欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

数据挖掘技术在软件工程的运用工程论文

时间:2022-05-20 13:30:55 其他范文 收藏本文 下载本文

【导语】这里小编给大家分享一些数据挖掘技术在软件工程的运用工程论文(共12篇),方便大家学习。这里给大家分享一些数据挖掘技术在软件工程的运用工程论文(共12篇),供大家参考。

数据挖掘技术在软件工程的运用工程论文

篇1:数据挖掘技术在软件工程的运用工程论文

1在软件工程中应用数据挖掘技术的重要意义

1.1录入正确的信息

由于数据挖掘技术的运算功能较强,常规的数据信息系统在实际的运算过程中,会消耗掉大量的时间,甚至由于数据庞大会对运算系统造成一定影响,在数据挖掘技术的作用下,不会出现这种问题,还能节省运算时间。另外,在对数据进行运算的过程中,不会出现数据丢失的现象。在大规模数据中,有些数据的应用价值不大,属于垃圾数据,会影响系统的整体效率,利用数据挖掘技术,能够保留精准的数据,摒除垃圾数据,为数据质量提供相应的保证。

1.2缩减数据处理时间

利用挖掘数据技术能够进行数据的转换,将杂乱的数据进行整合与处理,转变为试用形式。从这些数据的角度进行分析,能够进行科学化的调用,在进行数据的挖掘过程中,会对于不清楚的数据进行清理,保证得到数据的科学性。从各个不同的角度,对于数据的真实性进行考核,并将数据进行整合。也就是说,将分析的结果提供给管理人员,合理的运用到软件工程中,进而缩减数据处理时间。

篇2:数据挖掘技术在软件工程的运用工程论文

2.1数据挖掘技术在软件工程中的发展

首先,由于数据挖掘技术是立足于数据库进行发展的,随着技术的不断发展与进步,已经从理论转换为实践应用,并且在实际应用中发挥着重大作用。另外,软件工程是工程化的学科,能够根据项目任务的差异、资金及客户需求进行产品的研发。由于原有的工程软件开发较为复杂,但经过发展迅速壮大,实际的应用性较强,会更多的被应用于项目当中,与此同时,利用数据挖掘技术主要就是对软件工程的数据库信息进行挖局,对于软件工程的可持续发展有着重大的意义。

2.2挖掘信息

其次,软件工程能够对信息的挖掘进行掌控,实际的应用范围较广,软件工程能够将软件开发时的信息进行统一,进而保证在进行软件开发的过程中,能够将数据进行及时更新,进而从根本上保证开发的质量,保证项目任务的顺利实施。就目前实际情况进行分析,在数据挖掘中还包含着软件开发更改的数据信息,能够更加直观的.看出软件内部的差异,还能够利用这一特点及时发现运用过程中产生的问题,并结合实际情况,及时作出有效的解决措施,保证项目目标任务能够顺利完成。

2.3挖掘软件漏洞

再次,数据挖掘技术中,最重要的一点就是对软件漏洞进行检测,在实际的运用过程中,能够及时发现软件开发中产生的错误,并进行修整与优化,及时找到处理的方法,在一定程度上保证软件工程的安全等级与质量。另外,在利用数据挖掘技术对漏洞进行检测的过程中,相关的技术人员要明确检测的内容,还要立足于客户基本需求,进一步找到相对应的测试内容,利用合理的方式对软件进行测试,进而得到各方面都完美的方案。与此同时,由软件工程对数据信息进行处理,在找到漏洞信息后,对多余的信息进行及时处理,进而从根本上保证数据信息的科学性与完整性。在实际的运用过程中,相关的工作人员要根据科学化的方案,合理的将数据挖掘技术运用到软件工程中,利用合理化的方式对于软件工程中的漏洞问题进行分析,及时找出错误根源,使操作者能够更加容易进进行漏洞的挖掘与修复工作。就目前实际情况进行分析,数据库挖掘技术主要就是将数据信息进行转化,并进行整合存到信息库中,再由相关的工作人员结合实际需求,对于软件进行测试,查看是否存在漏洞,利用这种方式保证后续工作的顺利开展,促进软件工程的健康发展。

2.4挖掘软件执行记录

在数据挖掘技术的应用过程中,软件执行记录尤为重要,在进行数据挖掘的过程中,相关的技术工作人员要对数量进行合理分析,对于不同代码之间的关系进行探究。使相关的工作人员能够利用软件系统的行踪进行管理与探究,进而在一定程度上促进软件工程的稳步发展。

2.5挖掘开源软件代码

最后,对于开源软件代码进行挖掘,能够将其规划到软件工程中挖掘技术要运用的对象挖掘类型房中,由于开源软件代码技术通常都被应用到代码克隆的检测过程中,能够更加简单的对于代码漏洞进行处理,通过这种方式在一定程度上提高了工作的高效性。

3结束语

综上所述,在软件工程项目中,合理化的运营数据挖掘技术,能够有效促进软件工程的发展,结合实际应用状况进行分析,可以了解到数据挖局技术的发展空间广阔,相关的技术人员要认识到其重要程度,并进行不断改进,将内在的理论与外在价值进行充分挖掘。通过这种方式从根本上强化专业素质,将数据挖掘技术的作用发挥到最大化,促进软件工程的健康长远发展。

参考文献

[1]龙艳.分析数据挖掘技术在软件工程中的应用[J].科技风,(02):83.

[2]梅拥军.软件工程中数据挖掘技术的应用[J].电子技术与软件工程,2019(01):141.

[3]王应邦,孔春丽.论软件工程中数据挖掘技术的应用[J].农家参谋,(18):226.

篇3:软件工程数据挖掘开发测试技术论文

软件工程数据挖掘开发测试技术论文

1.软件工程数据的挖掘测试技术

1.1代码编写

通过对软件数据进行分类整理,在进行缺陷软件的排除工作以后,根据软件开发过程中的各种信息进行全新的代码编写。基于代码编写人员的编写经验,在一般情况,对结构功能与任务类似的模块进行重新编写,这些重新编写的模块应遵循特定的编写规则,这样才能保证代码编写的合理有效性。

1.2错误重现

代码编写完成以后开发者会将这些代码进行版本的确认,然后将正确有效的代码实际应用到适当版本的软件中去。而对于存在缺陷的代码,开发者需要针对代码产生缺陷的原因进行分析,通过不但调整代码内的输入数据,直到代码内的数据与程序报告中的描述接近为止。存在缺陷的代码往往会以缺陷报告的形式对开发者予以说明,由于缺陷报告的模糊性,常常会误导开发者,进而造成程序设计混乱。

1.3理解行为

软件开发者在设计软件的过程中需要明确自己设计软件中每一个代码的内容,同时还需要理解其他开发者编写的代码,这样才能有效地完善软件开发者的编写技术。同时,软件开发者在进行代码编写的过程中,需要对程序行为进行准确的理解,以此保证软件内文档和注释的准确性。

1.4设计推究

开发者在准备对软件进行完善设计的过程中,首先需要彻底了解软件的总体设计,对软件内部复杂的系统机构进行详细研究与分析,充分把握软件细节,这有这样才能真正实现软件设计的合理性与准确性。

2.软件工程数据挖掘测试的有效措施

2.1进行软件工程理念和方法上的创新

应通过实施需求分析,将数据挖据逐渐演变成形式化、规范化的需求工程,在软件开发理念上,加强对数据挖掘的重视,对软件工程的架构进行演化性设计与创新,利用新技术,在软件开发的过程中添加敏捷变成与间件技术,由此,提高软件编写水平。

