以下是小编精心整理的初二的数学函数应该怎么学,本文共7篇,希望对大家有所帮助。

篇1:初二的数学函数应该怎么学
初二函数数学学习的方法
一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
二、牢记几种基本初等函数及其相关性质、图象、变换。中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求童鞋们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。
四、多做题,多向老师请教,多总结吧。多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!
初二数学两极分化的原因及对策
(1)对概念和公式要能融会贯通。这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?这一点吴铮老师已经强调了三百四十多遍了,我已经胃部严重不适了,下次再聊到这个话题,我一定会再继续强调。因为有的孩子吧,心宽,老师的话左耳朵进右耳朵出,我必须得一直唠唠叨叨下去。
(2)总结相似的类型题目。这个事,不仅仅是老师的事,孩子也要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初三以后,会发现,有一部分孩子天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。我们的建议是:“总结归纳”是将题目越做越少的最好办法。对于不同的题目,我们有不同的解题技巧,古人云,铁打的技巧流水的题,只要咱们掌握了技巧,那就可以人挡杀人,佛挡杀佛,如果掌握不了技巧,那就悲剧了,变成人挡人杀你,佛当佛杀你。
(3)收集自己的典型错误和不会的题目。孩子最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。孩子做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,孩子只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。其实我们最大的问题就是总会忽略自己的问题,却不知道把我们不会的题目弄会了,我们就进步了。许多人喜欢狂做自己会做的题目,去体验一种居高临下,庖丁解牛的感觉,碰见自己不会了,立马就开始退缩,最后庖丁被牛解了。
(4)就不懂的问题,积极提问、讨论发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多孩子都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。现在的孩子自尊心都是很强的,总感觉向别人问问题是一种示弱的表现,所以自己要跟这道题目死磕,后来两败俱伤—他浪费了大把的时间,题目最后也被他撕碎了。
(5)注重实战(考试)经验的培养考试本身就是一门学问。有些孩子平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要孩子在平时的做题中解决。每次考试总会遇见有些孩子非常紧张,把考场当成了战场,甚至刑场,乃至屠宰场,但是他却没有我自横刀向天笑,笑完继续去睡觉的洒脱,总是担心自己考不好怎么办?或者考好了但是老师阅卷阅错了怎么办?这些都是不好的习惯。
初二数学下册函数知识点汇总分享
一、函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果
2、一次函数的图像
所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:
一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。(如下图)
4. 正比例函数的性质
一般地,正比例函数y=kx有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b(k≠0)中的常数k和b。解这类问题的一般方法是待定系数法。
图像分析:
k>0,b>0,图像经过一、二、三象限,y随x的增大而增大。
k>0,b<0,图像经过一、三、四象限,y随x的增大而增大。
k<0,b>0, 图像经过一、二、四象限,y随x的增大而减小
k<0,b<0,图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
二、四边形
基本概念:
四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
定理:中心对称的有关定理
1.关于中心对称的两个图形是全等形.
2.关于中心对称的两个图形,对称点连线都经过对称中心,被对称中心平分.
3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
公式:
1.S菱形 =1/2ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)
2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)
3.S梯形 =1/2(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
常识:
1.若n是多边形的边数,则对角线条数公式是:n(n-3)/2
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,
仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形…… ;
仅是中心对称图形的有:平行四边形 …… ;
是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .
注意:线段有两条对称轴.
