欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

两角和与差的正弦余弦正切公式的教学反思

时间:2025-09-28 07:49:27 其他范文 收藏本文 下载本文

这次小编给大家整理了两角和与差的正弦余弦正切公式的教学反思,本文共5篇,供大家阅读参考,也相信能帮助到您。

篇1:两角和与差的正弦余弦正切公式的教学反思

两角和与差的正弦余弦正切公式的教学反思

1、本节课的教学目标是通过复习,进一步理解两角和与差的正弦、余弦正切公式;利用两角和与差的正弦、余弦和正切公式进行三角函数式的化简、求值;通过复习两角和与差的正弦、余弦、正切公式,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.教学的重点是两角和与差的正弦、余弦和正切公式的应用.难点是求值过程中角的范围分析及角的变换。

2、本节课中,自主学习的内容主要有两角和与差的正弦、余弦和正切公式,共8个,二倍角公式及其变形;合作探究三角函数公式的基本应用与逆用,三角函数公式的变形应用,角的变换三类问题。

3、通过学生课前预习,达到对基本公式的'掌握;通过课堂探究,培养学生自主解决问题的能力。

4、自主学习的内容主要是通过展示,在这个过程中,提出公式的证明与公式的推导等问题,达到对公式的掌握;合作探究的三个问题通过分组探究,各组讨论,推选代表进行展示。

篇2:《两角和与差的正弦余弦和正切公式》教学设计

三角函数式的化简

化简要求:

1)能求出值应求值?

2)使三角函数种类最少

3)项数尽量少

4)尽量使分母中不含三角函数

5)尽量不带有根号

常用化简方法:

线切互化,异名化同名,异角化同角,角的变换,通分,逆用三角公式,正用三角公式。

例1、

三角函数式给值求值:

给值求值是三角函数式求值的重点题型,解决给值求值问题关键:找已知式与所求式之间的角、运算以及函数的差异,角的变换是常用技巧,

给值求值问题往往带有隐含条件,即角的范围,解答时要特别注意对隐含条件的讨论。

例2、

三角函数给值求角

此类问题是三角函数式求值中的难点,一是确定角的范围,二是选择适当的三角函数。

解决此类题的一般步骤是:

1)求角的某一三角函数值

2)确定角的.范围

3)求角的值

例3.

总结:

解决三角函数式求值化简问题,要遵循“三看”原则:

①看角,通过角之间的差别与联系,把角进行合理拆分,尽量向特殊? 角和可计算角转化,从而正确使用公式。

②看函数名,找出函数名称之间的差异,把不同名称的等式尽量化成 同名或相近名称的等式,常用方法有切化弦、弦化切。

③看式子结构特征,分析式子的结构特征,看是否满足三角函数公式, 若有分式,应通分,可部分项通分,也可全部项通分。

“一看角,二看名,三是根据结构特征去变形”

篇3:下学期 4.6 两角和与差的正弦、余弦、正切2

(一)教学具准备

投影仪

(二)教学目标

1.掌握利用 得到的两角和与差的正弦公式.

2.运用 公式进行三角式的求值、化简及证明.

(三)教学过程

1.已知 两角,我们可以利用 的三角函数去计算复合角 的余弦,那么,我们能否用 的三角函数去表达复合角 的正弦呢?本节课将研究这一问题.

2.探索研究

(1)请一位同学在黑板上写出 , 的展开式.

由于公式中的 是任意实数,故我们对 实施特值代换后并不影响等号成立,为此我们曾令 ,得到 ,

两个熟悉的'诱导公式,请同学们尝试一下,能否在 中对 选取特殊实数代换,使 诱变成 呢?或者说能否把 改成用余弦函数来表示呢?请同学回答.

生:可以,因为

该同学的思路非常科学,这样就把新问题 问题化归为老问题: .

事实上:    (视“ ”为 )

这样,我们便得到公式.

简化为 .

由于公式中的 仍然是一切实数,请同学们再想一下,如何获得 的展开式呢?请同学回答.

