欢迎来到千学网!
您现在的位置:首页 > 经典语录 > 励志名言

励志的公式

时间:2022-06-14 08:18:33 励志名言 收藏本文 下载本文

以下是小编为大家准备的励志的公式,本文共16篇,欢迎大家前来参阅。

励志的公式

篇1:关于数学励志公式

微博上流传着这样一个公式:1.01365≈37.8,0.99365≈0.03。公式表明:如果一个人每天进步1%,与每天退步1%相比,一年的时间足以让这个人大变样。这个公式叫做数字励志公式。

有的网友贴出更夸张的公式:1.02365≈1377.4,0.98365≈0.0006。公示表明:如果每天以2%的速度进步,一年下来能进步接近1400倍;每天退步2%,1年后就堕落到微乎其微。

也有网友对此公式提出了质疑。@红烧牛肉:毅力、勤奋……都是成功的前提,但这个公式算法不对,应该是1.01×365=368.65。相比0.99×365=361.35,进步一点儿和退步一点儿的差距在数字上只有7.3。

记者将此公式发到微信朋友圈,引发了一些网友的热议。

@月光倾城:励志公式总是让人产生共鸣。生活不易,有丝毫懈怠就会跟不上时代的节奏,所以每天踏实努力地工作吧。

@笑笑脸:每天进步1%,看似很不起眼,但365天持之以恒就会特别不易。无论怎样的成功,都需要不懈的坚守。

@天空很蓝:积跬步以致千里,积怠惰以致深渊。每天比你多努力一点儿的人,其实真的已经拉开你很远的距离。

网友还向记者提供了另外一个有趣的公式:1.013×0.9921.01。他称这个公式为“三天打鱼两天晒网公式”。通过这个公式可以看出:三天打鱼,两天晒网,不如老老实实地工作一天。

[关于数学励志公式]

篇2:励志的公式

关于励志的公式

流传着这样一道励志公式(1+1%)365=37。7834。

在学生看来,这道公式有着独特的含义:现有的学习水平为“1”,如果每天在这个基础上多努力1%,获得的.就是“1+1%”。一年365天,如果每天坚持这么做,也就是“1+1%”的365次方,一年下来的收获就会从原来的1增长到37。7834。

从量上来说,1%是个微不足道的数字,每天多做1%,对谁来说都不是难事。但若是坚持下去,每天如此,那么一年之后,这个毫不起眼的1%将会使一个人的成绩从1增长到惊人的37。7834。

当然,在励志公式的反面,同样也有一条“消志公式”:(1-1%)365=0。0255。也就是说,如果每天懈怠一点点、少做一点点,那么一年下来,成绩就会从原来的1缩水到可怜的0。0255。

从表面上看,1+1%与1-1%的差距并不大,不过是2%而已。但是,随着天长日久的积累,这两个数字带来的结果却有天壤之别。算算看,37。 7834÷0。0255=1481。70。这就意味着,每天多做一点所取得的成就,将是少做一点的上千倍。如此巨大的差距,令人震惊,更加令人深思。

篇3:职场成功人士励志公式

职场成功人士励志公式

励志公式

在我看来,这道公式有着独特的含义:现有的学习水平为“1”,如果每天在这个基础上多努力1%,获得的.就是“1+1%”。

一年365天,如果每天坚持这么做,也就是“1+1%”的365次方,一年下来的收获就会从原来的1增长到37.7834。这也就是你的进步和努力。

或许从量上来说,1%是个微不足道的数字,每天多做1%,对谁来说都不是难事,

但若是坚持下去,每天如此,那么一年之后,这个毫不起眼的1%将会使一个人的成绩从1增长到惊人的37.7834。

消志公式

当然,在励志公式的反面,同样也有一条“消志公式”:(1-1%)365=0.0255。

也就是说,如果每天懈怠一点点、少做一点点,那么一年下来,成绩就会从原来的1缩水到可怜的0.0255。

1+1%和1-1%

从表面上看,1+1%与1-1%的差距并不大,不过是2%而已。但是,随着天长日久的积累,这两个数字带来的结果却有天壤之别。

算算看,37.7834÷0.0255=1481.70。这就意味着,每天多做一点所取得的成就,将是少做一点的上千倍。

如此巨大的差距,令人震惊,更加令人深思。所以你必须努力,哪怕是百分之一,坚持下来就是王者。

篇4:公式

公式

公式gōng shì[释义]

