欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

第九册三角形面积计算公式的推导

时间:2023-11-08 08:58:30 其他范文 收藏本文 下载本文

以下是小编整理的第九册三角形面积计算公式的推导,本文共5篇,欢迎阅读分享,希望对您有所帮助。

第九册三角形面积计算公式的推导

篇1:三角形面积计算公式的推导

教学内容:人教版9册  三角形面积公式推导部分

教学目的:

1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。

2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。

3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。

教学过程 :

一、阅读质疑。

先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。

1厘米

学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:

(1)数方格怎么求三角形的面积?

(2)不数方格怎么求三角形的面积?有没有一个通用公式?

(3)能把三角形也转化成我们学过的图形求面积吗?

(4)转化成的这些图形跟三角形有什么关系吗?

(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)

二、点拨激思

1.数方格的问题

学生根据学习材料可以解答用数方格的方法求三角形的面积。

老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。

学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。

嗯,看来数方格求面积是有一定局限性的, 今天我们就来研究三角形的面积。

(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)

2.转化的问题

你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的'说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。

师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。

(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)

三、探索解疑

学生操作,讨论,汇报。

1.转化的图形

学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。

2. 解决转化前后图形间的关系

(1)大小的关系

通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S  =  S÷2。一个三角形转化成的图形跟三角形关系是S =S

(2)底和高的关系

拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?

生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2

师:思路真清晰,为什么÷2,谁还想说。

(学生依次讲拼成的长方形,正方形这两种情况)

(3)公式推导

师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?

生:底×高÷2

师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?

生:S=a×h÷2

(4)推导拓展

师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?

学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2

师:这个方法怎样,谁来评价一下。学生评价,太棒了。

生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2

(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)

<三>归纳小结

出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。

(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)

总析:本节课有以下两个特点

1. 充分体现了“问题意识的培养”。

老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。

2.重视研究问题的过程。

这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。

篇2:三角形面积计算公式有哪些

三角形面积公式:

1.已知三角形底a,高h,则 S=ah/2

2.已知三角形三边a,b,c,则

(海伦公式)(p=(a+b+c)/2)

S=√[p(p-a)(p-b)(p-c)]

=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC

4.设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

5.设三角形三边分别为a、b、c,外接圆半径为R

则三角形面积=abc/4R

6.海伦——秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

7.根据三角函数求面积:

S= ab sinC=2R sinAsinBsinC= asinBsinC/2sinA

注:其中R为外切圆半径.

8.根据向量求面积:

SΔ)= √(|AB|*|AC|)-(AB*AC)

篇3:《梯形面积计算公式的推导》教案设计

一、教学目标:

1、运用“转化”的方法引导学生学习推导梯形面积的计算公式。

2、通过动手操作培养学生的动手实践能力,激发学习兴趣,培养合作意识。

二、教学重点:

引导学生运用“转化”的方法推导梯形面积的计算公式。

三、教学难点:

1、运用“转化”的方法推导梯形面积的计算公式。

2、对公式中梯形面积=(上底+下底)×高÷2中“÷2”的理解。

四、教具:

课件、两个完全一样的普通梯形、两组两个完全一样的直角梯形、普通梯形一个。

五、学具:

每小组都有两个完全一样的梯形、一个普通梯形和剪刀。

六、教学过程:

(一)复习:

1、复习已学的图形面积计算公式:

师述:“同学们你们都学过哪些图形的面积,是怎样计算的?”

根据学生的'回答依次板书:长方形面积=长×宽

正方形面积=边长×边长

平行四边形面积=底×高

三角形面积=底×高÷2

2、复习近平行四边形、三角形面积计算公式的推导步骤:

师述“想一想你们是分几步把平行四边形、三角形面积的计算公式推导出来的?”

根据学生回答依次板书: 步骤:1、转化

2、找关系

3、推导公式

4、所用方法

(二)新授:

1、用生活中的实际问题引出本节课的教学内容:

(1)师边出示图边叙述:“我们学校打算在操场南侧建一块绿地,算一算 这块绿地需要铺草坪多少平方米?解决这个问题的关键是什么?”

生答:“求梯形的面积”。 出示课题:梯形的面积

(2)引出转化法

师边叙述边板书:“梯形的面积对于我们来说是新知识,我们要把梯形转化成我们学过的长方形、正方形、平行四边形、三角形(板书:转 化),利用旧知识解决新问题,推导出梯形面积的计算公式。(板书:计算公式的推导)”

篇4:《梯形面积计算公式的推导》教案设计

转化

(3)布置动手操作要求:

师述:“以组为单位按步骤利用学具一起想办法推导出梯形面积计算公式,要求合理的分工、合作,操作学具要麻利。”

2、学生分组动手操作推导出梯形面积的计算公式

(教师行间巡视和学生一起探究,对学生在探究过程中出现的问题进行指导)

可能遇到的问题:找关系

割补法中:为什么“平行四边形的高=梯形的高÷2”学生理解起来可能出现困难。

3、各小组汇报探究成果,师给予适当补充。

(1)将两个完全一样的普通梯形转化为平行四边形

1、转化:

梯形平行四边形

2、找关系:

平行四边形面积=2个梯形面积

底=上底+下底

高=高

3、推导公式:

平行四边形面积 = 底 ×高

‖ ‖ ‖

2个梯形面积 = (上底+下底)× 高

梯形面积 = (上底+下底)× 高 ÷ 2

4、方法:

拼摆法

师问:“其他同学哪儿不懂?”

