欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

七年级上册数学有理数思维导图

时间:2022-08-24 08:27:32 其他范文 收藏本文 下载本文

以下是小编为大家整理的七年级上册数学有理数思维导图,本文共5篇,欢迎阅读与收藏。

七年级上册数学有理数思维导图

篇1:七年级上册数学有理数思维导图

七年级上册数学有理数思维导图汇总

有理数的数学证明

定义

有理数边界

根据定义,无限循环小数和有限小数(整数可认为是小数点后是0的小数),统称为有理数,无限不循环小数是无理数。

但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。

竟然没有人知道有理数的边界,或者说有理数的边界是无限接近无理数的。

定理

定理:位数最多的非无限循环有理数是不可能被写出的,尽管它的定义是有有限位,但它是无限趋近于无理数的,以致于没有手段进行判断。

证明

证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比已写出有理数多一位,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。

七年级数学有理数练习题

1、(6分)把下列各数填在相应的集合内:

-23,0.25, ,-5.18,18,-38,10,+7,0,+12

正数集合:{ ………}

整数集合:{ ………}

分数集合:{ ………}

2、某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:

2 -1 0 3 -2 -3 1 0

(1)这8名男生的达标率是百分之几?

(2)这8名男生共做了多少个俯卧撑?

答案

1、

正数集合:{0.25,18,10,+7,+12 ………}

整数集合:{-23,18,-38,10,+7,0,+12………}

分数集合:{0.25, ,-5.18 ………}

2、

(1)50%,(2)56个

篇2:七年级数学有理数思维导图

1.同号相加,取相同符号,并把绝对值相加。

2.绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.相反数相加结果一定得0。

注意

一是确定结果的符号;二是求结果的绝对值. 在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了. 多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算.

减法

法则

有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数做加数。一不变:被减数不变。可以表示成: a-b=a+(-b)。

乘法

法则

(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例:(-5)×(-3)=15 (-6)×4=-24 。

(2)任何数同0相乘,都得0。 例:0×1=0

(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有非零偶数个数时,积为正。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数

(4)几个数相乘,有一个因数为0时,积为0。例:3×(-2)×0=0 。

(5)乘积为1的两个有理数互为倒数(reciprocal)。(乘积为-1的互为负倒数)例如,—3与—1/3,—3/8与—8/3。

除法

法则

(1)除以一个数等于乘以这个数的倒数。(注意:0没有倒数)

(2)两数相除,同号为正,异号为负,并把绝对值相除。

(3)0除以任何一个不等于0的数,都等于0。

注意:

0在任何条件下都不能做除数。

篇3:初中数学有理数思维导图

整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零3种数。由于任何一个整数或分数都可以化为十进循环小数,反之,每一个十进循环小数也能化为整数或分数,因此,有理数也可以定义为十进循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数的大小顺序的规定:如果a-b是正有理数,就称a大于b或b小于a,记作a>b或b

篇4:初中数学有理数的思维导图

加法运算

同号两数相加,取与加数相同的符号,并把绝对值相加。

异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数相加得0。

一个数同0相加仍得这个数。

互为相反数的两个数,可以先相加。

符号相同的数可以先相加。

分母相同的数可以先相加。

几个数相加能得整数的可以先相加。

减法运算

减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

乘法运算

同号得正,异号得负,并把绝对值相乘。

任何数与零相乘,都得零。

几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

几个数相乘,有一个因数为零,积就为零。

几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。

除法运算

除以一个不等于零的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。

注意:

零不能做除数和分母。

有理数的除法与乘法是互逆运算。

在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。

乘方运算

负数的奇数次幂是负数,负数的偶数次幂是正数。例如:(-2)³(-2的3次方)=-8,(-2)²(-2的2次方)=4。

正数的任何次幂都是正数,零的任何正数次幂都是零。例如:2(2的2次方)=4,2 (2的3次方)=8,0(0的3次方)=0。

零的零次幂无意义。

由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成。

1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1。

篇5:初中数学有理数的思维导图

有理数为整数和分数以及0的统称 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

有理数的大小顺序的规定:如果 是正有理数,当 大于或小于 ,记作 或 。任何两个不相等的有理数都可以比较大小。

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

数学教学计划思维导图

八年级上册物理思维导图

读书笔记思维导图

思维导图:《经济法》

《思维导图》读书笔记

七年级上册数学有理数课件

七年级上册数学有理数练习题

七年级上的历史思维导图

七年级历史第一单元思维导图

初二上的数学思维导图

《七年级上册数学有理数思维导图(推荐5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档