下面就是小编给大家带来的七年级上册数学有理数课件,本文共13篇,希望大家喜欢,可以帮助到有需要的朋友!

篇1:七年级上册数学有理数课件
七年级上册数学有理数课件
七年级上册数学有理数课件
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力。
有理数减法法则。
有理数的减法转化为加法时符号的改变。
电脑、投影仪
一、从学生原有认知结构提出问题
1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.
二、师生共同研究有理 数减法法则
问题1 (1)4-(-3)=______ ;(2)4+(+3)=______.
教师引导学生发现:两式的.结果相同,即4-(-3)= 4+(+3).
思考:减法可以转化成加法运算.但是,这是否具有一般性?
问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).
归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.
强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.
三、运用举例 变式练习
例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)
例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?
例3 P63例3
例4 15℃比5℃高多少? 15℃比-5℃高多少?
练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题.
补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;
(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.
2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;
(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.
3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);
4.当a=11,b=-5,c=-3时,求下列代数式的值:
(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.
四、反思小结
1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。习题2.6知识技能1、3、4题。
本节课内容较为简单,学生掌握良好,课上反应热烈。
篇2:七年级上册数学有理数课件
人教版七年级上册数学有理数课件
一、从学生原有认知结构提出问题
1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.
二、师生共同研究有理 数减法法则
问题1 (1)4-(-3)=______ ;(2)4+(+3)=______.
教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).
思考:减法可以转化成加法运算.但是,这是否具有一般性?
问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).
归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.
强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.
三、运用举例 变式练习
例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)
例2 世界上最高的'山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?
例3 P63例3
例4 15℃比5℃高多少? 15℃比-5℃高多少?
练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题.
补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;
(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.
2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;
(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.
3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);
4.当a=11,b=-5,c=-3时,求下列代数式的值:
(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.
四、反思小结
1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。
习题2.6知识技能1、3、4题。
本节课内容较为简单,学生掌握良好,课上反应热烈。
篇3:初一上册数学《 有理数》课件
初一上册数学《 有理数》课件
教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
教学过程:
一、知识导向:
本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:
1、回顾小学中有关数的范围及数的.分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。
如:0,1,2,3,…, ,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶 3千米和向西行驶2千米;
温度是零上10°C和零下5°C;
收入500元和支出237元;
水位升高1.2米和下降0.7米;
3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C
概括:我们把这一种新数,叫做负数, 如:-3,-45,…
过去学过的那些数(零除外)叫做正数,如:1,2.2…
零既不是正数,也不是负数
例:下面各数中,哪些数是正数,哪些数是负数,
1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:
P18 练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;
2、分别举出几个正数与负数(最少6个)。
3、P20习题2.1:1题。
篇4:《有理数》七年级数学上册教案
教学目标
【知识与能力目标】
掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。
【过程与方法目标】
体验分类是数学上的常用处理问题的方法。
【情感态度价值观目标】
要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精 神,撰写小论文进一步了解数的发展历史。
教学重难点
【教学重点】
正确理解有理数的概念。
【教学难点】
正确理解分类的标准和按照一定的标准进行分类。
课前准备
复习正负数,尝试将之前学过的数进行合理的分类。
教学过程
探索新知
之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如:
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,。··…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)
练一练
1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2、教科书第8页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
小结与作业
课堂小结
请同学们回顾本节课所学知识,回答下列问题:
1、有理数是怎样定义的?
2、有理数有几种分类方法?具体是怎样分类的?
3、有理数的学习过程中,应注意什么?