2.2利用人工智能

随着我国科学技术的不断发展与创新,机器学习已经逐渐被我国各个领域所广泛应用,在进行软件工程数据挖掘技术创新的过程中,可以将机器学习及数据挖掘技术实际应用于软件工程中,以此为我国软件研发提供更多的便捷。人工智能作为我国先进生产力的.重要表现,在实际应用于软件工程数据的挖掘工作时,应该利用机器较强的学习能力与运算能力,将数据统计及数据运算通过一些较为成熟的方法进行解决。在软件工程数据挖掘的工作中,合理化的将人工智能实际应用于数据挖掘,以此为数据挖掘提供更多的开发测试技术。

2.3针对数据挖掘结果进行评价

通过分析我国传统的软件工程数据挖掘测试工作,在很多情况下,传统的数据挖掘测试技术无法做到对发掘数据的全面评价与实际应用研究,这一问题致使相应的软件数据在被发掘出来以后无法得到有效地利用,进而导致我国软件开发工作受到严重的抑制影响。针对这一问题,数据开发者应该利用挖掘缺陷检验报告,针对缺陷检验的结果,制定相应的挖掘结构报告。同时,需要结合软件用户的体验评价,对挖掘出的数据进行系统化的整理与分析,建立一整套严谨、客观的服务体系,运用CodeCity软件,让用户在的体验过后可以对软件进行评价。考虑到软件的服务对象是人,因此,在软件开发的过程中要将心理学与管理学应用于数据挖掘,建立数据挖掘系统和数据挖掘评价系统。

3.结束语

综上所述,由于软件工程数据挖掘测试技术广阔的应用前景,我国相关部门已经加大了对软件技术的投资与开发力度,当下,国内已经实现了软件工程的数据挖掘、人工智能、模式识别等多种领域上的发展。

篇4:数据挖掘技术在WEB的运用论文

数据挖掘技术在WEB的运用论文

一、数据挖掘的背景

互联网、计算机信息技术迅猛的发展势头,数据从结构化存储以及转化为非结构化的存储,数据存储形式的转变,不同数据类型的存储变多,音频、视频等大格式的信息存储在多个应用中实现。行业中的计算机化、信息化和网络化,使计算机和服务器上积累了各种各样海量的数据。传统的人工分析已经不能满足和适应如此大量的数据,各行各业都产生了巨大数据信息,包括生产加工、研究、物流运输、客户、营销、售后等数据,人们却不知道怎么利用这些数据实现价值的增长。如果能将这些数据进行挖掘分析,很可能会产生巨大的商业价值,很多有价值的信息可以被发现。现在,越来越多的公司和企业意识到数据挖掘的重要性,但是怎么能从如此海量的数据中挖掘出有价值有用的信息,已经成为研究的热门话题。在传统的数据分析基础上,相关人员结合新开发人工智能和数据挖掘等相关的技术,数据库孕育而生,让我们能从海量的数据中挖掘出有价值的信息,促使信息化的发展,称之为数据挖掘。

二、数据挖掘的过程

1、数据收集。将要进行数据分析的海量数据资源收集到数据仓库中。把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,抽象出分析相关的数据,进行非结构化数据的分类,筛选出不相关或者无价值的数据,减少数据集的容量。

2、数据清洗和转换。数据清洗是为了删除掉无用的数据信息。数据转换的目的最直接的是把所有信息统一化。将完整,有效的信息存入数据仓库。

3、模型建立。模型建立是数据挖掘的核心阶段。首先,要和相关领域的专家组成团队,进行需求分析,明确数据挖掘的目的和具体的数据挖掘任务。根据不同的任务,选择相关算法,利用这些算法来建立模型,再用专业的模型评估工具比较模型的准确度。即使是同一种算法,参数选取的不同,所建模型的'准确度也不一样。

4、模型评估。从商业角度来讲,模型评估是对我们所建立的预测模型的正确性进行价值评估,如若模型中模式无价值,就要重复数据挖掘过程中的2~4步,即数据清洗和转换、模型建立。

5、知识表示。将数据挖掘最后的结果以最直观的方式呈现给用户,通常用数据图形展示工具来表示。

6、应用集成。将数据挖掘集成到现实的实际应用中。例如,CRM中有了数据挖掘功能,就可以对客户进行等级分类。

7、模型管理。根据不同数据模型的生命周期做好数据应用和管理。

三、WEB数据挖掘

基于WEB内容的挖掘就是针对网页内容进行数据挖掘,通过用户对网页访问的交互,留下的数据信息进行收集分类,完成数据挖掘。目前对文本内容的挖掘技术取得了一定的成果,对图像、音频、视频等各种多媒体数据的数据挖掘技术都开始采用非结构化大数据应用技术来完成。基于WEB结构的挖掘是发现页面、文档和WEB的结构,主要是发现WEB潜在的结构模式,利用分析这些结构我们可以得到很多潜在有价值的信息。基于WEB使用的数据挖掘,即针对用户的访问网页的轨迹收集分析。WEB内容的挖掘和结构的挖掘面对的主要挖掘对象是大规模的轨迹数据,对挖掘数据进行分析可以让管理者了解用户的不同需求,从而为用户提供个性化的服务。

四、数据挖掘在WEB中个性化定制的应用

通过网站与用户的交互,可以得到用户访问的内容、时间、方式、频率等,从中发现潜在的商业价值,通过价值数据进行数据挖掘以及算法分析得出商业结论。就可以根据挖掘到的信息对这些客户进行特定的推销策略,进行个性化定制。在商业领域中,通过对相似轨迹数据的客户进行分类,分析他们的共性,帮助管理者发现不同客户的需求和兴趣,提供适宜各类人的服务。按照不同用户的不同兴趣和爱好,向用户提供动态的浏览建议。对大多数用户来说,如果可以访问该网站可以体会到量身定做的服务,那么数据挖掘个性化定制就成功完成了。

五、数据挖掘技术在WEB中的应用

网站的功能设计及其版面的内容直接影响到网站的访问率。相关人员发现用户的需要和兴趣,对需求强烈的地方提供优化,使用数据挖掘去发现页面间的关联,针对不同的用户动态调整网站的设计和链接,使用户可以便捷地访问到自己想要访问的页面。将数据挖掘技术的在WEB中的应用,吸引更多的用户。随着数据挖掘技术在WEB中的应用,用户可以通过分析挖掘的结果了解各种客户的需求和喜好,得到各种定制个性化服务。随着互联网上轨迹数据信息量的急速增长,不断复杂化的数据结构,挖掘技术也面临着一系列新的问题和挑战。

参考文献:

[1]胡继平、数据挖掘技术[J]、景德镇高专学报,

[2]NguyenT,SrinivasanV、AccessingrelationaldatabasesfromtheWorldWideWEB、In:ProcofIEEEDataEngineering[J]、NewOrleansLouisiana,

篇5:浅析软件工程数据挖掘研究进展论文

浅析软件工程数据挖掘研究进展论文

摘要:随着计算机信息网络的快速发展,数据挖掘在软件工程中的地位越来越突出。软件工程数据挖掘是在冗余的数据中发现有用的数据,从而得到更好地利用。社会的发展,科技的进步使得社会进入了网络信息热时代,随之计算机软件也不断增加,人们获取的信息大部分是人手动操作软件获得的,这样的信息量具有一定的局限性。因此,为了满足当今社会的需要,必须借助于软件工程数据挖掘的手段。