篇2:初二数学应该怎么学
初二数学学习存在的问题
(1)学习缺少科学性。表现在:部分同学上课不认真记笔记,,课后不能及时巩固、复习;忙于应付作业,对知识不求甚解。
(2)忽视基础。表现在:有些“自我感觉良好”的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,反而对难题很感兴趣,以显示自己的“水平” ,好高骛远,重“ 量” 轻“ 质”,没有坚实的基础和基本功,到考试时取得不了高分;
(3)忽视作业或练习。表现在:缺乏对问题的深入思考,有时练习册上的答案由于印刷错误,孩子们作业做完后核对答案时不相信自己的结论,把自己的答案一划,把错误答案抄上;书写规范性差;
(4)考试出错率高。表现在:一种是一时想不出怎么做,事后会做,临场状态不好;第二种是表面上会做,但由于审题不仔细,对概念理解不清,计算不准确;第三种是时间不够,解题速度慢,平时做题习惯不好,不讲速度;第四种是根本做不出来,基本功不行,更欠缺融会贯通能力。
初二数学学习方法
1、建立数学纠错本。做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。错题集由错题、错误原因、改正措施、订正和巩固防错五项内容组成。
2、记忆数学规律和数学小结论;
3、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。多看其他同学的卷纸,吸取其优良方法,借鉴错误。
4、经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。结合自身特点,寻找最佳学习方法。
5、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,这是学好数学的重要问题。
6、“由薄到厚”和“由厚到薄”是数学家华罗庚多次提到的治学方法,他认为学习要经过“由薄到厚”和“由厚到薄”的过程。
“由薄到厚”是理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些的解法或产生新的认识等,出现了“书越读越厚”。
但是学习不能到此止步,还需要把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容,这就是一个“由厚到薄”的过程。在这过程中,不是量的减少,而是质的提高,所以具有更重要的作用。通常在总结一章、几章或一本书的内容时,就要有这种要求,运用这种方法。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。
“由薄到厚”和“由厚到薄”是一个螺旋上升的过程,它具有不同的层次和要求,学习中需要经过从低到高多次的运用,才能收到应有的效果。这一学习方法体现着“分析”与“综合”、“发散”与“收敛”的辩证统一,就是说数学学习需要两者统一起来。
初二数学学好需要养成的习惯
1、预习的方法 -----预习是上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环(同时预习习惯的培养对于后期孩子的自学能力有很大的帮助,在高中阶段将会极大受益)。
(1)看书要动笔。(不动笔墨不读书)
①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;
②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。
③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。
④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。
(2)确定听课要点。把握自己要解决的主要问题,以提高听课的效率。
听课的方法
听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。
(1)盯住老师。除在预习中已明确的任务,做到有针对性地解决符合自己的问题外,还要把自己思维活动紧紧跟上教师的讲课,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。公式、定理是如何运用的。许多数学家都十分强调“应该不只看到书面上,而且还要看到书背后的东西。”
(2)敢于发言。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,如有疑问或有新的问题,要勇于提出自己的看法。
(3)记笔记。听课时要把老师讲课的要点、补充的内容与方法记下。
3、复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。
(1)复习笔记和卷子。对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加深的等。要勤于复习(知识点、典型题等),经常看,反复看---这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。
(2)适量做题。准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。
(3)大胆质疑,增强学习的主动性。要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。
4、作业的方法
作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,发现存在的问题,困难。当做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
(1)先复习后做作业。在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。
(2)必须独立完成。培养良好的习惯,在作业中要做得整齐、清洁,要注重解题格式。书写规范。作业必须独立完成。高质量的完成作业可以培养一种独立思考和解题正确的责任感。
(3)短时高效。规定一个具体时间,在此期间什么除了写作业,其他都不允许干。思维松散、精力不集中的作业习惯,对提高数学能力是有害而无益的。
(4)认真核查。准备一个红笔,正确的打对号,不一样的再做一遍,检查是自己做的对还是答案对,一些不会的题或拿不准的题问老师、问同学。
5、养成良好的解题习惯。