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
作业
教科书第14页习题1.2第1题
板书设计
篇5:数学七年级上册有理数知识点
数学七年级上册有理数知识点
1.大于0的数叫做正数。
2.在正数前面加上负号'-'的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7.由绝对值的定义可知:
(1) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
(2)正数大于0,0大于负数,正数大于负数。
(3)两个负数,绝对值大的反而小。
8.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
9.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
10.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
11.有理数减法法则
减去一个数,等于加上这个数的相反数。
12.有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
13.有理数中仍然有:乘积是1的两个数互为倒数。
14.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
15.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
16.有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
17.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an 中,a叫做底数,n叫做指数
18.根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
19.做有理数混合运算时,应注意以下运算顺序:
先乘方,再乘除,最后加减;
同级运算,从左到右进行;
如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
20.把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
21.接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。
22.从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。
初中数学知识点
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
初中生如何能轻松学好数学
学好初中数学认真听课很重要
初中学生想要学好数学,在课上一定要认真听老师讲课。老师在课堂上讲的是非常重要的知识点,但是在初中数学课上选择做笔记并不是一个正确的做法。
在初中数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。大部分的初中数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。
初中生学习数学要会独立思考
初一初二是数学开窍的阶段,在解题上初中生一定要学会自己独立去思考。你需要做的就是不断的做题来培养自己的这一能力。而在积累到一定的数量之后,你的这种独立解题的能力是别人无法超越的。这个培养过程很简单也很短,只要你得到一点的成就感对于初中数学你就会充满自信。
其实,学好初中数学关键在于自己的真实能力,而不是形式。很多的初中生数学笔记一大堆,最后考试的成绩也就是那样。在学习上初中数学也好,其他科目也罢,不要讲究形式感,关键是要把一个个的问题和知识学透。不反对记笔记,但是不要一味的做笔记,听初中数学课是需要过脑子的。
篇6:《有理数》七年级数学上册教案
一、知识与能力
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备
用电脑制作动画体现有理数的分类过程。
教学过程
四、课堂引入
1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?
2.举例说明现实中具有相反意义的量。
3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。
篇7:七年级数学有理数的除法课件
七年级数学有理数的除法课件
一、目的要求
1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。
二、内容分析
有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。
本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的'变化。
三、教学过程
复习提问:
1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。
答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。
2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?
答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。
3.小学学过的除法和乘法的关系是什么?
答:除以一个数等于乘上这个数的倒数。
4.5÷0=?0÷0=?
答:0不能作除数,这两个除式没有意义。
新课讲解:
与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。
引例:计算:8×(-)和8÷(-4)
8×(-)=-2,
8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,
∵(-4)×(-2)=8,
∴8÷(-4)=-2。
从而,8÷(-4)=8×(-),
同样,有(-8)÷4=(-8)×,
(-8)÷(-4)=(-8)×(-),
这说明,有理数除法可以利用乘法来进行。
又(-4)×=-1,4×=1,
由4和互为倒数,说明(-4)和(-)也互为倒数。
从而对于有理数仍然有:乘积为1的两个数互为倒数。
提问:-2,-,-1的倒数各是什么?为什么?
注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。
由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。
注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。
例1计算。(见教科书第103页例1)
解答过程见教科书第103页例1。
阅读教科书第102页至第103页。
课堂练习:教科书第104页练习第l,2,3题。
提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?
(答:略)
2.两数相除,商的符号如何确定?为什么?商的绝对值呢?
答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。
从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。
在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。
例2见教科书第104页例2。
解答过程见教科书第104页例2。
注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。
例3见教科书第105页例3。
分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。
对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。
解答过程见教科书第105页例3。
讲解教科书例3后的两个注意点。
课堂练习:见教科书第105页练习。
第1题可直接约分,也可化为除法。
第2题可先化成乘法,并利用乘法的运算律简化运算。
课堂小结:
阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。
提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?
(2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)
四、课外作业
习题2.9A组第1,2,3,4,5题的双数小题,第6题。
选作题:习题2.9B组第1,2,3题双数小题。
篇8:七年级数学有理数的加减法课件
七年级数学有理数的加减法课件
一、学生起点分析
学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析
对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:
1.经历探索有理数加法法则的过程,理解有理数的加法法则;
2.能熟练进行整数加法运算;
3.培养学生的数学交流和归纳猜想的能力;
4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
三、教学过程设计
本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。
(一)复习引入,提出问题
活动内容:
1.复习提问:
(1)下列各组数中,哪一个较大?
(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。
活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。
2.提出问题:
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.
如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.
(1)计算(-2)+(-3).
在方框中放进2个 和3个 :
因此,(-2)+(-3)= -5.
用类似的方法计算(2)(-3)+ 2
(3) 3 +(-2)
(4) 4+(-4)
思考: 两个有理数相加,还有哪些不同的情形?举例说明。
引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。
活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。
活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.