关键词:软件工程;数据挖掘;研究现状

中图分类号:TP311 文献标识码:A 文章编号:1009-304426-0020-02

利用数据挖掘技术对大量冗余的数据进行筛选从而得到少量精确的信息。冗余的数据是指既包含有用信息有包含无用信息,利用数据挖掘技术剔除掉多余的无用信息留下有用信息,这样既可以提高手机数据的质量又可以提高工作效率。所以,数据挖掘技术在当前的软件工程中起着越来越重要的作用。数据挖掘技术提取、筛选、分析和整理数据比人工操作软件获得的数据更精确更高效。同时,使用这种技术为软件开发者提供了有利的条件,它可以给软件开发者提供一些对其开发软件有用的信息。软件开发者想要更有效率的开发出更高质量的软件,就必须获得更多的更有用的数据,而想要收集和整理出有用数据就需要借助数据挖掘技术来实现,进而提高工作效率。

1 数据挖掘的基本概述

软件工程数据主要是指开发软件过程中所涉及的各类数据,如需求分析、可行性分析、设计等文档,开发商通信、软件注释、代码、版本、测试用例和结果、使用说明、用户反馈等信息数据,一般情况下其是软件开发者获取软件数据的唯一来源;而数据挖掘是指在海量数据中集中发现有用知识或信息的过程。

软件工程数据挖掘的工作原理 主要包括数据预处理阶段、挖掘阶段以及评估阶段三个方面。在挖掘阶段主要是运用分类、统计、关联、聚类、异常检测等一系列算法的过程。在评估阶段数据挖掘的意义主要在于其结果应易被用户理解,其结果评估主要有两个环节分别是模式过滤和模式表示。

数据挖掘在计算机软件工程中的研究相当多,它是分析数据的一种新颖方式。目前,随着社会工作的复杂度,需要更加完善的软件,因此对于软件代码的数量也在急剧增加进而导致了数据量的快速增长。而传统的数据计算方式已经不能满足目前对于大量数据进行分析的要求,所以,研究者希望能够发掘出一种新的数据分析方式更高效的整理出有用的数据信息。软件开发中会积累大量的数据,比如说文本数据,测试数据,用户信息数据以及用户体验反馈数据等等,软件开发者为了开发出更好的软件就必须分析和整理这些数据。但是,目前软件工程开发的软件越来越大,其数据越累越复杂对于数据的处理已经超出了人工处理的能力的范畴,所以说继续使用传统数据处理的方式来收集,整理和分析数据已经不可能实现。因此,推动了人们对于新的数据处理方式的研究,所以才提出了软件工程数据挖掘技术。

2 软件工程数据挖掘的应用

随着计算机软件工程的发展,可以发现传统的数据挖掘技术具有很多的不足,存在一定的缺陷。传统的数据挖掘技术的定位系统不完善,定位不精确,并没有体现出数据挖掘技术的`高性能,它不足以满足当代对于数据处理的要求,因此需要对传统的数据挖掘技术进行改进和完善,这是我们目前的首要任务之一。为了迎合现代化网络信息技术的快速发展,需要发掘出新的数据处理模式,就是在这样的背景条件下,诞生了软件工程数据挖掘技术。相比于存在很多缺陷与不足的传统软件工程而言,软件工程数据挖掘技术更加简单、方便、高效以及精确。软件工程数据挖掘技术并不需要特定的技术平台,体现了其普适性。当前,我国已经开始深入的研究软件工程数据挖掘技术,但是,仍然需要更深的开发其性能以便更好地满足社会的需求。

3 软件工程数据挖掘面临的挑战

软件工程数据相比于普通数据更加复杂,所以对于软件工程数据进行处理具有很大的挑战性。处理软件工程的大量数据具有:软件工程数据复杂性,软件工程的数据处理非传统以及需要严格精确的软件工程数据的分析结果等三方面的困难。

3.1 对数据复杂性的分析

软件工程数据包括结构化数据和非结构化数据。软件工程中所产生的缺陷报告以及各种版本信息构成了结构化数据信息;而软件工程处理过程中所产生的代码信息和文本文n信息构成了非结构化数据信息。由于这两类数据包含的具体内容不同,所以需要分别处理这两种数据,需要使用不同的算法对他们进行处理。虽然说需要不同方式处理这两种数据但是并不表示这两种数据之间没有任何联系,事实上,它们之间存在着重要的对应关系。例如:代码中存在着缺陷报告,版本信息中存在着对应的文档信息,由于它们之间存在着这样的对应关系,所以使得人们不能很好地对其进行整体分析,这就促使了人们开发出一种新的算法,新的数据分析技术能够同时将结构化信息和非结构化信息这两种对应数据一起挖掘出来。

3.2 对数据处理非传统的分析

分析和评估软件工程数据挖掘出来的信息,这是数据挖掘过程的最后一步。客户是软件工程数据挖掘数据处理的最后宿体,软件开发者需要对最终挖掘出来的数据进行转变,格式转变是为了满足广大客户对于数据不同的要求。但是,由于需要对数据进行格式转变,相当于增加了一定的工作量,那么软件工程数据挖掘的效率则会被大大降低。对于客户而言,他们需要的信息各种各样并不单一,比如说客户可能会同时需要具体的例子和编程代码等;或者说需要具体例子和缺陷报告等;或者三者皆需要。由此可见,我们仍然需要改进和完善软件工程数据挖掘技术来提高其效率。怎样才能做到让客户得到满意的数据挖掘结果呢?那么就需要高效的数据挖掘技术将各类信息进行归纳总结,改变其格式。这样的技术,不仅仅可以满足客户需求而且还可以使软件开发者从中得到更大的利益。

3.3 对数据挖掘结果好坏的评价标准

对于传统的数据挖掘技术而言,它也有一套自己的对于数据结果处理好坏的分析标准,而这个标准对于传统数据挖掘技术数据处理的分析较准确。但是,在当前的软件工程所要处理的数据量很大,传统的评价标准已经不能满足现在的数据分析要求;使用不同的数据结果评价标准来评判不同的数据挖掘结果。然而不同的评价标准之间的联系并不紧密,因此就需要开发者针对不同的数据类型做出不同的评价分析标准以便满足客户需求。想要对数据分析结果是否准确,数据挖掘的信息是否合理等等这些不同的问题进行更加深刻的了解,就要求开发者有独特的见解,对于数据结果是否精确有一定的判断能力。总之,获取准确的信息就是软件工程数据挖掘的目的。所以,最后获得的数据是否满足要求就是评判软件工程数据挖掘结果是否完美的标准。endprint

4 对软件工程数据挖掘应用进行分析

4.1 对软件数据挖掘技术进行分析

在软件开发的过程中,数据挖掘技术包括两个方面:(1)程序编写;(2)程序成果。在这个过程中,程序结构和程序功能技术的主要作用就是检索出有效的信息。提升信息的有效性需要联系到客户的实际需要,同时也需要对程序编写过程进行智能化培训。将调用、重载和多重继承等关系家合起来进行有效的记录各种相关信息,重视静态规则的同时利用递归测试的方式来分配工作,从而更有效的掌握关联度之间的可信性。

4.2 做好软件维护中的软件工程数据挖掘工作

在软件维护的过程中,软件修复和软件改善工作依赖于数据挖掘技术。数据挖掘技术在软件缺陷以及软件结构等也起到了重要的作用。软件修复即维护者通过依据缺陷分派进行有效的评估并改善缺陷程序进而确定修复级别或者维护者可以选择缺陷修复方式,无论哪种方式最终目的都是进行软件修复来保证数据挖掘的高效性。缺陷分派即将缺陷转化为文本类型,采取有效措施来进行修复。但是,这样的方式它的实际准确率并不高,因而需要利用强化检测来完善缺陷报告技术。