华罗庚先生倡导:学习数学不仅要常练,还要苦练、活练。应当培养同学的不怕烦、深入想的本领,在运算方面应当培养同学具有喜欢算,不怕烦,经常练的习惯(如果运算经常出错,那就太可惜了),所以运算能力的培养一定是多练,练,练。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
(1)规范、细心。家长可以盯住周练卷中出现的问题及时与老师沟通。对于计算能力弱的学生,家长可以再进一步与老师沟通,共同研究再要选哪些题练,怎样练。
(2)善于总结、归类。
(3)适当做些难题。华罗庚先生说,难题要不要做?要有计划有重点地做些好,这是一种锻炼。对待较难的问题,就要苦练,不达目的不休的苦练。有能力的同学除了现有的练习册,在老师的指导下还应准备一些有一定难度的练习册。
篇3:初三数学二次函数应该怎么学
初三学习二次函数的方法
一、掌握学习函数的几个基本知识点
函数学习内容主要由三部分组成:(1)函数解析式。(2)函数图象及画法。(3)函数的性质
1.函数的概念
如果y=ax2+bx+c(a,b,c是常数,a≠0)那么y叫做x的二次函数,特征①等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2,②二次项系数a≠0,x的最高次数是2,是经常考试的考点。
2.二次函数的图象及画法
①用配方法化成顶点式。②确定图象的开口方向、对称轴、顶点坐标。③在对称轴两侧利用对称性、描点画图。
(3)画y=ax2+bx+c的草图,抓住五个要点:①开口方向;②对称轴;③顶点;④与y轴交点;⑤与x轴交点。
3.二次函数的性质,性质的理解一定要借助图形,不要死记硬背结论,在理解基础上记忆
二、掌握抛物线与两坐标轴交点的求法
1.二次函数y=ax2+bx+c与y轴交点,求法:设x=0得y=a×02+b×0+c,交点(0,c)
2.二次函数y=ax2+bx+c与x轴交点,求法:设y=0得ax2+bx+c=0设此方程两根为x1,x2,则交点坐标(x1,0)(x2,0)
三、熟练掌握求解析式的三种方法
用待定系数法可求二次函数解析式,确定二次函数解析式一般需要三个独立条件,根据不同条件选择不同设法
1.设一般式:y=ax2+bx+c
若已知条件是图象上三个点坐标。将已知条件代入所设一般式求出a,b,c的值。
2.设顶点式:y=a(x-h)2+k若已知二次函数图象的顶点坐标或对称轴方程与最大值或最小值,将已知一个点坐标的条件代入所设顶点式,求出待定系数,最后将解析式化为一般式。
3.设两根式:y=a(x-x1)(x-x2)若已知二次函数图象与x轴两个交点坐标为(x1,0)(x2,0),将第三点(m,n)的坐标或其他已知条件代入所设两根式,求出待定系数a,最后将解析式化为一般形式。
例1:已知二次函数图象过点A(0,-3),B(-1,5),C(2,-1),求二次函数解析式。
例2:已知x=2时,函数有最大值-1,且图象经过点(3,-4),求二次函数解析式。
例3:已知二次函数图象与x轴交点是A(-2,0),B(1,0)且经过点C(2,8),求解析式。
四、掌握抛物线与x轴的三种位置关系及条件
1.与x轴有两个交点 2.与x轴有一个交点 3.与x轴没有交点
五、掌握二次函数图象的平移
例1:抛物线y=2x2沿y轴向上平移3个单位后解析式是
例2:抛物线y=3(x+1)2-2是由函数y=3x2沿y轴向平移 个单位后沿x轴向平移 个单位得到。
六、掌握已知二次函数图象的应用
已知二次函数y=ax2+bx+c的图象,确定y=ax2+bx+c中a、b、c及b2-4ac的符号。
1.a的作用:①决定开口方向和大小,a>0开口向上,a<0开口向下。②|a|越大开口越窄,|a|越小开口越宽;
2.b由对称轴的位置决定;
3.c由抛物线与y轴交点纵坐标决定;
4.b2-4ac由抛物线与x轴交点情况决定。
例:如图,已知二次函数y=ax2+bx+c的图象,试确定a,b,c,b2-4ac,a+b+c的符号。
七、掌握二次函数与一次函数的关系
所有函数,利用关系式联立,均可解出它们交点的坐标
注意:学习函数,最大的禁忌是只听不画,听课时很容易理解,但是因为信息量大,若不能及时理解消化,学习的知识点容易混淆遗忘,导致对函数难以理解!!
初三数学二次函数的解题方法
图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。
1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____
分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。
2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。
分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。
3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。
例3.将抛物线y=x2-2x+3绕其顶点旋转180°,则所得的抛物线的函数解析式为________
分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180°后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,
c与Y轴来相见,
b的符号较特别,符号与a相关联;
顶点位置先找见,Y轴作为参考线,
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,
横标即为对称轴,纵标函数最值见。
一般、顶点、交点式,不同表达能互换。
二次函数定义与平移口诀:
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
a定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
a定开口及大小,开口向上是正数。
绝对值大开口小,开口向下a负数。
抛物线有对称轴,增减特性可看图。
篇4:高一数学函数应该怎么学好
高一数学函数的学习方法
一、关注考试说明对本部分内容的要求
1.函数(1) 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2) 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3) 了解简单的分段函数,并能简单应用(函数分段不超过三段).(4) 理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5) 会运用基本初等函数的图像分析函数的性质.
