下面是小编为大家整理的多边形面积公式,本文共6篇,仅供参考,喜欢可以收藏与分享哟!

篇1:长方形面积公式
长方形定义
数学术语,是有一个角是直角的平行四边形叫做长方形。也定义为四个角都是直角的平行四边形,同时,正方形既是长方形,也是菱形。
长方形长的那条边叫长,短的那条边叫宽。和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的。
长方形的性质
两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
常用面积公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽S=ab
4、正方形的.面积=边长×边长S=a.a=a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、圆的面积=圆周率×半径×半径
篇2:直角三角形面积公式
直角三角形特殊性质
1、直角三角形两直角边的平方和等于斜边的'平方。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
篇3:梯形面积公式是什么
直角梯形:
定义:
一腰垂直于底的梯形叫直角梯形(right trapezoid)。
性质:
1、直角梯形其中1个角是直角。
2、有一定的'稳定性,但弱于非直角梯形 。
判定:
1、一腰垂直于底的梯形是直角梯形。
2、有一个内角是直角的梯形是直角梯形。
篇4:三角形面积公式是什么
三角形面积公式是指使用算式计算出三角形的'面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。
常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
已知三角形底a,高h,则 S=ah/2
已知三角形三边a,b,c,则p=(a+b+c)/2,S=sqrt[p(p-a)(p-b)(p-c)]=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]。
已知三角形两边a,b,这两边夹角C,则S=absinC/2,即两夹边之积乘夹角的正弦值。
设三角形三边分别为a、b、c,内切圆半径为r,则三角形面积=(a+b+c)r/2。
设三角形三边分别为a、b、c,外接圆半径为R,则三角形面积=abc/4R。
篇5:直角三角形面积公式?
直角三角形性质
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的'中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
篇6:复习多边形的面积
复习多边形的面积
复习多边形的面积[教学目标]
1.掌握本单元所学的面积公式,能应用面积公式进行计算。
2.理解公式的算理,沟通知识之间的内在联系。培养学生利用所学知识解决实际问题的能力。
3.培养学生认真分析、认真思考的良好习惯。
[教学过程]
课前谈话:同学们,这个单元我们学习了平行四边形、三角形、梯形的面积及其计算。大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系。今天我们就来复习这部分知识。
(一)复习面积公式
老师在黑板上画出长方形后提问:长方形的面积公式是什么?(长方形面积=长×宽.S=ab)
板书:
教师提问:“根据长方形的面积怎样推导出平行四边形、三角形、梯形面积公式呢?”让学生互相说一说。学生讨论后,教师指名让学生说一说是怎么推导平行四边形、三角形、梯形面积公式的?学生边回答,教师边板书出示如下图形:
随后教师将这些图形用→连接起来。使学生看到这些公式的联系。
教师提问:在推导平行四边形、三角形和梯形面积公式的时候,我们运用了什么方法?学生回答后教师小结:推导平行四边形、三角形、梯形面积公式。根据转化的思想,运用了割补平行、旋转平移的方法,把所求的图形面积转化为学过的图形面积进行推导,这是一个重要的方法,以后学习新知识也要用这个方法。
教学意图:使学生清楚面积公式的算理,沟通知识之间的联系,而不是机械地识记公式。
(二)基本练习
1.判断题。
(1)两个底和高都分别相等的三角形面积一定相等。( )
(2)两个底和高分别相等的梯形能拼成一个平行四边形。( )
使学生清楚:底和高相等的梯形形状不一定相同,只有形状和面积都分别相等的梯形才能拼成一个平行四边形。
(3)平行四边形面积是三角形面积的2倍。( )
使学生清楚:只有在等底等高的情况下,平行四边形的面积才是三角形面积的2倍。
(4)两个三角形的高相等,它们的面积就相等。( )
使学生清楚:三角形的面积等于底乘高除以2。如果两个三角形的高相等而底不相等,它们的面积也不相等。
要求学生独立判断,并说明理由。
订正:(1)√ (2)× (3)× (4)×
2.计算下面图形的.面积。
让学生先识别每个图形是什么图形,想好求每个图形的面积应用什么公式,再独立列式计算。
做完后让学生说说计算图形面积时应注意什么?①看清是什么图形;②选择正确的公式;③正确的计算;④注意单位名称。
订正:(1)270平方厘米,144平方厘米,3.61平方米;(2)3.41平方米,4.5平方分米,357平方米
教学意图:培养学生的判断推理能力,会利用面积公式进行判断。
(三)综合练习
1.根据所给条件求面积。
(1)三角形的底是5分米,高是1分米。
(2)长方形的长是2厘米,宽是3厘米。
(3)平行四边形的底是4分米,高是2分米。
(4)梯形的上底是1厘米,下底是3厘米,高是2厘米。
要求学生口头列式说出结果,并想一想应用了哪个面积公式。
订正:(1)2.5平方分米,(2)6平方厘米,(3)8平方分米,(4)4平方厘米。
2.自己测量出求下面图形的面积所需的数据,并求出图形的面积。
订正时让学生说出是怎么测量的。测量时应注意什么。
3.下图是三角形小旗。同学们要做 6面这样的小旗,一共要用纸多少平方厘米?
订正:38×38÷2×6=4332(平方厘米)
4.一块平行四边形的地,底长是280米,高是57.5米。共收油菜籽3542千克,平均每公顷产油菜籽多少千克?
订正:28×57.5=1610(平方米)
1610平方米=0.161公顷
3542÷0.161=22000(千克)
5.有一块平行四边形的地,(如图)分成三块种菜。第一块种西红柿,第二块种黄瓜,第三块种茄子。问:每种菜占地多少平方米?
订正:(1)3.8×4.4÷2=8.36(平方米)(2)4.2×4.4=18.48(平方米)(3)(5+1.2)×4.4÷2=13.64(平方米)
教学意图:能运用所学面积公式解决实际问题。
(四)总结质疑
教师将本节课所复习的知识归纳总结。解答学生提出的疑问。
出示思考题。(供学有余力的同学思考)
计算下面图形的面积。你能想出不同的解法吗?
思考题答案
这道题可以有以下几种解法:
正确答案:75平方厘米
文档为doc格式