4.3 注重高性能数据挖掘技术开发工作

数据挖掘技术体现在软件开发工作中的创新性不可或缺,在实际的工作过程中,目前的软件工程数据挖掘更加重视两个工作:(1)规则分析方式;(2)项目检索工作。总而言之,想要高效快速地寻找病毒,并对其进行全方位分析和评估得到准确的病毒数据需要高性能数据挖掘技术。只有提升数据分析的可行性,提升软件开发安全性能,才能更好地实现软件工程的良好发展。

5 总结

综上所述,稻萃诰蚣际醯挠τ梅浅9惴海比如说分析代码、软件故障检测以及软件项目管理等三个方面应用较多。值得关注的是,当前对于数据挖掘技术的研究还不够成熟。因此,研究者需要对软件工程数据挖掘技术进行深入的研究,从而能够促进软件更好地开发和管理。相信在不久的将来,我们一定可以在数据挖掘方面取得非常好的优化效果。

参考文献:

[1] 江义晟.软件工程数据挖掘研究进展[J].电子技术与软件工程,(22).

[2] 胡金萍.探析软件工程数据挖掘研究进展[J].电脑知识与技术,2017(34).

[3] 马保平.关于对软件工程中的数据挖掘技术的探讨[J].电子技术与软件工程,(19).

[4] 徐琳,王宁.数据挖掘技术在软件工程中的应用分析[J].数字通信世界,2015(8).

篇6:数据挖掘技术在银行信贷风险的运用论文

数据挖掘技术在银行信贷风险的运用论文

【关键词】数据挖掘;信贷风险;管理

当前,我国很多银行小型网点受到硬件设施、数据处理技术的等方面限制,无法有效的把握贷款相关信息,进而无法准确、有效地评估信贷风险,容易出现决策失误现象,因此对银行信贷风险管理期间数据挖掘技术的应用开展深入研究,对于降低信贷风险、维护金融市场稳定有着重要的指导意义。

一、数据挖掘与银行信贷风险概述

(一)数据挖掘概述

数据挖掘是指在海量数据中将一些隐藏,却又具有价值的数据进行发现、提取的方法,具体是指将一些不为人知的、具有未知性、规律性、隐蔽性的'信息进行发现,提取的整个过程。

(二)银行信贷风险概述

信贷风险可以划分为市场性风险、非市场性风险,其中市场性风险多数来自于借款企业、借款人的生产以及销售风险,主要是指借款放在生产、销售自身产品期间,由于市场条件、生产技术的变动的所引起的风险。非市场风险包括社会风险、自然风险,自然风险是指因自然因素造成借款人的经济遭受损失,无法偿还信贷本息风险;社会风险表示由组织、个人在社会上的某些行为所引起的风险。

二、数据挖掘在银行信贷风险管理中的运用

(一)应用原理

利用数据挖掘,可利用不同类别贷款特征建立贷款管理模型,一旦有新贷款申请,当即利用模型来判断贷款类别,银行可依据模型的类别,对贷款申请采取针对性措施,同时,在应用数据挖掘期间,会每隔一段时间,就对每一笔贷款开展重新分类,进而有效提高信贷风险管理力度。

(二)数据挖掘具体应用

银行信贷原始数据描述。我国一些银行网点设立于县级,乃至是县级以下的地域,这些小型银行所开展的贷款业务主要面对来自于农村地区的客户,例如某商业银行开展的小额贷款业务,分为农户、商户两种,本次研究以商户小额贷款为研究对象。商户小额度贷款可分为商户联保贷款、商户保证贷款,在对此类小型某商业银行的商业信贷风险管理开展数据挖掘期间,为了不会侵犯到贷款客户的隐私,避免客户信息的泄露,在数据提取阶段,将商户的姓名、居住地址、店铺位置、企业名称、联系方式、营业执照编号等数据信息进行过滤,经过对海量客户相关数据分析之后,将数据提取确认为如下字段:

(1)客户代码;

(2)婚姻状况;

(3)教育程度;

(4)主营业务;

(5)经营年限;

(6)年龄;

(7)贷款种类;

(8)贷款额度;

(9)贷款期限;

(10)客户流动总资产;

(11)固定总资产;

(12)客户负载;

(13)客户还款方式;

(14)客户月净收入;

(15)客户月投入;

(16)客户信用信息[1]。

2.数据预处理。数据采集的第二步,就是对错误、空值数据进行预处理,数据预处理的过程为数据收集―――数据选择―――数据清理―――数据转换,在上一部分,针对某某商业银行信贷管理业务,进行了17个属性字段的数据收集,随后,以随机的方式在数据库中对100条贷款用户信息记录进行收集、整理,整理过后经过处理,去除无参考价值的数据,对剩余的属性字段进行概化,如表1:在本次开展分类抽取整理的客户资料当中,有52个为已经分类的案例,其中关注类9例,次级类6例,可疑类5例、损失类2例、正常类30例,此外,一般损失类借款人的相关财务资料都难以获取,因此只有其他4类参与,即:正常类=30,关注类=9;次级类=6,可疑类=5,损失类=2。3.构造决策树。将上表中过滤后的数据,转换成CSCDataFiles格式时WEKA可以读取,随后使用WEKA建造模型,选择建立决策树方法建立决策树,采用准确率最高的J48分类器。4.评估模型。以分类模型和样本数据作为依据,利用测试样本的百分比来表示模型预测的准确率,假设正确率可接受,那么就可以用于指导对客户群的分流,J48分类器通过默认粉分层10折较差验证,准确率高达82%,为可以接受范围,此刻,当银行收到新的贷款申请,就可以利用模型得出估计的类别,进而对不同的类别采取针对性的措施,如果贷款类型为正常范围,直接审批通过,弱势关注范围,就需要对其加强审查、加强贷后检查或是对其进行拒绝,进一步提高信贷资产安全性,有效控制银行信贷风险[2]。

三、结语

本次研究,针对银行信贷风险管理中数据挖掘的应用进行了深入研究,在分析数据挖掘、银行信贷风险的基础上,分别对数据挖掘中的原始数据描述,、数据预处理、决策树构造、评估模型开展深入的研究,通过本次研究,可以明确数据挖掘的每个步骤经过,相关行业可以借鉴本次研究,将数据挖掘应用到银行的信贷风险管理中,以确保信贷资产的安全性,降低信贷风险。

参考文献

[1]夏春梅.数据挖掘技术在银行信贷风险管理中的应用[J].现代电子技术,(4):78-81.

[2]蒋仁云.关于银行信贷风险管理与防范的研究[J].科技风,2017(3):221-221.