(二)活动探究,猜想结论:
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。
对“一起探究”,教师可引导学生按以下步骤思考:
1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。
2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?
3、从中归纳概括出规律
在学生探究的基础上,教师引出规定的加法法则。
在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。
同号两数相加,取相同的'符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。
活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。
(三)验证明确结论:
例1 计算下列算式的结果,并说明理由:
(1) 180 +(-10) (2) (-10)+(-1);
(3)5+(-5); (4) 0+(-2)
活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.
活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。
(四)运用巩固:
活动内容:
1. 口答下列算式的结果
(1) (+4)+(+3); (2) (-4)+(-3);
(3)(+4)+(-3); (4) (+3)+(-4);
(5)(+4)+(-4); (6) (-3)+0
(7) 0+(+2); (8) 0+0.
活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。
2.请同学们完成书上的随堂练习:
(1)(-25)+(-7); (2)(-13)+5;
(3)(-23)+0; (4)45+(-45)
全班学生书面练习,四位学生板演,教师对学生板演进行讲评.
活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。
活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:
活动内容:师生共同总结。
1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值
2. 有理数加法法则及其应用。
3. 注意异号的情况。
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。
活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。
篇9:七年级上册数学有理数的知识点
七年级上册数学有理数的知识点
1.1正数和负数
①把0以外的数分为正数和负数。0是正数与负数的分界。
②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
1.2有理数
1.2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
1.2.2数轴
①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数
①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数 负数的相反数是正数
1.2.4绝对值
①绝对值 |a|
②性质:正数的绝对值是它的本身
负数的绝对值的它的相反数
0的绝对值的0
1.2.5数的大小比较
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
1.3.2有理数的减法
①减去一个数,等于加这个数的相反数。a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
1.4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
1.5有理数的乘方
1.5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
1.5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
女生学数学的方法有哪些
1注重打好数学基础
对于学生来说,想要学好数学,那么一定从小打好基础,因为数学是一个非常注重基础,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打基础,把自己欠缺的基础都补上,才能更好的进行后续的学习。
2整理笔记
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )
3改进方法,注重学法
在数学学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题;上课记笔记,复习时喜欢看课本和笔记,比较注重条理化和规范化,因此,教师可以指导女生“开门造车”,主动在小组讨论中发言,让她们暴露学习中的问题,以便于有针对地指导,强化双基训练。对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,组织她们学习其他同学成功的经验,参加和高年级同学的帮扶结对活动,改进学习方法,逐步提高能力。另外,平时家长应该给女生多创设一些活动空间,而不仅仅是埋头书本,让她们多一点生活的积累,这对她们解决与生活有关的应用题、提高学习的趣味性有很大的帮助。
4多看辅导书
老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍;
做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。
我经常买和课程有关的辅导书籍看,每一门课程我都有好几本相关的辅导书籍。
数学方程与方程组知识点
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
篇10:有理数减法数学七年级上册教案
有理数减法人教版数学七年级上册教案
教学目标
1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)
2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.
教学过程
一、情境导入
北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是20xx年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?
《1.3.2有理数的减法》同步练习含答案
1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是
A.-6-7+2-9B.-6-7-2+9
C.-6+7-2-9D.-6+7-2+9
2.式子-20+3-5+7的正确读法是()
A.负20加3减5加7的和
B.负20加3减负5加正7
C.负20加3减5加7D.负20加正3减负5加正7
3.下列交换加数位置的.变形中,正确的是()
A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3
C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-1
4.某地冬季一天中午的气温是5℃,下午上升到7℃,受冷空气影响,到夜间气温最低时又下降了9℃,则这天夜间的最低气温是________℃.
1.3.2有理数的减法》同步练习题(含答案)
一、选择题
1.下列等式计算正确的是( )
A.(-2)+3=-1B.3-(-2)=1
C.(-3)+(-2)=6D.(-3)+(-2)=-5
答案D(-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;
(-3)+(-2)=-5,故选项C错误,选项D正确,故选D.
2.-3,-14,7的和比它们的绝对值的和小( )
A.-34B.-10C.10D.34
答案D可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.