二、关注函数概念的学习过程
在学习函数概念时,通过对初中学习的函数概念及几种不同的函数如“正比例函数、反比例函数、一次函数及二次函数”的对比复习与巩固,体会概念的内涵与外延。突出对函数概念的学习过程,结合实际例子对概念进行逐句分析与理解,在实例中体会函数的“三要素”.另外,结合“映射”的概念与函数概念进行对比理解.当然更重要的是理解“对应”.
三、关注函数概念的学习方法
在学习函数概念时,我们必须掌握这样的方法,那就是“数形结合”.根据题目确定是“以形助数”还是“以数助形”.
四、关注函数概念的相关知识拓展与生成.
对于函数概念的学习所涉及的“函数定义域、值域、对应关系”及“区间”等要一一理解,并根据相应的题目,拓展试题类型,提升知识生成度.下面以例题的形式进行说明.
1. 常见基本初等函数的定义域求方法,拓展到抽象函数.
(1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R..
(3)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.
高中学生学习数学的不良习惯
⑴思想上的松懈
有些同学把初中的那一套学习思想移植到高中来,™简单的认为自己在初一、初二时并没有用功学习,只是在初三临近中考的前两三个月发奋学习就轻易的考上了高中,因而认为读高中也不过如此,高一、高二用不着那么用功,只要等到高三时再努力学习,也一样考上一所理想的大学,如果一开始抱有这种思想,等到意识到此问题的严重性,恐怕为时已晚,回天乏术,殊不知“万丈高楼平地起”,没有高一、高二的基础,高考便是空谈,到头来既是白日做梦一场空,切记!切记!!
⑵靠记忆学习数学
初中教师在讲课时,对知识点讲授非常细致,由于时间充足,内容少,学生练习多,熟能生巧,必然会取得好成绩。但观众教师在讲课时一节课会讲很多概念、例题、解题方法,时间比较紧,如果上课不集中注意力去理解课堂内容,那么课后作业就不能顺利完成,久而久之必然会影响成绩。
⑶依赖教师,忽视自学习惯
许多学生进入高中后,依旧像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权,表现在不做课堂笔记,不做纠错笔记,不做总结,不制定学习计划,坐等上课,课前不预习,上课晕头转向,实在不行就依赖家庭教师,这些做法都不科学。
⑷在头脑中没有形成数学知识体系,只注重孤立的知识点
高中数学共有140多个知识点,知识的形成过程中还蕴含着大量的数学思想方法和解题技巧,知识点之间有着较强的联系,这些往往被学生忽略。学到哪一节就看哪一节的内容,不知道章与章、节与节之间的联系,只注重表象特征,不善于深入挖掘,使得学到的知识是零散的、片面的。
⑸只注重结论与记忆,不注重知识的形成过程
高中数学概念课有着丰富的内容,学生对这些课往往轻视,对一些概念的发生、发展过程缺乏深刻的理解,只停留在表象的概括水平上和记忆层面,不能从内涵上去把握概念。比如学生在学到数列这一章节时,都会背诵数列的公式,但一碰到数列题就无从下手,原因是当时学习数列概念时没有理解概念形成过程中产生的数学思想方法,不能将这种思想方法迁移到具体问题钟来。
⑹没有形成自我反思、自我总结的习惯
学生只满足于上课听懂老师讲授的内容,课后不进行认真消化和总结归纳,没有形成自我反思、自我总结的习惯,有很多学生认为做反思笔记没有用,其实不然,如果你想上一个重本院校,不反思、不总结,只要你足够聪明,这也是有可能的,如果你想上一所好大学,不反思、不总结绝无可能(本书中专门讲解怎样做专题笔记)。
高中数学的学习建议
(一)养成课前预习的习惯
⒈预习的意义
预习是在教师讲课之前独立地自主学习新课的内容,做到初步理解并为上课做好知识准备和心理准备(一般学校都会以学案的形式给出)。预习的意义有以下三点①培养良好的学习习惯,学会自主学习,掌握自学方法,为众生学习打下基础②预习有助于了解下一节课的主要内容和重难点,为上课扫除部分知识障碍,建立新旧知识之间的联系,有利于知识的系统化③有助于提高听课效率,对预习中不懂的问题,在老师讲解时,可以做到目标明确,态度积极,注意力集中,容易将不懂的题搞懂,这样可以挤出时间记录书本上没有的知识,认真分析,从而提高学习效率。