篇7:软件工程数据挖掘进展分析论文

【摘要】随着改革的开放,科技的飞速发展,科技的发展速度已经超过了人们的脚步,近年来,我们国家的计算机技术越来越成熟,计算机软件也越来越广泛,人们从前获取计算机软件信息的方法是手动获取,但手工获取的信息量是有一定限度的,不能满足现代软件的需求,所以,为了解决这个问题,本文着重于软件工程数据挖掘的研究进展。分别从几个不同的方面对软件工程数据挖掘研究进行了探讨。

【关键词】软件工程;数据挖掘;数据表示;数据预处理;机器学习

1前言

软件工程的数据挖掘指的是在大量的数据中发现有用的信息。因为软件工程的发展前景很广阔,而且软件工程数据挖掘是软件开发不可或缺的一部分,所以现在在软件工程领域以及一些相关领域内软件工程数据挖掘的研究非常火热,人们都争取尽量提高软件工程数据挖掘的速度,有用信息比率,以及智能识别等。从而让软件工程更具特色,为人们提供更大的便利。

2基本概念与技术挑战

2.1基本概念

软件工程在软件开发过程中会累计很多的数据,包括文档数据,测试数据以及用户数据和用户反馈数据,软件工程的开发者为了获取软件的信息就要使用这些数据,但是软件工程开发的软件越来越大,软件工程的数据量不再是手工可以处理的数量级,而且及其复杂,所以人们使用传统的方法来收集数据是非常困难的,基本上是不可能的,所以人们必须研究快速处理数据的方法,也就是软件工程数据挖掘技术。

2.2软件工程开发的过程及其相关信息

软件工程开发时所需要的最重要的一条基本原则就是软件工程学,软件工程学讲的就是软件工程开发。软件工程开发的基本步骤如下,首先进行可行性分析,需求分析,开发者需要先进性调研,来确定用户对软件功能的需求,在确定了大致的软件开发方向之后,开发者开始编写软件代码,然后根据代码的测试进行修改完善,在软件公布之后要持续地为软件进行维护,升级。在软件的开发阶段,每个开发者都不完全了解整个开发的过程,同时又不知道软件的整体信息,所以这些开发者如果缺少这些信息,他们就会无法进行继续开发,从而导致停工。

2.3软件工程的数据挖掘过程与任务

软件工程数据挖掘主要有三项任务,第一步是对数据进行预处理,第二步是对数据进行挖掘,第三步是对挖掘的结果进行分析。①数据预处理,待挖掘的大量数据混杂在了一起,它们的格式和形式是否适合进行数据挖掘,是否符合当前任务的数据特征,这些都是未知的,需要对其进行预处理,预处理就是将大量的数据进行改造,使其都变成适合进行挖掘的形式,并且变成符合任务的.数据,整个数据挖掘过程中,预处理是最费时费力的过程,主要的手段是将数据向量化和将数据降维处理。②数据的挖掘,数据的挖掘其实就是对预处理之后的数据进行整体探索,找到其中一些有用的信息,所谓有用的信息,指的就是反应本质的数据,还有比如一些具有一定的规律的数据,将这些数据找出来就是软件工程数据挖掘的目的,数据的挖掘主要分为几种,又频繁序列的整理,关联规则的整理,还有对数据进行分类等。③软件工程数据挖掘的结果分析,结果分析像是对一项工程进行检测验收一样,对挖掘之后的数据信息进行检测,将有用的信息展示出来,也就完成了整个软件工程数据挖掘过程,这些挖掘之后的数据很有价值,对计算机软件和客户的使用效果而言有着重要的意义。

3软件工程数据挖掘面临的挑战

因为软件工程的数据与其他的普通数据不同,所以软件工程数据的处理有着很大的困难,其困难主要有三个方面:①软件工程的数据复杂化;②软件工程的数据处理非传统;③对于软件工程数据挖掘的结果分析的标准非常严格。

3.1数据复杂化

软件工程的数据主要分为两大类:①结构化数据;②非结构化数据了。首先结构化的数据主要由缺陷报告和版本信息组成,而非结构化的数据则是由代码和文档组成。这两类数据不能使用同一种算法进行计算,但是这两类数据之间又包含者重要的对应关系,比如一个版本信息中对应包含着一定的文档,而一个代码中又有着缺陷报告,这种纠缠不清的关系让人们很难对其进行整体分析,所以人们为了在数据挖掘时将这两种数据同时挖掘出来,必须开发与之对应的新型算法,这样才能保证不漏掉很多有着复杂关系的结构化数据和非结构化数据。

3.2非传统分析

上文提到,软件工程数据挖掘的过程最后的步骤就是对挖掘之后的数据信息进行分析评估,而数据的处理结果最终要交到客户手中,对于客户的各种不同的数据需求,开发者要将挖掘之后的数据进行格式上的转变,这样大大地降低了软件工程数据挖掘的效率,而且往往客户要求的信息远远不止一种信息,有时还会需要具体的事例,编程的代码,缺陷的报告等等信息,所以,软件工程数据挖掘技术还需要进行新的完善,将要提交的信息进行归类,改变格式化,以及对各种需求都要满足而且保证效率的技术,做到让客户对数据挖掘结果满意,开发者还能从中获取最大利益的技术。3.3数据挖掘结果的评价标准在从前,传统的数据挖掘技术有着完善的对结果的分析标准,而现在,面对海量的软件工程数据,这套规定已经不再适用,对于不同的数据挖掘结果,对应着不同的数据结果分析评价标准,每个评价标准之间并没有太多的联系,这就需要开发者对不同类型的数据挖掘结果制定不同的分析标准,同时也需要满足客户的要求,开发者要对数据的结果有着独特的理解,才能对其结果是否满足要求,挖掘的是否成功,这些不定量的问题进行透彻的了解。总而言之,软件工程数据挖掘最终还是为了获取信息,所以,整个软件工程数据挖掘的结果是否将问题完美的解决的标准还是最终的数据是否满足要求,所以,上述挑战将会对数据挖掘的结果造成影响,为了解决这些问题,人们还需要开发新的技术,最终达到软件工程数据挖掘技术的完善。

篇8:软件工程数据挖掘进展分析论文

软件工程数据挖掘技术对计算机软件的开发,用户的完美体验都有着重要的意义,所以以后软件挖掘技术还会继续的发展下去,要完成软件工程数据挖掘技术的完善,要做到以下几点:①对已经发现的数据挖掘问题进行开发,就比如结构化数据与非结构化数据的捏合整理,这正是人们一直都没做到的重点难点,要攻破这一难关,人们必须在计算结构化与非结构化数据挖掘时舍弃传统的数据算法,开发新的适合这两数据的算法,这样才能一步到位将结构化数据与非结构化数据一起运算出来。②对将要面临的软件工程数据挖掘技术的难题进行预案,对于这些问题要做好准备,开发者要丰富自己的知识面,以免今后遇到问题时不知道怎么办。比如恶意程序,电脑高手病毒的处理,这些在未来将会越来越多,也就需要开发者对其做好先前的准备,从而在问题来临的时候迎刃而解。

5结束语

随着人们对事物的追求便利,软件工程的应用越来越广泛,所以,对于软件工程中的最重要部分软件工程数据挖掘技术也要大力发展,现在有很多软件工程数据挖掘技术正在兴起。相信随着研究的不断深入,软件工程数据挖掘工具将会越来越实用化、智能化,乃至实现真正的自动软件挖掘。

参考文献

[1]李新,张晓静,米燕涛.软件开发过程中的数据挖掘[J].石家庄职业技术学院学报,(02):10~12.

[2]赵丽坤,陈立文,张国宗.基于数据挖掘技术的软件项目管理体系[J].经营与管理,2012(12):34~35.

[3]邹文东,张立厚.数据挖掘在水环境分析信息化中的应用[J].图书馆论坛,(05).