篇11:七年级上册数学有理数检测题
七年级上册数学有理数检测题
第一章 有理数(培优提高卷)
题 型 选择题 填空题 解答题 总 分
得 分
一、选择题。(本题有10个小题,每小题3分,共30分)
1.在实数0,- , , 中,最小的数是 ( )
A. B.0 C. D.
2.如图所示,有理数a、b在数轴上的位置如下图,则下列说法错误的是( )
A、B、C、D、
3.观察下面一组数:-1,2-5,6,-7,….,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是( ) 21*5y*3
A、-90 B、90 C、-91 D、91
4.已知有理数a,b所对应的点在数轴上如图所示,则有( )
A.-a<0
5.计算机中常用的十六进制是逢16进l的计数制,采用数字0~9和字母A~F共 16个计数符号,这些符号与十进制的数的对应关系如下表 :【0:21•2•1•网】
例如,用十六进制表示C+F=1B.19-F=A,18÷4=6,则A×B= ( )
A.72. B.6E . C..5F . D.B0.
6.若 ,则下列各式一定成立的是( )
A. B. C. D.
7.下列算式中,积为负数的是( )
A. B.
C. D.
8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )
A.0.432×10-5 B.4.32×10-6 C.4.32×10-7 D.43.2×10-7
9.下列各组的两个数中,运算后的结果相等的是( )
A.23和32 B. 和 C. 和 D. 和
10.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.
若用餐的人数有90人,则这样的餐桌需要( )张?
A.15 B.16 C.21 D.22
二、填空题。(本题有6个小题,每小题4分,共24分)
11.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则 的值是__________。
12.北京的水资源非常匮乏,为促进市民节水,从5月1日起北京市居民用水实行阶梯水价,实施细则如下表:
某户居民从 年 月 日至 月 日,累积用水 立方米,则这户居民 个月共需缴纳水费__________元.
13.定义新运算“⊕”,a⊕b= a-4b,则12⊕(-1)=__________。
14.如图所示是计算机程序计算,若开始输入 ,则最后输出的结果是_________ _。
15.如果互为 相反数, 互为倒数,则 的值是__________。
16.据报道:截至4月17日我收获4个项目的投产,总投资约为230000元.请将“2 320 000 000”这个数据用科学记数法表示:_________ _。
三、解答题。(本题有7个小题,共66分)
17.计算:
(1)
18.阅读解题: , , , …
计算: …
= …
=1
=
理解以上方法的真正含义,计算:
(1)
19.如图,已知数轴上点A表示是数轴上一点,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t﹥0)秒.
(1)写出数轴上点B表示的数__________;当t=3时,OP=__________。
(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?21•cn•8•3
(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?【9:211名师】
20.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):215y.3
星期 一 二 三 四 五
每股涨跌 +220 +142 -080 -252 +130
(1)星期三收盘时,该股票涨或跌了多少元?
(2)本周内该股票的最高价是每股多少元?最底价是每股多少元?
(3)已知小杨了15‰的手续费,卖出时还需要付成交额的15‰的手续费和1‰的交易税如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何?
21.请观察下列算式,找出规律并填空
=1- , = - , = - , = - 则:
(1)第10个算式是_______ ___=________ __。
(2)第n个算式为________ __=_______ ___。
(3)根据以上规律解答下题: + + + … + 的值.
22.某工厂一周计划每日生0辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):2121网版权所有
星期 一 二 三 四 五 六 日
增减/辆 -1 +3 -2 +4 +7 -5 -10
(1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分)
(2)本周总的生产量是多少辆?(3分)
23.学习有理数得乘法后,老师给同学们这样 一道题目:计算:49 ×(-5),看谁算的又快又对,有两位同学的解法如下:21•2*1网
小明:原式=- ×5=- =-249 ;
小军:原式=(49+ )×(-5)=49×(-5)+ ×(-5)=-249 ;
(1)对于以上两种解法,你认为谁的解法较好?
(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;
(3)用你认为最合适的方法计算:19 ×(-8)
参考答案与详解
1.C
【解析】正数大于一切负数,0大于一切负数,两个负数比较大小,绝对值大的数反而小.
2.D.
【解析】由数轴上点的位置关系,得a>0>b,|a|<|b|.
A、b
C、ab<0,故C不符合题意;D、b-a<,故D符合题意,故选D.