①(名)基本义:用数学符号表示几个量之间的关系的式子;具有普遍性;适合于同类关系的所有问题。如二数的和是s;差是d;求二数的`公式为:大的数是1/2(s+d);小的数是1/2(s…d)。

②(名)泛指可以应用于同类事物的方式、方法。

[构成]  偏正式:公(式[例句]  这道题用这个~来解决。(作宾语)

篇5:公式

师:小学里学过哪些面积公式?

板书: S = ah

附图

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性.

【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

(出示投影3)

例2如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

2.本题实际上是由圆的面积公式推导出环形面积公式.

3.进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

测试反馈,巩固练习

(出示投影4)

1.计算底 ,高 的三角形面积

2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

3.已知圆的半径 , ,求圆的周长C和面积S

4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

(1)求A地到B地所用的时间公式。

(2)若 千米/时, 千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

八、随堂练习

(一)填空

1.圆的半径为R,它的面积 ________,周长 _____________

2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

(二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

九、布置作业

(一)必做题课本第22页1、2、3第23页B组1

(二)选做题课本第22页5B组2

十、板书设计

附:随堂练习答案

(一)1.   2.    3.

(二)

作业答案

必做题1.

2.  3.

.

选做题5.

探究活动

根据给出的数据推导公式。

推导从1到 这 个连续自然数的和 的公式,并求当 时, 的值。

答案

当 时,

篇6:公式

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

篇7:公式

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的'基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程 中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

篇8:励志成功的九个公式

励志成功的九个公式

成功=(热情+方法)×时间

主动出击,方法引路,利用一切可利用的时间。

成功=(时机+心态)×人脉

机会一旦来临,就要用心把握,并以人脉成就。

成功=(意愿+能力)×行动

有能力更要有意愿,没有行动依然等于零。

成功=(自律+奉献)×毅力

守规矩,不违反,不过分执着得失,选择了就坚持下去。

成功=(天资+机遇)×勤奋

天资和机遇固然重要,没有勤奋仍是一事无成。

成功=(工作+休息)×少说空话

踏实地工作,告别夸夸其谈,懂得张弛有度,劳逸结合。

成功=(目标+行动)×反思

要有明确的构想,用任何可行的方式达成目标,别忘了不断反思,修正调整。

成功=(知识+质疑)×谦逊

对年轻人来说,知识比财富更重要,放低姿态,你还有很多东西要学。

成功=(自立+自强)×感恩

没有人能陪你走完一生,学着独立,也学会感恩人生路上的所有机遇。

篇9:成功的九个公式的励志话语

有关成功的九个公式的励志话语

但凡成功之人,往往都要经历一段无助的`岁月。犹如黎明前的黑暗,捱过去,天就亮了。所谓千里马,不一定是跑得最快的,但一定是耐力最好的。可以抱怨,但必须忍耐;可以寂寞,但不能沉默。耐得住寂寞,才守得住繁华。

篇10:高中物理公式

振动和波

曲线运动、万有引力

冲量与动量

常见的力、力的合成与分解

功和能

气体的性质

分子动理论、能量守恒定律

电场

恒定电流

磁场

什么是通路短路断路

什么是电阻的并联

知识拓展

高中物理知识点总结

质点的运动------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)

4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs

4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

返回目录>>>

质点的运动----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

返回目录>>>

力(常见的力、力的合成与分解)