篇9:科研数据挖掘技术论文

一、数据挖掘相关概念

数据挖掘技术是近些年发展起来的一门新兴学科,它涉及到数据库和人工智能等多个领域。随着计算机技术的普及数据库产生大量数据,能够从这些大量数据中抽取出有价值信息的技术称之为数据挖掘技术。数据挖掘方法有统计学方法、关联规则挖掘、决策树方法、聚类方法等八种方法,关联规则是其中最常用的研究方法。关联规则算法是1993年由R.Atal,Inipusqi,Sqtm三人提出的Apriori算法,是指从海量数据中挖掘出有价值的能够揭示实体和数据项间某些隐藏的联系的有关知识,其中描述关联规则的两个重要概念分别是Suppor(t支持度)和Confi-dence(可信度)。只有当Support和Confidence两者都较高的关联规则才是有效的、需要进一步进行分析和应用的规则。

二、使用Weka进行关联挖掘

Weka的全名是怀卡托智能分析环境(WaikatoEnviron-mentforKnowledgeAnalysis),是一款免费的、非商业化的、基于JAVA环境下开源的机器学习以及数据挖掘软件[2]。它包含了许多数据挖掘的算法,是目前最完备的数据挖掘软件之一。Weka软件提供了Explorer、Experimenter、Knowledge-Flow、SimpleCLI四种模块[2]。其中Explorer是用来探索数据环境的,Experimenter是对各种实验计划进行数据测试,KnowledgeFlow和Explorer类似,但该模块通过其特殊的接口可以让使用者通过拖动的形式去创建实验方案,Simple-CLI为简单的命令行界面。以下数据挖掘任务主要用Ex-plorer模块来进行。

(一)数据预处理

数据挖掘所需要的所有数据可以由系统排序模块生成并进行下载。这里我们下载近两年的教师科研信息。为了使论文总分、学术著作总分、科研获奖总分、科研立项总分、科研总得分更有利于数据挖掘计算,在这里我们将以上得分分别确定分类属性值。

(二)数据载入

点击Explorer进入后有四种载入数据的方式,这里采用第一种Openfile形式。由于Weka所支持的标准数据格式为ARFF,我们将处理好的xls格式另存为csv,在weka中找到这个文件并重新保存为arff文件格式来实现数据的载入。由于所载入的数据噪声比较多,这里应根据数据挖掘任务对数据表中与本次数据任务不相关的属性进行移除,只将学历、职称、论文等级、学术著作等级、科研获奖等级、科研立项等级、科研总分等级留下。

(三)关联挖掘与结果分析

WeakExplorer界面中提供了数据挖掘多种算法,在这里我们选择“Associate”标签下的Apriori算法。之后将“lowerBoundMinSupprot”(最小支持度)参数值设为0.1,将“upperBoundMinSupprot”(最大支持度)参数值设为1,在“metiricType”的参数值选项中选择lift选项,将“minMetric”参数值设为1.1,将“numRules”(数据集数)参数值设为10,其它选项保存默认值,这样就可以挖掘出支持度在10%到100%之间并且lift值超过1.1且排名前10名的关联规则。其挖掘参数信息和关联挖掘的部分结果。

三、挖掘结果与应用

以上是针对教师基本情况和科研各项总分进行的反复的数据挖掘工作,从挖掘结果中找到最佳模式进行汇总。以下列出了几项作为参考的关联数据挖掘结果。

1、科研立项得分与论文、科研总得分关联度高,即科研立项为A级的论文也一定是A。这与实际也是相符的,因为科研立项得A的教师应该是主持了省级或是国家级的立项的同时也参与了其他教师的科研立项,在课题研究的过程中一定会有国家级论文或者省级论文进行发表来支撑立项,所以这类教师的论文得分也会很高。针对这样的结果,在今后的科研工作中,科研处要鼓励和帮助教师搞科研,为教师的科研工作提供精神上的支持和物质上的帮助,这样在很大程度上能够带动整个学校科研工作的进展。

2、副教授类的教师科研立项得分很高,而讲师类教师和助教类教师的科研立项得分很低,这样符合实际情况。因为副教授类的`教师有一定的教学经验,并且很多副教授类的教师还想晋职称,所以大多数副教授类教师都会申请一些课题。而对于讲师类和助教类的教师,由于教学经验不足很少能进行省级以上的课题研究,因此这两类教师的科研立项分数不高。针对这样的结果,在今后的科研工作中,科研处可以采用一帮一、结对子的形式来帮助年轻教师,这样可以使青年教师参与到老教师的科研课题研究工作中去,在课题研究工程中提高科研能力和教学能力。

3、讲师类教师的论文等级不高。从论文得分能够推断出讲师类教师所发表论文的级别不高。为了鼓励这类教师的论文发表,在今后的科研量化工作中对省级、国家级的论文级别进行细化,并且降低一般论文的得分权重,加大高级论文的得分权重。并且鼓励讲师类教师参加假期培训,提高自身的科研和教学水平。

篇10:水利工程管理中数据挖掘技术的运用论文

水利工程管理中数据挖掘技术的运用论文

1数据挖掘技术在水利工程管理中面临的主要问题

1.1与GIS系统相孤立

GIS是水利工程信息系统的主体,它可以生成大部分空间数据。但是查询、计算与分析空间数据,使其可视化显示是一项较为复杂的技术,需要充分利用GIS系统。因此,充分利用其原有数据,让数据挖掘与GIS有效的结合,二者共同处理复杂的空间数据是一项重要问题。

1.2数据挖掘系统模型尚未建立

数据挖掘系统模型能帮助水利工程进行数据挖掘。在系统工程中,模型对于研究与设计以及实现工程目标具有重要作用,建构模型是系统工程完美实现的重要基础。

2如何在水利工程中高效利用数据挖掘技术

2.1充分利用GIS系统

水利工程的建设与管理受到地形、地质、河流、水文以及社会经济等多方因素的影响,需要运用处理和分析空间信息能力较强的GIS系统加以帮助。利用GIS系统中的大量空间和属性数据提供数据指导。将数据挖掘技术与GIS系统向结合能有效提高GIS的查询与分析能力,促进智能化系统的建立。

2.2加强嵌入式耦合模式的运用

将数据挖掘系统与GIS进行耦合,形成双系统。让GIS系统为数据挖掘提供基础,同时利用其丰富的空间数据与较强的分析能力减少数据挖掘的开发量,是开发效率达到一个新的突破。

2.3重视松散式耦合

数据挖掘系统与GIS系统既相互联系又彼此独立,数据挖掘仅调用GIS系统中的空间数据与属性数据进行数据分析,让其他数据仍在原系统中进行,二者保持相对的独立性。这样可以促进各自系统的'不断发展,得到更好、更快的开发与利用。

2.4保持紧密式耦合

水利工程管理数据挖掘系统的首选便是紧密式耦合,它将嵌入式与松散式耦合向结合,在相互独立的情况下加强彼此的联系。让数据挖掘系统发挥独立功能,使开发难度有所降低,增强系统的灵活性。

3结语

在水利工程管理中利用数据挖掘技术,对水利工程数据进行全面综合的分析,找出并充分利用有价值的潜在信息,提供更加有效的管理决策,使建设资金得到更加高效的利用,降低工程管理的总成本,让水利工程发挥重大的经济效益与社会效益。该文主要探讨数据挖掘技术的实施方法以及如何在水利工程管理中高效的数据挖掘技术,初步认为在水利工程管理中需要数据挖掘技术与GIS系统的合作,二者的相互协调合作能够充分利用工程数据,促进数据挖掘技术的高效运作,提高水利工程管理水平。希望数据挖掘技术得到更多的开发与利用,为水利工程管理提供更多的帮助,促进国民经济的快速发展。