3.B.
【解析】 奇数为负,行的最后一个数的绝对值是这个行的行数n的平方,所以第9行最后一个数字的绝对值是81,第10行从左边第9个数是81+9=90.
由题意可得:9×9=81,81+9=90,故第10行从左边第9个数是90.故选B.
4.B.
【解析】∵b的相反数是﹣b, ,∴-b
5.B.
【解析 】首先计算出A×B的值,再根据十六进制的含义表示出结果.
∵A×B=10×11=110,110÷16=6余14,∴用十六进制表示110为6E.故选B.
6.B
【解析】根据不等式的性质可得a-b<0.
7.D
【解析】根据有理数的乘法运算的运算规律可知:0乘以任何数都得0,负数的个数为偶数个时得正,为奇数个时为负,因此可判断为D.故选D211网
8.B.
【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 ,这里1
9.B.
【解析】分别计算出各组数值,然后再比较大小即可.
A、23=8,32=9∵8<9∴23<32
B、-33=-27,(-3)3=-27∴-33=(-3)3
C、-22=-4,(-2)2=4∵-4<4∴-22<(-2)2
D、, ∵ >∴ >.故选B.
10.D.
【解析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步求出问题即可.4-2-1-5y-3
1张长方形餐桌的四周可坐4+2=6人,
2张长方形餐桌的四周可坐4×2+2=10人,
3张长方形餐桌的四周可坐4×3+2=14人,
…
n张长方形餐桌的四周可坐4n+2人;
设这样的餐桌需要x张,由题意得4x+2=90解得x=22答:这样的餐桌需要22张.故选D.
11.3.
【解析】首先根据考查了、绝对值的意义,得到:a+b=0,cd=1,|m|=2,再整体代入求解即可.∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,|m|=2,∴m2=4,
若m=2,则 ;
若m=-2,则 ,∴ .
12.970
【解析】本题需要将190立方米分成两部分来进行计算,第一部分180,单价为5元;第二部分10立方米,单价为7元.【版权所有:211】
13.8.
【解析】根据所给式子,代入求值即可.12⊕(-1)= ×12-4×(-1)=4+4=8.
14.-1 1.
【解析】 首先要理解该计算机程计算顺序,观察可以看出当输入-(-1)时可能会有两种结果,一种是当结果>-5,此时就需要将结果返回重新计算,直到结果<-5才能输出结果;另一种是结果<-5,此时可以直接输出结果.将x=-1代入代数式4x-(-1)得,结果为- 3,∵-3>-5,∴要将-3代入代数式4x-(-1)继续计算,此时得出结果为-11,结果<-5,所以可以直接输出结果-11.211名师原创作品
15.-
【解析】根据互个数的和可得a+b=0,互 为倒数的两个数的积等于1可得xy =1,(a+b)-2015xy=0-2015×1=-2015.
16. .
【解析】科学形式为a×10n的形式,其中1≤|a|<10,n为整数.2320000000用科学记数法表示时,其中a=2.32,n为所有的整数数位减1,即n=9.
17.(1)-1 (2)-9 (3)1 (4)25
【解析】此题主要考查了有理,根据运算法则,运算顺序,运算律可以求解结果.(1)原式=1-2+5-5 =-1 2•1•6•7
(2)原式=-8+1-2×1 =-7-2=-9
(3)原式=81× × × =1
(4)原式=26-( - + )×36=26-(28-33+6)=25
18.(1) ;(2) .
【解析】 ①根据阅读材料中的解题思路,得到规律 (n≥1的整数),依据此规律对所求式子进行变形,去括号后合并即可得到值;
②根据阅读材料中的思路,进一步推出规律 (n≥1的整数),依据此规律对所求式子进行变形,即可得到值.
①根据题意得:
=
②根据题意得:
= [(1- )+( - )+…+ - ]
= (1- )=
19.(1)-4,18;(2)2;(3)1或3.