2.预习的基本步骤
边读边思:数学课本分为引言、数学概念、规律(包括法则、定理、推理、性质、推理等)、图形、例题、习题,引言一般是以学生已有的经验和熟悉的生活常识为基础展开,内容熟悉而具体,使学生对所学的内容有一个感性的认识,新教材改革后数学概念和定理一般都以观察、思考、探究等数学活动引导学生们发现问题、提出问题,通过亲生实践、主动思考,从具体到抽象、从特殊到一般的活动来理解和掌握数学的基础知识,有很强的可操作性,这是新课改后教材最大的变化,在自学例题时,要做到:分清解题步骤,找出解题关键;弄清各解题步骤的关键,养成每步都要问为什么的习惯,尽可能的运用上面的知识;注意有些例题配有图形,即便没有也要尽可能的再通过图形角度理解例题,分析例题的解题规范和格式,再看看例题再有没有其他的解法,最后按例题格式精做几道习题。
边划边想:一般情况下学生自学的过程中都能基本把握一节课内容的重点,在自学的过程中划出本节的重点,这样做有助于学生对知识的掌握,对有疑问的地方用“?”标记,在第二天教师讲解的过程中扫除疑问,提高听课效率。
边想边写:新教材每页都有大片的空白,在自学和老师讲解的过程中将自己的看法和体会记在空白处,可以记对概念的解读,对解法的思考,对易错点的分析,对例题的条件和结论的变式等,这样总有利于学生全面把握本节内容,有些学校会配有自主研发的学案,降低了预习的难度,也是一种很好的预习方式。
(二)专心听讲,积极提出自己的问题,认真做好笔记
“学然后知不足”,听课时理解和掌握基本知识、基本技能和基本方法的关键环节,听课是要听教师是如何突破难点、重点和关键点的,听自己在预习过程中不能理解的内容,听教师对一类问题或习题是如何分析和总结。有些同学喜欢将教师的板书一字不拉的记下来,大可不必这样做,课堂笔记是记老师补充的一些重要的知识点、结论和一些经典的解法和解题技巧;只要记住解题过程,课余时间慢慢整理,一定要处理好听课和记笔记的矛盾,不要顾此失彼。
新教改后对教师的教法和学生的学法提出了更高的要求,强调学生的主体作用,教师在课堂上要积极鼓励学生参与进来,课堂上有一些问题不能依赖教师讲解,而是让每个学生都积极思考,展示自己的想法,探究更多的想法和解法,提出想法有时比解决一个问题更加重要,因为它带来的是思想的变革(笔者认为不能抛弃传统的讲授法,应内容而定)。
(三)认真完成作业,做好复习总结
认真完成作业时独立思考,分析问题,解决问题,进一步加深对所学新知识的理解和掌握新技巧的必要过程,但现实并不乐观,绝大多数学生都有抄作业的习惯,更有甚者几乎全部抄写,当然有一部分因素是作业布置不科学造成的,因此作业也是对学生一直、毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”,另外从思想上要重视作业,不把作业当成负担,作业就是工作。
及时复习,系统小结,时高效学习的另一个重要环节(本书专门讲解了如何做数学学习笔记),通过反复阅读教材,多方面查阅有关资料,强化对基本概念、知识体系的理解与记忆,将所学的新知识与与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,对所学的心知识由懂到会,在复习总结时,要以教材为依据,在系统复习的基础上,参照笔记与资料,通过分析、综合、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。
(四)关注错题
有一种简单化的认识,以为错误都是知识不过关造成的,其实,解题错误的类型不只一个,在知识过关的情况下也会出现差错.既然成功的解题有知识因素,能力因素,经验因素和情感因素,那么不成功或失败的解题也会与这些因素相关,我们总结为:知识性错误,逻辑性错误,策略性错误,心理性错误.