生:只要在公式 中用 代替 ,就可得到:

师:由此得到两个公式:

对于公式 还可以这样来推导:

说明:

(1)上述四个公式 ,虽然形式、结构不同,但它们本质是相同的,因为它们同出一脉:

这样我们只要牢固掌握“中心”公式 的由来及表达方式,就掌握了其他三个公式了.这要作为一种数学思想、一个数学方法来仔细加以体会.

(2) 、 是用 的单角函数表达复合角 的正、余弦.反之,我们不得不注意,作为公式的逆用,我们也可以用复合角 的三角函数来表达单角三角函数.诸如: , , 及 四种表达式,实质上是方程思想的体现:

由 得:

由 得

由 ,得:

由 得:

等式①、②、③、④在求值、证明恒等式中无疑作用是十分重大的.

(2)例题分析

【例1】  不查表,求 , 的值.

解:

说明:我们也可以用 系统来做:

【例2】已知, , , , 求, .

分析:观察公式 和本题的条件,必须先算出 ,

解:由 , 得

又由 , 得

【例3】不查表求值:

(1) ;

(2) .

解:(1)

(2)

练习(投影)

(1) , ,则 .

(2)在△ 中,若 ,则△ 是___________.

参考答案:

(1)∴

(2)由 ,

∴ , 为钝角,即△ 是钝角三角形.

【例4】求证: .

分析:我们从角入手来分析,易见左边有复角(即两角和与差)右边全是单角,所以思路明确,就是要把复角变单角.

证明:

左边

右             ∴原式成立

如果我们本着逆用公式来看待本题,那么还可这样想:

令 , 则

至于

我们可这样分析:

令 得

同理

∴①可进一步改写为:

∴ ……②

又∵

……③

由②、③得

本题还可以从函数名称来分析,左边是正、余弦函数,右边是正切函数,故可考虑从右边入手用化弦法,请同学们自己把上面过程反过来,从右边推出左边.

【例5】求证:

师:本题我们可以从角的形式来分析,左边是单角,右边是复角,如果从右边证左边则要把复角变单角(即利用和角公式);如果从左边证右边则须配一个角 ,所以本题起码有两种证法.

证法1:右边

左边

∴原式成立

师:另一种证法根据刚才的分析要配出角 ,怎样配?大家仔细观察证法一就不难发现了.

证法2:(学生板书)

左边

右边       ∴原式成立

3.演练反馈(投影)

(1)化简

(2)已知 ,则 的值(      )

A.不确定,可在[0、1]内取值 B.不确定,可在[-1、1]中取值

C.确定,等于1 D.确定,等于1或-1

参考答案:

(1)原式

(2)C

4.总结提炼

(1)利用“拆角”“凑角”变换是进行三角函数式求值、证明、化简的常用技巧,如: , , .在三角形中, , 等变换技巧,同学们应十分熟悉.

(2)本节课的例5,代表着一类重要题型,同学们要学习它的凑角方法,一般地 ,其中 .

(3)在恒等式中,实施特值代换,是一类重要的数学方法――母函数法,这种方法在数学的其他学科中,均有用武之地。它反映的是特殊与一般的辨证统一关系.

(四)板书设计

课题:两角和与差的正弦

1.公式推导

=……

得到公式………

把公式中 换成 得公式………

2.公式的结构特点

用单角函数表示复角函数

右边中两个积的函数名称不同

……运算符号同左边括号

中的运算符号一致(区别于 、 )

3.折、凑角技巧

例1

例2

例3

例4

例5

演练反馈

总结提炼

篇4:下学期 4.6 两角和与差的正弦、余弦、正切1

(一)教具准备

直尺、圆规、投影仪

(二)教学目标

1.掌握 公式的推导,并能用赋值法,求出公式 .

2.应用公式 ,求三角函数值.

(三)教学过程

1.设置情境

上一单元我们学习了同一个角的三角函数的性质以及各三角函数之间的相互关系.本节开始讨论两个角的三角函数,已知任意角 的三角函数值,如何求出 , 或 的三角函数值,这一节课我们将研究 、 .