1)常见的力

1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

4动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

返回目录>>>

振动和波(机械振动与机械振动的传播)

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5.机械波、横波、纵波〔见第二册P2〕

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

返回目录>>>

冲量与动量(物体的受力与动量的变化)

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

返回目录>>>

功和能(功是能量转化的量度)

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;

(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

返回目录>>>

分子动理论、能量守恒定律

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

返回目录>>>

气体的性质

1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

返回目录>>>

电场

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

返回目录>>>

恒定电流

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成 (2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:

电压表示数:U=UR+UA

电流表外接法:

电流表示数:I=IR+IV

Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

选用电路条件Rx>>RA [或Rx>(RARV)1/2]

选用电路条件Rx<

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小

便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp

注:

(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

返回目录>>>

磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

13电磁感应1.[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H=103mH=106μH;

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

14交变电流(正弦式交变电流)1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损?=(P/U)2R;(P损?:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

返回目录>>>

什么是通路短路断路?

能构成电流的流通,能形成闭合回路的路(也就是电流能从电源正极流出,再从负极流进)称之为通路;其中有一部分电路断开,该条电路上没有了电流就叫断路;如果电流经过的支路中没用电阻(没有用电器)或者将电源两极直接用导线连接起来而形成的闭合回路,称之为短路。

知识拓展1.通路状态通路就是电路中的开关闭合,负载中有电流流过。在这种状态下,电源端电压与负载电流的关系可以用电源外特性确定,根据负载的大小,又分为满载、轻载、过载三种情况。

负载在额定功率下的工作状态叫额定工作状态或满载;低于额定功率的工作状态叫轻载;高于额定功率的工作状态叫过载。由于过载很容晚烧坏电器,所以一般情况都不允许出现过载。2.短路状态如果外电路被阻值近似为零的导体接通,这时电源就处于短路状态,在这种状态下,电路中的电流(短路电流)I≈E/R。我们知道,电源的内阻一般都是很小的,因而短路电流可能达到非常大的数值,这将电源有烧毁的危险,必须严格防止,避免发生。3.断路状态断路就是电源两端开电路某处断开,电路中没有电流通过,电源不向负载输送电能。对于电源来说,这种状态叫空载。断路状态的主要特点是:电路中的电流为零。电源端电压和电动势相等。

返回目录>>>

什么是电阻的并联?

将几个电阻的两端分别连在一起,以使各个电阻均承受同一个电压,这种连接方法叫电阻的并联,另外由单纯的并联电阻或用电器(用电器:如,电视机,空调,电脑等)构成的电路称为并联电路。

知识拓展

1、折叠并联电阻的计算公式

电流计算

I总=I1+L2+......+In

即总电流等于通过各个电阻的电流之和

电压计算

U总=U1=U2=……=Un

并联电路各支路两端的电压相等,且等于总电压

电阻值计算

1/R总=1/R1+1/R2+……+1/Rn

即总电阻的倒数等于各分电阻的倒数之和

对于n个相等的电阻串联和并联,公式就简化为R串=nxR和R并=R/n

2、性质

(1)串联电路的特点

欧姆定律:I=U/R

变形求电压:U=IR

变形求电阻:R=U/I

电压的关系:U=U1+U2

电流的关系:I=I1=I2

电阻的关系:R=R1+R2

(2)并联电路的特点

电压的关系:U=U1=U2

电流的关系:I=I1+I2

电阻的关系:1/R=1/R1+1/R2

电功的计算:W=UIt

电功率的定义式:P=W/t

常用公式:P=UI

焦耳定律:Q放=I2Rt

对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W

照明电路的总功率的计算:P=P1+P1+……

3、电阻的注意事项

电阻在使用前要进行检查,检查其性能好坏就是测量实际阻值与标称值是否相符,误差是否在允许范围之内。方法就是用万用表的电阻档进行测量。

测量时要注意两点:

1、要根据被测电阻值确定量程,使指针指示在刻度线的中间一段,这样便于观察。

2、确定电阻档量程后,要进行调零,方法是两表笔短路(直接相 碰),调节“调零”电器使指针准确的指在Ω刻度线的“0”上,然后再测电阻的阻值。另外,还要注意人手不要碰电阻两端或接触表笔的金属部分。否则会引起测试误差。

返回目录>>>

篇11:高中物理公式

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

篇12:高中物理公式

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除

重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;_(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

8高中物理公式大全:分子动理论、能量守恒定律

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

篇13:高中物理公式

1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:

1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

高中物理答题技巧汇总

题型 1牛顿运动定律的综合应用问题题型

概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高. 思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律. 对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。GMm/R2=mg②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.

题型 2机车的启动问题题型

概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式 P=Fv 和牛顿第二定律的公式F‐f=ma 来分析. 思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率 P=Fv 恒定,由公式 P=Fv 和F‐f=ma 知,随着速度 v 的增大,牵引力 F 必将减小,因此加速度 a 也必将减小,机车做加速度不断减小的加速运动,直到 F=f,a=0,这时速度 v 达到最大值 vm=P 额定/F=P 额定/f. 这种加速过程发动机做的功只能用 W=Pt 计算,不能用 W=Fs 计算(因为 F 为变力). (2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程 1”是匀加速过程,由于 a 恒定,所以 F 恒定,由公式 P=Fv 知,随着 v 的增大,P 也将不断增大,直到 P 达到额定功率 P 额定,功率不能再增大了;“过程 2”就保持额定功率运动. 过程 1 以“功率 P 达到最大,加速度开始变化”为结束标志.过程 2 以“速度最大”为结束标志.过程 1 发动机做的功只能用 W=F?s 计算,不能用 W=P?t 计算(因为 P 为变功率).

题型 3以能量为核心的综合应用问题题型

概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体. 思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律. (1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.

题型 4力学实验中速度的测量问题题型

概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度. 思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt.

题型 5电容器问题题型

概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面. 思维模板:(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关. (2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足 C=εS/(4πkd) (3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及 E=U/d]并分析清楚两种情况:一是电容器所带电荷量 Q 保持不变(充电后断开电源),二是两极板间的电压 U 保持不变(始终与电源相连).

题型 6带电粒子在电场中的运动问题题型

概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计 算题思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量. ②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择). (2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力①质子、α 粒子、电子、离子等微观粒子一般不计重力;②液滴、尘埃、小球等宏观带电粒子一般考虑重力;③特殊情况要视具体情况,根据题中的隐含条件判断. (3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破.

题型 7带电粒子在磁场中的运动问题题型

概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主. 思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法. (1)圆心的确定:因为洛伦兹力 f 指向圆心,根据 f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的 f 的方向,沿两个洛伦兹力 f 作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示). (2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB 与切线的夹角(弦切角 θ)的 2 倍(如图所示),即 φ=α=2θ. (3)运动时间的确定:t=φT/2π 或 t=s/v,其中 φ 为偏向角,T 为周期,s 为轨迹的弧长,v 为线速度

题型 8带电粒子在复合场中的运动问题题型

概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况. (1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动. (2)带电粒子在叠加场中的运动:在叠加场中所受合力为 0 时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动. (3)带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动. 思维模板:分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永远不做功),然后运用规律求解,主要有两条思路. (1)力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解. (2)功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题.

题型 9以电路为核心的综合应用问题题型

概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的 U‐I 图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等. 思维模板:(1)电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有 R分→R 总→I 总→U 端→I 分、U 分. (2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理. (3)导体的伏安特性曲线反映的是导体的电压 U 与电流 I 的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等. 电源的外特性曲线(由闭合电路欧姆定律得 U=E‐Ir,画出的路端电压 U 与干路电流 I 的关系图线)的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻.