篇11:探究数据挖掘技术在水利工程管理论文

探究数据挖掘技术在水利工程管理论文

1 引 言

我国长期以来兴建了一大批水利工程,初步形成了具有防洪、排涝、灌溉、供水、发电、养殖、种植、旅游等功能要素的水利工程体系,为国民经济的高速发展发挥了巨大的基础作用和支撑作用。 在水利工程建设取得辉煌成就的同时,人们逐渐意识到我们在水利工程的管理上还存在着手段比较落后,重建轻管、水利资源利用率低等突出问题,致使一大批水利工程不能发挥其价值,或者工程寿命大大缩短。 穆范椭 等分别从制度管理、机制管理、人力资源管理等几个方面对水利工程管理中存在的问题进行了论述,并提出了不少可行性的解决措施。 不可否认,水利工程管理中出现的问题,不少是制度上的问题,但水利工程管理有其特殊性、复杂性,需要广博的知识和高超的技术,单纯靠“软管理”是不能从根本上解决问题的,必须借助一些现代化的信息手段来辅助进行决策和管理, 才能够更好、更科学地解决问题。

近年来,在水利工程信息化的过程中,我国建设了一大批水利工程管理信息系统,对于水利工程的建设和运行管理起到了很好的帮助作用。 但是,这些系统所提供的功能大多是业务型的,很少面向管理决策。 随着水利工程管理向现代化纵深发展, 这些系统远远满足不了人们的需要。 另一方面,水利工程管理信息系统在发展过程中积累了海量的数据,不少是空间类型的数据,而且这些数据还在不断地增长,而相比于数据的生产、运输和累积能力,人类对空间数据的分析能力还很落后 。 人们虽然深知这些海量数据中蕴含了很多有价值的知识,但是不知道如何利用它们, 而依靠传统的信息系统是解决不了这些问题的。数据挖掘技术的出现为这些问题的解决带来了可能。 所谓数据挖掘,就是从海量数据中发现潜在的、有价值的知识的过程。 传统的数据挖掘技术和方法一般作用于非空间数据,而水利工程管理方面的数据不但有非空间数据,还有大量的空间数据。 和非空间数据相比,空间数据除了具备非空间数据的特征外,还有拓扑、方位和距离等非空间特征,因此其挖掘技术的实现有其特殊性。 在武汉大学李德仁院士首次提出空间数据挖掘这一概念后,国内外不少学者为此开展了广泛的研究。

2 空间数据挖掘在水利工程管理中应用需要解决的主要问题

水利工程管理信息系统中存在着大量的空间数据,因此需要采用空间数据挖掘技术。 和一般的空间数据挖掘系统相比,对水利工程数据的挖掘需要考虑其历史发展因素和特殊性。 首先,水利工程是一个系统工程,其有效管理往往需要多领域、多部门的专家相互协作,一项重要决策的做出往往需要对历史数据从各种维度进行分析,反复考虑各种因素,综合各个专家的意见才能形成,而不同的专家和决策者会从不同的角度来分析数据,因此对水利工程数据的挖掘需要交互探查或查询驱动的方法,在技术实现上需要采用数据仓库和数据立方体支持这种探查式的、快速的联机查询和分析。 其次,在用的水利工程信息系统的主体是 GIS (Geographical Information System, 地理信息系统),大部分的空间数据是由 GIS 系统生成的,空间数据的查询、计算、分析和可视化显示是一种复杂的技术,因此如何利用原有的 GIS 系统中的数据,数据挖掘如何和 GIS 集成以进行复杂的空间数据处理成为一个需要解决的重要问题。最后,要实现水利工程的数据挖掘,需要建立一个数据挖掘系统模型,模型在系统工程的研究、设计和实现中是一个非常重要的问题,一个好的模型对了解系统本质特征、揭示系统的规律起到非常重要的作用,建模也是实现一个工程系统的重要一步。 因此,要想实现空间数据挖掘技术在水利工程管理中的应用,这 3 个问题是我们不可回避的、必须研究的核心问题。

3 空间数据仓库

水利工程信息化的过程中产生了海量的数据,而数据仓库是处理海量数据的关键技术,它可以将不同来源的数据统一到语义上一致的环境下。 在水利工程信息系统中除了有丰富的非空间数据外,还有大量的空间数据,如地图、预处理过的遥感图像、视频等。 空间数据与非空间数据相比,除了具备传统数据库数据的特征外,还携带了空间特征,如拓扑、方位、距离等。 “空间数据仓库是面向主题的、集成的、时变的和非易失性的.非空间数据和空间数据的集合”, 用于支持空间数据挖掘和与空间数据相关的决策过程。 建立空间数据仓库是一个具有挑战性的工作,需要解决两个方面的问题:集成来自异构数据源和系统的空间数据;如何在空间数据仓库中实现快速而灵活的联机分析处理。

影响水利工程建设和管理决策的数据来源是丰富多样的,如气象数据库、蓄滞洪区空间分布式社会经济数据库、雨情和水情数据库、水旱灾情数据库等,它们往往存在于异构的环境中,可能来自于不同的系统,数据格式多种多样。 数据格式不仅与特定的结构有关,如光栅格式和矢量格式,而且与特定的厂家有关。 为了能够进行空间数据的分析和处理, 需要首先对这些异构的数据进行清洗、变换和集成,以清晰一致的格式存放在数据仓库中,然后可以调用相应的数据挖掘算法获取有用的知识。 空间数据仓库已成为联机数据分析处理和数据挖掘必不可缺的平台。利用空间数据仓库技术, 可以对异构的各类信息进行过滤、集中和综合,完成水情信息采集、工情信息采集、防汛抗旱信息等水利工程信息的自动接收、处理等功能,在此基础上可以进行汛情分析、暴雨洪水预报、调度、灾情评估以及旱情预测等知识发现功能。

空间数据仓库、OLAP(On-Line Analytic Process,联机分析处理)和 OLAM(On-Line Analytic Mining,联机分析挖掘)的实现基于多维数据模型,这种模型围绕中心主题组织数据,将数据看作数据立方体的形式。 数据立方体允许从多维对数据建模和观察,它由维和事实来定义。 数据仓库有星型模式、雪花型模式或事实星座型模式。 在这 3 种结构中,星型模式提供了简洁而有组织的仓库结构,便于进行 OLAP 和 OLAM 操作,所以是空间数据仓库建模的好选择。相比于传统的数据立方体,空间数据立方体中存在 3种类型的维:非空间维、空间到非空间维和空间到空间维;有两种不同的度量:数值度量和空间度量 。

4 水利工程

GIS 系统与数据挖掘系统结合的方式水利工程的建设和管理与其所在地的地形、 地质、社会、经济以及河流的水文等空间要素有关,而 GIS 善于处理和分析空间信息,因此大多水利工程在信息系统中采用了 GIS 技术。 GIS 是空间数据库发展的主体。 GIS 中含有大量的空间和属性数据,有着比一般关系数据库和事务数据库更加丰富和复杂的语义信息, 隐藏着丰富的知识。