知识性错误
主要指由于数学知识上的缺陷所造成的错误.如误解题意、概念不清、记错法则、用错定理,方法失误等.核心是所涉及的内容是否符合数学事实.例如学生在学到三角函数的公式时常常是把公式记混而出现错误.
逻辑性错误
逻辑性错误主要指由于违反逻辑规则所产生的推理上或论证上的错误.如虚假论据,不能推出,偷换概念,循环论证等,常常表现为四种命题的混淆,充要条件的错乱,反证法反设不真等.核心是所进行的推理论证是否符合逻辑规则.例如学生在学到数学归纳法这章内容时常常认为从n=k假设推证n=k+1时命题成立是显然成立的,没有用到假设就认为原命题成立,这样就违背了数学归纳法证明数学命题的逻辑规则.
知识性错误与逻辑性错误既有联系又有区别.
(1)知识性错误与逻辑性错误有联系.
由于数学知识与逻辑规则常常是相依共存的,从广义上说,我们也不能把逻辑知识排除在数学知识之外,所以,逻辑性错误与知识性错误常是同时存在的,从哪个角度进行分析取决于比重的大小与教学的需要.在上面的例子中我们已经看到,当我们说它有知识性错误时并不排除它也有逻辑性错误;同样,当我们说它有逻辑性错误时也不排除它还有知识性错误.
(2)知识性错误与逻辑性错误又有区别.
知识性错误主要指涉及的命题是否符合事实(是否符合定义、法则、定理等),核心是命题的真假性;逻辑性错误主要指所进行的推理论证是否符合逻辑规则,核心是推理论证的有效性.虽然,数学命题的事实真假性与推理论证的逻辑有效性是有联系的,但是数学毕竟不是逻辑,数学毕竟比逻辑大得多,我们依然应该在知识盲点的基本位置和主要趋势上区分知识性错误与逻辑性错误.
策略性错误
这主要指由于解题方向上的偏差,造成思维受阻或解题长度过大.对于考试而言,即使做对了,若费时费事,也会造成潜在丢份或隐含失分,存在策略性错误.在解题探求中,思维受阻或思路曲折是不可避免的,因而,探索阶段的策略性错误是很难完全消除的.
例如:不等式x2+ax+1>0在xÎ[1,2]上恒成立,求实数a的取值范围,大多数同学
都会想到通过构造二次函数,利用二次函数动轴定区间的办法求解该问题,过程比较繁琐,如果采用分离常数法求解,问题便迎刃而解,过程简单明确.
心理性错误
这主要指解题主体虽然具备了解决问题的必要知识与技能,但由于某些心理原因而产生的解题错误.如顺序心理、滞留心理、潜在假设,以及看错题、抄错题、书写丢三落四等.高考阅卷启示我们,许多中上水平考生常在“会而不对、对而不全”上拉开录取与落榜的距离.这是一个“老大难”问题:
(1)会而不对.有的考生,拿到题目不是束手无策,而是在正确的思路上,或考虑不周、或推理不严、或书写不准,最后答案是错的,这叫“会而不对”.
(2)对而不全.另一些考生,思路大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一逻辑点过不去;或遗漏某一特殊情况、讨论不够完备;或潜在假设、或以偏概全,这叫“对而不全”.一开始能意识到纠错的重要性对初上高中的学生至关重要.
