分)
15. 化简:(每题4分,共8分)
(1) (2)
16. 解下列方程(每题4分,共8分)
(1) (2) (用配方法)
四、(每小题8分,共16分)
17、(8分)若最简二次根式 与- 是同类二次根式,求x的值。
18、已知关于x的一元二次方程kx2-4kx+k-5=0有两个相等的实数根,求k的值及方程的实数根。
五、(每小题10分,共20分)
19、(10分).某商场销售海尔电器,市场调研表明:当赢利为每台44元时,平均每天能销售20台;而当售价每降低1元时,平均每天能多销售5台,商场经理要想销售利润平均每天达到1600元,每台电器的降价应为多少?
20、(10分)如果关于x的方程kx2+(2k-1)x+k-1=0只有整数解,试探索整数k的值。
六、(本题12分)
21、已知x1、x2是方程 的两个实根,且 。
(1)求x1、x2及a的值。
(2)求 的值。
七、(本题12分)
22、已知 的两根为a、b,求 的值。
八、(本题14分)
23、某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2)。若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润 = 销售额-费用)
篇2:七年级数学第一单元测试题
七年级数学第一单元测试题
七年级数学第一单元测试题
一、选择题
1.绝对值不大于3的非正整数有
( ) A.1个 B.3个 C.6个 D.4个
2.如果一个有理数的平方等于(-3),那么这个有理数等于( )
A.-3 B.3 C.9 D.3或-3
3.如果a是不等于零的有理数,那么化简的结果是( )
A.0或1 B.0或-1 C.0 D.1
4.下列说法正确的是 ( )
A.-|a|一定是负数 B.互为相反数的两个数的符号必相反
C.0.5与2是互为相反数 D.任何一个有理数都有相反数
5.若│x│=2,│y│=3,则│x+y│的值为( )
A.5 B.-5 C.5或1 D.以上都不对
6.若a的相反数等于2,则a的倒数的相反数是 ( )
A.2 1
B.-2 C.21 D.2
7.如果a、b都是有理数,且a-b一定是正数,那么 ( )
A.a、b一定都是正数 B.a的绝对值大于b的绝对值
C.b的绝对值小,且b是负数 D.a一定比b大.
8.在数轴上,把表示-4的点移动2个单位长度后,所得到的.对应点表示的数是( )
A.-1 B.-6 C.-2或-6 D.无法确定
9.若x与3互为相反数,则|x|+3等于 ( )
A.-3 B.0 C.3 D.6
10.一个数的立方等于它本身,这个数是 ( )
A.1 B.-1,1 C.0 D.-1,1,0
二、认真填一填(每空2分,共30分)
1.数轴上a、b、c三点分别表示-7,-3,4,则这三点到原点的距离之与是 ____________ 。
2.一个数是2的相反数,另一个数比-2大-3,则这两个数的与是 ______ ,积是 ______ 。
3.已知|a-b|+|b+5|=0,则a+b ______, b·a______ 。
4.的底数是 ______,指数是______。
5.的倒数是______;绝对值是_______ 。
6.在近似数0.6048中,精确到 _____ 位,有 ______个有效数字。
7.温度由4℃上升7℃,达到的温度是______℃。
8.观察下面一列数,按某种规律填上适当的数:1,-2,4,-8, ______ ,______ 。
9.若x为整数,且x≥3,|x|<5,则x= ______。
三、计算题
四、解答题
1.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
这批样品的质量比标准总质量质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?
篇3:七年级上册数学第一单元测试题
一、仔细选一选(30分)
1. 0是( )
A.正有理数 B.负有理数 C.整数 D.负整数
2. 中国第一座跨海大桥――杭州湾跨海大桥全长36千米,其中36属于( )
A.计数 B.测量 C.标号或排序 D.以上都不是
3. 下列说法不正确的是( )
A.0既不是正数,也不是负数 B.0的绝对值是0
C.一个有理数不是整数就是分数 D.1是绝对值最小的数
4. 在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有( )个
A.2 B.3 C.4 D.5
5. 一个数的相反数是3,那么这个数是( )
A.3 B.-3 C. D.
6. 下列式子正确的是( )
A.2>0>-4>-1 B.-4>-1>2>0 C.-4<-1<0<2 D.0<2>-1<-4
7. 一个数的相反数是最大的负整数,则这个数是( )
A.1 B.±1 C.0 D.-1
8. 把数轴上表示数2的点移动3个单位后,表示的数为( )
A.5 B.1 C.5或1 D.5或-1
9. 大于-2.2的最小整数是( )
A.-2 B.-3 C.-1 D.0
10. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在 ( )
A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
二、认真填一填(本题共30分)
11.若上升15米记作+15米,则-8米表示 。
12.举出一个既是负数又是整数的数 。
13.计算: __________。
14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。
15.绝对值大于1而不大于3的整数是 。
16.最小的正整数是_____;最大的负整数是_____。
17.比较下面两个数的大小(用“<”,“>”,“= ”)
(1) 1 -2; (2) -0.3;
18.如果点A表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度 ,则终点表示的数是 。
19.相反数等于本身的数是______,绝对值等于本身的数是_______________。
20.观察下面一列数,根据规律写出横线上的数,
- ; ;- ; ; ; ;……;第个数是 。
三、全面答一答(本题有5个小题,共40分)
21、(8分)把下列各数的序号填在相应的数集内:
①1 ②- ③+3.2 ④0 ⑤ ⑥-6.5 ⑦+108 ⑧-4 ⑨-6错误!嵌入对象无效。.