空间数据挖掘和知识发现技术,一方面可使 GIS 查询和分析技术提高到发现知识的新阶段,另一方面从中发现的知识可构成知识库用于建立智能化的 GIS 系统,同时也将促进 3S(GIS/RS/GPS)的智能化集成,因此很有必要探讨GIS 系统与数据挖掘系统的结合方式。 当数据挖掘系统工作在一个需要与其他信息系统成分通信的环境下,可以采用不耦合、松散耦合、半紧密耦合和紧密耦合 4 种方案。 不耦合方案虽然简单,但缺点不少,是一种非常糟糕的设计。 雷宝龙和李春梅提出了 GIS 与空间数据挖掘集成的3 种模式:松散耦合式、嵌入式和混合型空间模型法。在此基础上对上述 3 种模式进行了改进,以适合于水利工程 GIS 系统和空间数据挖掘系统的集成。

4.1 嵌入式

嵌入式是将数据挖掘系统融入到 GIS 中,也就是说系统既是一个 GIS 系统,又是一个数据挖掘系统。 嵌入式的优点是可以充分利用 GIS 系统所提供的空间数据处理和分析功能来开发数据挖掘系统, 减少了开发的工作量,降低了开发的难度;其缺点是数据挖掘功能被限制在特定的GIS 系统中,难以移植到其他的 GIS 系统上,而且这种方式会因为考虑到一种用户的需求,而限制另一部分用户的需求,从而使系统功能的开发受到限制。

4.2 松散耦合式

在松散耦合式下,数据挖掘系统和 GIS 系统实际上是两个独立的系统,数据挖掘系统从 GIS 中获取空间数据和属性数据,经过清洗、过滤和变换后存入自身的数据库或数据仓库中,数据挖掘所进行的其他工作与 GIS 系统没有任何联系。 这种模式的优点是数据挖掘系统不依赖于特殊的 GIS 系统,可以开发出独立的、相对通用的空间数据挖掘系统;缺点是在数据挖掘系统中要融入复杂的空间数据的处理,系统开发的难度很高。 4.3 紧密耦合式紧密耦合式克服了嵌入式和松散耦合式的缺点,既充分利用了原有 GIS 的处理空间数据的强大功能,降低了开发的难度, 又不受制于原有 GIS 系统的用户需求的制约,具有较大的灵活性,提供了相对独立的数据挖掘功能。 其缺点是和原来系统联系密切,开发的数据挖掘系统往往依赖于 GIS 系统。

在这 3 种结合方式中, 紧密耦合式有着明显的优点,是建立水利工程数据挖掘系统优先考虑的方式。

5 水利工程数据挖掘系统模型

文献介绍了国外几个相对比较成熟的空间数据挖掘系统:GeoMiner、MultiMediaMiner、SKICAT 等, 然后提出了作者领导的空间数据挖掘团队研究和开发的两种空间数据挖掘原形系统 GISDBMiner 和 RSImageMiner,并提出了 GIS 空间数据挖掘系统的体系结构。 文献介绍了现有的数据挖掘模型:OLAM 模型和影响域模型,以及 GeoMiner 原型系统的体系结构,最后提出了一个基于空间立方体的数据挖掘模型。 文献提到了 Han 提出的通用数据采掘原型 DBLEARN/DBMINER、Holsheimer 等人提出的并行体系结构,以及 Matheus 等人提出的多组件体系结构,并重点介绍了 Matheus 等人的多组件体系结构。水利工程管理决策大多是复杂的非结构化决策,需要进行探查性或查询驱动型的数据挖掘,以方便不同的决策者和专家从不同的领域或角度进行数据探查和分析。 一般情况下,在挖掘过程中需要进行人机的多次对话,然后结合人类专家的隐性知识,才能够发现有价值的知识。 因此自动化的挖掘方法不适合于水利工程数据挖掘。

模型分为 4 层,分别为数据存储层、多维数据库与数据仓库层、OLAP/OLAM 层、用户界面层。 第一层数据存储层的数据主要来源于水利工程数据库和相关的异构数据库,元数据用于指导数据的清理、过滤和集成,是构建水利工程数据仓库重要的技术手段。 第一层的数据经过变换和集成后,存储到数据仓库和多维数据库中,它们是实现第三层 OLAP/OLAM 分析所需要的重要的数据源。 该模型的核心是 OLAP/OLAM, 它们是支持探查性知识发现的核心技术。 第四层是用户界面层,用来帮助用户实现基于约束的挖掘查询,并将挖掘结果显示给用户。

6 空间挖掘可以采用的方法与发现的知识类型

数据挖掘在水利工程管理上的应用,不仅可以建设智能型的 GIS 系统,促进遥感技术和 GIS 技术的深入应用,还可以从数据中发现潜在的、有价值的知识或规则,用于指导水利工程的建设和管理。 一般来说,传统的数据挖掘方法如统计、分类、聚类等都可用于空间数据挖掘,但我们不能简单地把这些方法直接应用在空间数据的挖掘上 。一方面, 因为空间数据除了具备一般非空间数据的特征外,还具备拓扑、方位、距离等空间特征;另一方面,传统的数据挖掘算法一般假定数据对象统计不相关、相邻的数据对象是独立产生的,而空间数据的相邻对象间存在着关联和相互影响,因此需要对原有的方法进行改进,使得数据挖掘方法适合于地理空间数据的挖掘。 在空间数据挖掘与知识发现中可采用的方法主要有:统计方法、归纳方法、聚类方法、空间分析方法、探测性的数据分析、Rough 集方法、云理论、图像分析和模式识别等。 能发现的知识类型有:(1)普遍的几何知识,如计算和统计出空间目标几何特征量的最小值、最大值、均值、方差、众数等;(2)空间分布规律,如机井、水库的分布规律。 能发现的规则有:(1)空间关联规则,如地下水与降雨量的关系,河水质量与污染企业分布的关系;(2)空间的聚类规则;(3)空间演变规则,如水库泥沙淤积的演变规律, 河道周围生态的演变规律。需要注意的是,为了便于理解空间数据、发现空间联系、发现空间数据与非空间数据之间的关系,应重视可视化的方法在水利工程数据挖掘过程和挖掘结果的使用。

7 结 语

利用空间数据挖掘技术,对具有空间特征的水利工程数据进行分析,能够发现潜在有价值的知识,利用这些知识,能够降低工程管理的成本,有效利用建设和维护资金,更好地发挥水利工程的效益,为水利工程的管理决策提供依据。 要实现数据挖掘技术在水利工程中的应用,必须研究和解决数据仓库和数据立方体的应用、 数据挖掘与 GIS集成和水利工程数据挖掘系统模型 3 个核心问题。 本文对这 3 个问题进行了探讨,认为数据仓库是水利工程数据挖掘的基础, 宜采用紧密耦合式结构与 GIS 系统进行集成,在挖掘模型上可以采用基于 OLAP 和 OLAM 的 4 层框架。

篇12:数据挖掘技术的研究论文

摘要“:互联网+”战略的实施促进了我国信息技术的快速发展,数据挖掘技术能够实现对海量信息的统计、分析以及利用等,因此数据挖掘技术在生活实践中得到了广泛的应用。因此本文希望通过对数据挖掘技术的分析,分析数据挖掘技术在实践中具体应用的策略,以此更好的促进数据挖掘技术在实践中的应用。

关键词:数据挖掘;应用;发展

数据挖掘论文

数据挖掘技术的研究论文

旅游管理下数据挖掘运用论文

数据挖掘电子商务论文

数据挖掘在电子商务中的应用论文

数据挖掘技术在会计管理与分析的性研究分析论文

橡胶种植中引入数据挖掘技术的必要性论文

测绘工程中GPS技术的运用的论文

BIM技术在工程设计中的运用论文

地质工程中放射性技术的运用研究论文

《数据挖掘技术在软件工程的运用工程论文(通用12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档