(五)主动学习,善于对比和联想
在课堂中,学生应该主动地跟随老师的思路,主动地动脑、动手、动口,积极参与课堂教学,培养各方面能力。把由主要感知事物的外部特征的感性认识向对知识的分析、综合理解的理性认知过渡,把较多的具体形象思维向抽象的逻辑思维过渡,培养思维的主动性、独立性与灵活性,提高思维能力。在教师的指导下,通过自己的观察、实验、探索,在与他人的合作中交流自己得到的结论,在研究性学习过程中培养自己的创新精神、合作精神和实践能力。
学生在整个的学习过程中药善于联想,学会举一反三、触类旁通。比如平面几何知识向空间几何联想,数学语言与几何图形的联想,一般问题与特殊问题的联想。利用对比可以加深对知识的理解和掌握。如将指数函数与对数函数的对比,可知它们的图像位置不同,但对底数的讨论是一致的,这样可以建立合理的知识结构,系统全面地理解知识。
学习数学一定要在三个字上下工夫:“精、透、活”,只看书不做题不行,只埋头题海战术不总结积累不行。对课本知识既能钻进去,又能跳出来,结合自身的特点,寻找最佳的学习方法。方法因人而异,但学习的四环节(预习、上课、作业、复习)、一步骤(学习笔记)是不能少的。
对于一名普通的数学教育工作者,超越知识上和认识上单纯的和狭隘的思维模式,放远眼光,拓宽视野,尽可能促进学生的全面发展,是它毕生追求的信念。
篇5:初二数学《反比例函数》说课稿
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法
和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、
对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一) 复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1) 正方形的周长C和它的一边的长a之间的关系
(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3) 矩形的面积为10时,它的长x和宽y之间的关系
(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式 ,请学生对比正比例函数的定
义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
例题1:已知变量y与x成反比例,且当x=2时,y=9
(1) 写出y与x之间的函数解析式
(2) 当x=3.5时,求y的值
(3) 当y=5时,求x的值
通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在
解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。
课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式
(1)x=2,y=3 (2)x=
通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。
(二)探究学习1——函数图象的画法
问题3:如何画出正比例函数的图象?
通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。
问题4:那反比例函数的图象应该怎样去画呢?
在教学过程中可以引导学生仿照正比例函数图象的的画法。
设想的教学设计是:
(1) 引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函的图象;
(2) 老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;
(3) 随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。
初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:
(1) 在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2) 在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。
从而引导学生画出正确的函数图象。
(3) 图象与x轴或y轴相交
在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。
需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。
巩固练习:画出函数的图象
通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。
(三) 探究学习2——函数图象性质
1、图象的分布情况
问题5:请大家回忆一下正比例函数
初中数学说课稿:初二数学《反比例函数》优秀说课稿范例
的分布情况是怎么样的呢?
提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?
在这一环节中的设计:
(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;
(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;
(3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
2、图象的变化情况
问题7:正比例函数
图象的变化情况是怎么样的呢?
提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。
问题8:那反比例函数的图象,是否也具有这样的性质呢?
在这一环节的教学设计是:
(1)回顾反比例函数的图象,通过实际观察;
(2)根据解析式对x进行取值,比较x在取不同值时函数值的变化情况;
(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。
(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=-2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。
问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?
在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。
(四) 备用思考题
1、反比例函数
的图象在第一、三象限,求a的取值范围
2、
(1) 当m为何值时,y是x的正比例函数
(2) 当m为何值时,y是x的反比例函数
(五) 小结:
1、通过列表的形式,引导学生小结反比例函数的性质
名称
解析式
图像
图象分布
函数变化情况
k>0
k<0
k>0
k<0
正比例函数
y=kx(k
0)
是一条经过原点和(1,k)的直线
一、三象限
二、四象限
y随x的增大而增大
y随x的增大而减小
反比例函数
双曲线
一、三象限
二、四象限
y随x的增大而减小
y随x的增大而增大
2、请学生小结一下我们在画图象的过程中需要大家注意的地方
(1) 在列表过程中,x的值不能取0;取值可以由原点向两侧取相反数;可以适当的多取一些点,方便连线
(2) 反比例函数图象是光滑曲线
(3) 函数图象只能是无限逼近y轴和x轴,永远不会和两轴相交
(六) 作业
基础题:A册习题21.5
提高题:同步72页第14,15,16题
篇6:初二数学《反比例函数》说课稿
初二数学《反比例函数》说课稿模板
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础,本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的`性质。
四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法
和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、
对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一) 复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1) 正方形的周长C和它的一边的长a之间的关系
(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3) 矩形的面积为10时,它的长x和宽y之间的关系
(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式 ,请学生对比正比例函数的定
义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
例题1:已知变量y与x成反比例,且当x=2时,y=9
(1) 写出y与x之间的函数解析式
(2) 当x=3.5时,求y的值
(3) 当y=5时,求x的值
篇7:初二数学:函数应用教案设计参考
教学目标
1、使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.