师问:“为什么要除以 2?”

(2)将两个直角梯形转化为长方形

1、转化:

梯形长方形

2、找关系:

长方形面积=2个梯形面积

长=上底+下底

宽=高

3、推导公式:

长方形面积 = 长 × 宽

‖ ‖ ‖

2个梯形面积 = (上底+下底)× 高

梯形面积 = (上底+下底)× 高 ÷ 2

4、方法:

拼摆法

(3)将两个直角梯形转化为正方形

1、转化:

梯形正方形

2、找关系:

正方形面积=2个梯形面积

边长=上底+下底

边长=高

3、推导公式:

正方形面积 = 边 长× 边长

‖ ‖‖

2个梯形面积 = (上底+下底)× 高

梯形面积 = (上底+下底)× 高 ÷ 2

4、方法:

拼摆法

(4)将普通梯形转化为三角形

(沿一腰中点和左上角顶点之间的连线剪开,将梯形分成一个四边形和一个三角形,以一腰中点为轴顺时针转动小三角形,最后转化为三角形。)

1、转化:

梯形三角形

2、找关系:

三角形面积=梯形面积

底=上底+下底

高=高

3、推导公式:

三角形面积 =底× 高÷ 2

‖ ‖‖‖

梯形面积 = (上底+下底)×高 ÷ 2

4、方法:

旋转法

师问:“其他同学哪儿不懂?”

师问:“为什么要除以 2?”

(5)将普通梯形转化为平行四边形

(沿高的中点做上底的平行线,沿平行线剪开,将两部分图形转化为平行四边形)

1、转化:

梯形平行四边形

2、找关系:

平行四边形面积=梯形面积

底=上底+下底

高=高 ÷ 2

3、推导公式:

平行四边形面积 =底 ×高

‖ ‖ ‖

梯形面积 = (上底+下底)×(高 ÷ 2)

梯形面积 = (上底+下底)× 高 ÷ 2

4、方法:

割补法

师问:“其他同学哪儿不懂?”

师问:“(高 ÷ 2)高 ÷ 2,为什么可以去括号? ”

师问:“为什么要除以 2?”

4、小结公式及字母表示

(1)师述:“同学们你们真了不起你们合作想办法自己推导出了梯形面积的计算公式,一起告诉老师梯形面积的计算公式是?”

生边说师边板书:梯形面积 = (上底+下底)× 高 ÷ 2

(2)介绍字母表示形式

师述:“如果面积用字母S表示,a表示上底,b表示下底,h表示高,那么梯形面积的计算公式可以写成?”

生边回答师边板书:↓↓ ↓ ↓

S =( a + b )× h ÷ 2

板书为:梯形面积 = (上底+下底)× 高 ÷ 2

↓ ↓ ↓↓

S =( a + b ) × h ÷ 2

(三)、练习

1、反馈练习

师述:“算一算 这块绿地需要铺草坪多少平方米?要求梯形面积得知道什么?”

生答:“上底、下底、高分别是多少?”

给出:下底=50米上底=34米 高=10米

学生计算

2、巩固练习

计算下列图形的面积

80分米

30分米

15厘米 25厘米

40分米

14厘米

(四)总结:

师述:“通过这节课的学习你有哪些收获?还有什么不懂的问题?”

生应回答到的知识点:1、梯形面积计算公式及字母表示形式

2、推导图形面积计算公式的基本思路及方法步骤

师总结:“同学们你们在今后的学习和生活中还会遇到很多的问题、困难,你们要善于用转化的思想利用旧知识解决新问题、新困难。当遇到不会、不懂的地方还要学会和同学、朋友一起合作解决。”

(五)作业

(六)板书设计:

篇5:《梯形面积计算公式的推导》教案设计

转化

长方形面积=长×宽 梯形面积 =(上底+下底)×高÷2 步骤:

正方形面积=边长×边长↓ ↓ ↓ ↓ 1、转化

平行四边形面积=底×高S =( a + b )×h÷22、找关系

三角形面积=底×高÷23、推导公式

4、所用方法

椭圆形面积计算公式

长方形面积公式计算公式

第九册三角形面积的计算教学目标和建议

五年级三角形面积说课稿

三角形面积教学反思

《三角形的面积》教学设计

《三角形面积》的教学设计

《三角形面积》评课稿

三角形的面积教学设计

三角形的面积教学设计

《第九册三角形面积计算公式的推导(共5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档