【解析】(1)由OB=AB-OA=10-6=4,得到数轴上点B表示的数,OP=3×6=18;
(2)设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,由BC-OC=OB,得到8x-6x=4,解方程即可得到答案;
(3)设点R运动x秒时,P种情况:一种情况是点R在点P的左侧;另一种情况是点R在点P的右侧,分别列方程,然后解一元一次方程即可.21*5y*3
解:(1)OB=AB-OA=10-6=4,所以数轴上点B表示的数是-4,OP=3×6=18;
(2)设点R运动x秒时上点P,则OC=6x,BC=8x,∵BC-OC=OB,∴8x-6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P;
(3)设点R运动x秒时,PR情况:一种情况是当点R在点P的左侧时,8x=4+6x-2即x=1;另一种情况是当点R在点P的右侧时,8 x=4+6x+2即x=3.
20.(1)星期三收盘时,该股票涨了282元
(2)本周内该股票的最高价是每股3062元;最低价是每股2730元
(3)小杨在星期五收盘前将全部股票卖出,则他将赚1488元
【解析】(1)(2)直接根据表格的关系即可,(3)根据:收益=卖股票收入-买股票支出-卖股票手续费和交易税-买股票手续费 计算即可
解:(1)22+142-08=282元
答:星期三收盘时,该股票涨了282元
(2)2 7+22+142=3062元
27+22+142-08-252=2730元
答:本周内该股票的最高价是每股3062元;最低价是每股2730元
(3)27+22+142-08-252+13=286元,
286×1000×(1-15‰-1‰)-27×1000×(1+15‰)=285285-270405=1488元
答:小杨在星期五收盘前将全部股票卖出,则他将赚1488元。
21.(1) ;(2) ;(3) .
【解析】(1)观察一系列等式确定出第10个等式即可;
(2)归纳总结得到一般性规律,写出即可;
(3)利用得出的拆项方法计算即可.
解:(1)第10个算式是 ;
(2)第n个算式为 ;
(3)原式= = = .
22.(1)生产量最多的一天比生产量最少的一天多生产17辆;
(2)本周总生产量是696辆,比原计划减少了4辆.
【解析】根据正数负数的含义直接可以得到算式,进而进行运算。
解:(1)7-(-10)=17(辆);(2)100×7+(-1+3-2+4+7-5-10)=696(辆),
答:(1)生产量最多的一天比生产量最少的一天多生产17辆;
(2)本周总生产量是696辆,比原计划减少了4辆.
23.(1)小军解法较好;(2)把49 写成(50- ),然后利用乘法分配律进行计算;(3)-159 .
【解析】 (1)根据计算判断小军的解法好;
(2)把49 写成(50- ),然后利用乘法分配律进行计算即可得解;
(3)把19 写成(20- ),然后利用乘法分配律进行计算即可得解.
解:(1)小军解法较好;(2)还有更好的解法,
49 ×(-5)=(50- )×(-5)=50×(-5)- ×(-5)=-250+ =-249 ;
(3)19 ×(-8)=(20- )×(-8)=20×(-8)- ×(-8)=-160+
=-159 .
篇12:七年级数学上册《有理数》教学反思
1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系。
2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力。另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性。在反思的基础上又让学生规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。
篇13:七年级数学上册《有理数》教学反思
课堂上设计了五个教学环节。
1、创设情境,激情引趣。
2、合作探究,发现新知。
3、巩固应用,体验成功。
4、开放训练,拓展思维。
5、小结反思,布置作业。
利用学生熟悉的动画片导入,创设情境,集中学生思维的兴奋点,激发学习动机。探讨有理数减法法则时,学生经历了利用旧知计算温差,对比观察,发现、总结、验证规律的过程。从而发展学生探究意识,合作意识。培养学生归纳概括能力和语言表达能力,使学生进一步熟悉有理数减法法则。趣味数学题的设计,培养多向性思维,发散性思维。学生参与设计热情十分高涨,较好的培养学生创新能力和实践能力。使他们感受到数学知识来源于实际,利用数学知识又服务于生活。反思小结,浓缩知识要点,达到三维教学目标的融合。
通过本节课,使我深深感悟到实施新课标,必须充分体现以学生为主体。从学生活动来看,动脑、动手、动口,多种感官参与学习;从形式看,学生口答,笔答,抢答,板演,同桌交流,小组讨论,好朋友间探究等形式多种多样,气氛活跃,积极性高。比较充分的体现课堂是学生的学习天地。
文档为doc格式