题型 10以电磁感应为核心的综合应用问题题型

概述:此题型主要涉及四种综合问题(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力. (2)电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算. (3)图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量. (4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等. 思维模板:解决这四种问题的基本思路如下(1)动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解. (2)电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等. (3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义. (4)能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解.

题型 11电学实验中电阻的测量问题题型

概述:该题型是高考实验的重中之重,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等. 思维模板:测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等。

篇14:三角函数公式

万能公式

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

asin(a)+bcos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]

asin(a)-bcos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]

1+sin(a) = [sin(a/2)+cos(a/2)]^2;

1-sin(a) = [sin(a/2)-cos(a/2)]^2;;

其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

篇15:平方差公式

4.4.1   平方差公式    课时教案

湖北口中学    张衍生

教学内容:  P108—110 平方差公式    例1    例2    例3

教学目的: 1、使学生会推导平方差公式,并掌握公式特征。

2、使学生能正确而熟练地运用平方差公式进行计算。

教学重点:使学生会推导平方差公式,掌握公式特征,并能正确而熟

练地运用平方差公式进行计算。

教学难点:掌握平方差公式的特征,并能正确而熟练地运用它进行计

算。

教学过程:

一、复习引入

1、复述多项式与多项式的`乘法法则

2、计算   (演板)

(1)(a+b)(a-b)         (2)(m+n)(m-n)

(3)(x+y)(x-y)         (4)(2a+3b)(2a-3b)

3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)

二、新课

1、平方差公式

由上面的运算,再让学生探究

现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗?  引导学生把2m看成a,3n看成b写出结果.

(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

(a + b)(a - b)= a2  -  b2

向学生说明:我们把

(a+b)(a-b)=a2- b2             (重点强调公式特征)

篇16:平方差公式

两个数的和与这两个数的差等于这两个数的平方差.

3、练习:判断下列式子哪些能用平方差公计算。(小黑板)

(1)(-x-2y)(-x+2y)          (2)(-2a+3b)(2a-3b)

(3)(a+3b)(3a-b)             (4)(-m-3n)(m-3n)

2、教学例1

(1)(2x+1)(2x-1);  (2)  (x+2y)(x-2y)

(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。

(3)具体解题过程:板书,同教材,略

3、教学例2    例3

先引导学生分析后指名学生演板,略

4、练习:课本P110   1(指名演板)  2、(口答)3、演板

三、巩固练习:(小黑板)

1、填空:(1)(x+3)(x-3)=__________  (2)(-1-2x)(2x-1)=______

(3)(-1-2x)(-2x+1)=_____________    (4)(m+n)(          )=n2-m2

(5)(          )(-x-1)=1-x2          (6)(          )(a-1)=1-a2

2、选择题

(1)  下列可以用平方差公式计算的是(     )

A、(2a-3b)(-2a+3b)                B、(- 4b-3a)(-3a+4b)

C、(a-b)(b-a)                     D、(2x-y) (2y+x)

(2)下列式子中,计算结果是4x2-9y2的是(    )

A、(2x-3y)2                    B、(2x+3y)(2x-3y)

C、(-2x+3y)2                   D、(3y+2x)(3y-2x)

(3)计算(b+2a)(2a-b)的结果是(    )

A、4a2- b2       B、b2- 4a2         C、2a2- b2        D、b2- 2a2

四、小结:引导学生说一说平方差公式

五、作业:P114   1

思考题:运用平方差公式计算:

(1)(a+b)2—(a-b)2       (2)(x+y+1)(x+y-1)

(3)(a-b+1)(a+b-1)

课后简记:

附:板书设计

平方差公式             例1            例2           例3

(a+b)(a-b)=a2-b2

关于数学励志公式

高中政治公式

平方差公式说课稿

成功的公式

三角函数公式高中

圆表面积公式

圆锥体体积公式

《平方差公式》说课稿

多边形面积公式

公式的名词解释

《励志的公式(精选16篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档