(1)正整数集合{ …}
(2)正分数集合{ …}
(3)负分数集合{ …}
(4)负数集合{ …}
22、(8分)求0,C2.5, 的相反数 并把这些数及其相反数表示在数轴上;并按从大到小的顺序排列。
23计算:(6分)
(1) (2)
24、(8分)云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向。他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?
25、(10分)为参加奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
① ② ③ ④ ⑤ ⑥
+3 -2 +4 -6 +1 -3
(1) 有几个篮球符合质量要求?
(2) 其中质量最接近标准的是几号球?
第一学期七年级数学第一单元检测
篇4:七年级数学上册第一单元测试题
七年级数学上册第一单元学完了就一起来做一下测试吧。下面是七年级数学上册第一单元的测试题,一起来挑战一下吧。
一、选择题:每题5分,共25分
1. 下列各组量中,互为相反意义的量是( )
A、收入200元与赢利200元 B、上升10米与下降7米
C、“黑色”与“白色” D、“你比我高3cm”与“我比你重3kg”
2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( )
A 元 B 元 C 元 D 元
3. 下列计算中,错误的是( )。
A、B、C、D、
4. 对于近似数0.1830,下列说法正确的是( )
A、有两个有效数字,精确到千位 B、有三个有效数字,精确到千分位
C、有四个有效数字,精确到万分位 D、有五个有效数字,精确到万分
5.下列说法中正确的是 ( )
A. 一定是负数 B 一定是负数 C 一定不是负数 D 一定是负数
二、填空题:(每题5分,共25分)
6. 若0
7.若 那么2a
8. 如图,点 在数轴上对应的实数分别为 ,则 间的距离是 .(用含 的式子表示)
9. 如果 且x2=4,y2 =9,那么x+y=
10、正整数按下图的规律排列.请写出第6行,第5列的数字 .
三、解答题:每题6分,共24分
11.① (-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223
③(23 -14 -38 +524 )×48 ④-18÷ (-3)2+5×(-12 )3-(-15) ÷5
四、解答题:
12. (本小题6分) 把下列各数分别填入相应的集合里.
(1)正数集合:{ …};
(2)负数集合:{ …};
(3)整数集合:{ …};
(4)分数集合:{ …}
13. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?
14. (本小题6分) 已知在纸面上有一数轴(如图),折叠纸面.
(1)若1表示的点与-1表示的.点重合,则- 2表示的点与数 表示的点重合;
(2)若-1表示的点与3表示的点重合,则
5表示的点与数 表示的点重合;
15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
篇5:七年级数学上册第一单元测试题
1.B 2.C 3.D 4.C 5.C
6. 7.≤ 8.n-m 9.±1 10.32
11①-5 ②6 ③12 ④
12① ②
③ ④
13.10千米
14. ①2 ②-3
15.①最高分:92分;最低分70分.
②低于80分的学生有5人。所占百分比50%.
③10名同学的平均成绩是80分.
篇6:七年级下学期数学第一单元测试题
的比值是( ).
3.在比例里两个( )的积等于两个( )的积.
4.( )的比,叫做这幅图的比例尺.
5.单价必定,数量和总价( ).
6.和必定,加数和另一个加数( ).
7.三角形面积必定,它的底与它的高( ).
8.甲、乙两数的比是4∶3.乙数是60,甲数是( ).
9.图上距离是10厘米表示实际距离20千米,这幅图的比例尺是( ).
10.盐水是由盐和水按1∶100的质量比合成的,其中盐的质量占,水的`质量占
二、判断下面各题中的两种量成什么比例或不成比例.
1.实际距离必定,图上距离和比例尺.( )
2.圆的面积和它的半径( )
3.一个因数必定,积和另一个因数.( )
4.一条绳子长度必定,剪去的部分和剩下的部分.( )
5.长方形的周长必定,它的长和宽.( )
三、根据下面条件,分别写出一个正比例联系和一个反比例联系.
1.长方体体积、底面积、高
正比例联系 反比例联系
2.被除数、除数、商
正比例联系 反比例联系
四、解比例.
1.
2.
3.
4.
五、应用题(比例解答).
1.一辆汽车2小时行驶140千米,照这样速度,从甲地到乙地长490千米,需要行驶多少小时?
2.一个修路队,原来计划每天修400米,15天可以完成任务.结果12天完成任务,实际每天修多少米?
参考答案
一、填空.