2.探索研究

(1)公式 、 推导.

请大家考虑,如果已知 、 ,怎样求出 ?

是否成立.

生:不成立, , 等式就不成立.

师:很好,把 写成 是想应用乘法对加法的分配律,可是 是角 的余弦值,并不是“ ”乘以 ,不能应用分配律.

事实上如果 都是锐角,那么总有 .

考虑两组数据

① ,        这时 , 而

② ,      这时 , 而

从这组数据我们发现不能由 、 直接得出 .师:如果我们再算出 , ,试试看能否找到什么关系.

生:① , , , ,

② , , , ,

由(1)、(2)可得出,

师:这位同学用具体的例子得到的一个关系式:

只有通过严格的理论证明才行.下面给出证明:为了证明它,首先给出两点间的距离,图1(也可以利用多媒体课件演示).考虑坐标平面内的任意两点 , 过点 分别作 轴的垂线 , ,与 轴交于点 , ;同理 ,

那么 , ,由勾股定理 ,由此得到平面内 两点间的距离公式

师:(可以用课件演示)如右图2,在直角坐标系 内作单位圆 ,并作出角 、 与 请同学们把坐标系中 , , , 各点的'坐标用三角函数表示出来.

生: , , ,

师:线段 与 有什么关系?为什么?

生:因为△ ≌△ ,所以 .

师:请同学们用两点间的距离公式把 表示出来并加以整理.

展开并整理,得

所以 (记为 )

这个公式对任意的 , 均成立,如果我们把公式中的 都换成 ,又会得到什么?

生:

(记为 )

(2)例题分析

【例1】不查表,求 及 的值.

因为题目要求不查表,所以要想办法用特殊角计算,为此 化成 , 化成 ,请同学们自己利用公式计算.

注:拆角方法并不惟一.事实上,如果求出 ,那么 ,再者, 也可写成 ,甚至 等均可以.

【例2】已知 , , , ,求 的值.

分析:观察公式 要算 应先求出 , .

解:由 , 得

又由 , 得

【例3】 不查表,求下列各式的值:

(1) ;

(2) ;

(3) .

解:(1)

(2)

(3)

【例4】  证明公式:

(1) ;(2)

证明:(1)利用       可得

(2)因为上式中 为任意角,故可将 换成 ,就得

练习(投影、学生板演)

(1)

(2)已知 , ,求

解答:

(1)逆用公式

(2)凑角:∵ ,∴ ,故

说明:请同学们很好体会一下,上述凑角的必然性和技巧性,并能主动尝试训练,以求熟练。

3.演练反馈

(1) 的值是( )

A. B. C. D.

(2) 等于( )

A.0 B. C. D.2

(3)已知锐角 满足 , ,则 为(      )

A. B. C. 或 D. ,

参考答案:(1)B; (2)B; (3)A.

4.总结提炼

(1)牢记公式“ ”结构,不符合条件的要能通过诱导公式进行变形,使之符合公式结构,即创造条件用公式.

(2)在“给值求值”题型中,要能灵活处理已、未知关系,如已知角 、的值,求 ,应视 、 分别为已知角, 为未知角,并实现“ ”与“ ”及“ ”之间的沟通: .

(3)利用特值代换证明 , ,体会 的强大功能.

(四)板书设计

1.平面内两点间距离公式

2.两角和余弦公式及推导

例1

例2

例3

例4

练习反馈

总结提炼

篇5:《两角差的余弦公式》教学反思

两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。

在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。

刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的`教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。

这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。

《完全平方和(差)公式》教学反思

下学期 4.8正弦函数、余弦函数的图像和性质

正切和余切教学设计

下学期 4.8 正弦函数、余弦函数的图像和性质2

乘法公式教学反思

《公式法因式分解》教学反思

完全平方公式教学反思

完全平方公式教学反思

《长方体和正方体体积的统一公式》教学反思

八年级数学乘法公式教学反思

《两角和与差的正弦余弦正切公式的教学反思(精选5篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档