2、能利用函数图象解决简单的实际问题,提高学生的数学应用能力。
3、通过函数在实际中的应用,体会数学来源于生活,通过探索生活中某些变量的关系体会事物之间是互相依存的辨证观点。
教学重点 数形结合思想的应用
教学难点 函数与方程、不等式的综合运用
教学过程
一.提出问题,创设情境
王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).
1、图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?
2、如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?
答:1、横轴(x轴)表示两人爬山所用时间,纵轴(y轴)表示两人离开山脚的距离.2、P的坐标是(3,90).表示小强爬山3分后,离开山脚的距离90米.
我们能否从图象中看出其它信息呢?
二.导入新课
看上面问题的图,回答下列问题:
(1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶?
分析 (1)小强让爷爷先跑的路程,应该看表示爷爷的这条线段.由于从小强开始爬山时计时的,因此这时爷爷爬山所用时间是0,而x轴表示爬山所用时间,得x=0.可在线段上找到这一点A(如图).A点对应的函数值y=60.
(2) y轴表示离开山脚的距离,山顶离山脚的距离指的是离开山脚的最大距离,也就是函数值y取最大值.可分别在这两条线段上找到这两点B、C(如图),过B、C两点分别向x轴、y轴作垂线,可发现交y轴于同一点Q(因为两人爬的是同一座山), Q点的数值就是山顶离山脚的距离,分别交x轴于M、N,M、N点的数值分别是小强和爷爷爬上山顶所用的时间,比较两值的大小就可判断出谁先爬上山顶.
解:(1)小强让爷爷先上60米;
(2)山顶离山脚的距离有300米,小强先爬上山顶.
小结:在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标意义.如图中的点P(3,90),这一点表示小强爬山3分后,离开山脚的距离90米.再从图形中分析两变量的相互关系,寻找对应的`现实情境.如图中的两条线段都可以看出随着自变量x的逐渐增大,函数值y也随着逐渐增大,再联系现实情境爬山所用时间越长,离开山脚的距离越大,当x达到最大值时,也就是到达山顶.
三、例题与练习
例1、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费。现乙复印社表示:若学校先按月付给一定数额的承包赞,则可按每100页15元收费。两复印社每月收费情况如图所示。
根据图象回答:
(1)乙复印社的每月承包费是多少?
(2)当每月复印多少页时.两复印社实际收费相同?
(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?
请同学们讨论、解答、并交流自己的解答;教师引导学生如何读懂图形语言.并把图形语言转化为数学语言或文字语言。
解:(1)乙复印社的每月承包费是200元;(2)当每月复印800页时,两复印社实际收费相同;(3)如果每月复印页数在1200页左右,那么应选择乙复印社。
例2、小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.
分析 从图中可发现函数图象分成四段,因此说明小明散步的情况应分成四个阶段.
线段OA:O点的坐标是(0,0),因此O点表示小明这时从家里出发,然后随着x值的增大,y值也逐渐增大(散步所用时间越长,离家的距离越大),最后到达A点,A点的坐标是(3,250),说明小明走了约3分钟到达离家250米处的一个阅报栏.
线段AB:观察这一段图象可发现x值在增大而y值保持不变(小明这段时间离家的距离没有改变),B点横坐标是8,说明小明在阅报栏前看了5分钟报.
线段BC:观察这一段图象可发现随着x值的增大,y值又逐渐增大,最后到达C点,C点的坐标是(10,450),说明小明看了5分钟报后,又向前走了2分钟,到达离家450米处.
线段CD:观察这一段图象可发现随着x值的增大,而y值逐渐减小(10分钟后散步所用时间越长,离家的距离越小),说明小明在返回,最后到达D点,D点的纵坐标是0,表示小明已到家.这一段图象说明从离家250米处返回到家小明走了6分钟.
解: 小明先走了约3分钟,到达离家250米处的一个阅报栏前看了5分钟报,又向前走了2分钟,到达离家450米处返回,走了6分钟到家.
四、小结
在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.
五、作业
六、课后随笔
文档为doc格式