1.0.75
2.6
3.内项外项
4.图上距离和实际距离
5.正比例
6.不成比例
7.反比例
8.80
9.1∶00
10.
二、判断下面各题中的两种量成什么比例或不成比例
1.正比例 2.不成比例
3.正比例 4.不成比例 5.不成比例
四、根据下面条件,分别写出一个正比例联系和一个反比例联系
1.长方体体积、底面积、高
正比例联系:
反比例联系:底面积×高=长方体体积(必定)
2.被除数、除数、商
正比例联系:
反比例联系:除数×商=被除数(必定)
五、解比例
1.0.42.
3.24.8
六、应用题
1.解:设需要
小时.
140
=490×2
=7
答:需要行驶7小时.
2.解:设实际每天修
米.
12
=400×15
=400×15÷12
=500
答:实际每天修路500米.
篇7:七年级数学测试题
七年级数学测试题
【扩展阅读】
七年级- 有理数
1 正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
2 有理数
1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;
(3)有理数:整数和分数统称有理数。
2、数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;
(2)数轴三要素:原点、正方向、单位长度;
(3)原点:在直线上任取一个点表示数0,这个点叫做原点;
(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 有理数的加减法
①有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的'符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0;
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;
两数相除,同号得正,异号得负,并把绝对值相除;
0除以任何一个不等于0的数,都得0。
5 有理数的乘方
1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。
篇8:七年级数学上册第一单元测试题及答案
一、仔细选一选(30分)
1. 0是( )
A.正有理数 B.负有理数 C.整数 D.负整数
2. 中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于( )
A.计数 B.测量 C.标号或排序 D.以上都不是
3. 下列说法不正确的是( )
A.0既不是正数,也不是负数 B.0的绝对值是0
C.一个有理数不是整数就是分数 D.1是绝对值最小的数
4. 在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有( )个
A.2 B.3 C.4 D.5
5. 一个数的相反数是3,那么这个数是( )
A.3 B.-3 C. D.
6. 下列式子正确的是( )
A.2>0>-4>-1 B.-4>-1>2>0 C.-4<-1<0<2 D.0<2>-1<-4
7. 一个数的相反数是最大的负整数,则这个数是( )
A.1 B.±1 C.0 D.-1
8. 把数轴上表示数2的点移动3个单位后,表示的数为( )
A.5 B.1 C.5或1 D.5或-1
9. 大于-2.2的最小整数是( )
A.-2 B.-3 C.-1 D.0
10. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在 ( )
A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
二、认真填一填(本题共30分)
11.若上升15米记作+15米,则-8米表示 。
12.举出一个既是负数又是整数的数 。
13.计算: __________。
14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。
15.绝对值大于1而不大于3的整数是 。
16.最小的.正整数是_____;最大的负整数是_____。
17.比较下面两个数的大小(用“<”,“>”,“= ”)
(1) 1 -2; (2) -0.3;
18.如果点A表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度 ,则终点表示的数是 。
19.相反数等于本身的数是______,绝对值等于本身的数是_______________。
20.观察下面一列数,根据规律写出横线上的数,
- ; ;- ; ; ; ;……;第2013个数是 。
三、全面答一答(本题有5个小题,共40分)
21、(8分)把下列各数的序号填在相应的数集内:
①1 ②- ③+3.2 ④0 ⑤ ⑥-6.5 ⑦+108 ⑧-4 ⑨-6错误!嵌入对象无效。.
(1)正整数集合{ …}
(2)正分数集合{ …}
(3)负分数集合{ …}
(4)负数集合{ …}
22、(8分)求0,–2.5, 的相反数 并把这些数及其相反数表示在数轴上;并按从大到小的顺序排列。
23计算:(6分)
(1) (2)
24、(8分)云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向。他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?
25、(10分)为参加2012年奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
① ② ③ ④ ⑤ ⑥
+3 -2 +4 -6 +1 -3
(1) 有几个篮球符合质量要求?
(2) 其中质量最接近标准的是几号球?
参考答案
一、仔细选一选:
1 C 2 B 3 D 4 A 5 B
6 C 7 A 8 D 9 A 10 B
二、仔细填一填:
11.下降8米
12.答案不唯一;
13. 10;
14. ,0.8;
15.±2,±3
16. 1 ﹣1
17. < <
18. ﹣1
19.0,零或正数,(非负数)
20.
三、全面答一答
21.(1)(①,⑦)
(2)(③,⑤)
(3)(②,⑥,⑨)
(4)(②,⑥,⑧,⑨)
22.解:0的相反数是0;﹣2.5的相反数是2.5; 的相反数是﹣ ;(3分)
画数轴略(2分)
从大到小排列: ,2.5, 0,﹣2.5,﹣ (3分)
23.(1)20,(2)3
24.①+15-25+20-40=-30(千米)答:在A地西30千米处
②15+25+20+40=100(千米)
因为这种汽车行驶100千米消耗的油量为8.9升,所以本次耗油为8.9升。
25.(1)①②③⑤⑥
(2)⑤
文档为doc格式