下面是小编为大家带来的数据挖掘在电子商务中的应用论文,本文共15篇,希望大家能够喜欢!

篇1:数据挖掘在电子商务中的应用论文
1数据挖掘的概念及其过程
1.1数据挖掘
数据挖掘,即在数据库中的信息发现,是指在大量的、不完整的、模糊的、有噪音的和随机的数据中,提取出潜在的、不为人知的、同时又是非常有用的知识和信息的过程。数据挖掘是一项应用技术广泛的交叉学科,它聚集了众多不同领域的知识,例如人工智能、可视化、数据库、数理统计等。从始至终数据挖掘技术都是面向应用领域,不仅是对于特定数据库的简单检索查询,还包括对数据的不同层面、不同角度的统计、分析、推理和综合,以此得到问题的求解,以及发现事件之间的联系,还有对未发生活动的预测。另外数据挖掘技术在存在大量数据积累的电子商务行业有着广泛的应用,是现代商务企业发展的不二选择。
1.2数据挖掘的过程
1.2.1数据预处理
在实际情况中,企业获得的数据具有不完整性、模糊性和冗余性,所以数据挖掘技术针对的不是已得到的数据,而是潜在的数据信息,并通过预处理技术获得简洁、准确的数据。预处理的工作分为三步,数据合并、数据选择和数据清洗。先将多个数据库和文件中的数据进行合并,然后选择适合分析的数据信息集合,最后剔除无关记录,并将各个文件转换成方便数据挖掘的格式。
1.2.2模式发现
这个阶段就是利用挖掘计算技术挖掘出有用的、潜在的、新颖的、可以理解的知识和信息。像关联分析、聚类分析、路径选择、序列分析等都可以用于Web的挖掘技术。
1.2.3模式分析
这个阶段是将模式发现中没有用的模式和规则过滤掉。通过技术分析,得到有效的结论。常用关联规则、序列等手段。
2数据挖掘技术的方法
2.1关联分析
所谓的关联分析,就是利用数据间相互关联的规则进行数据挖掘,为的是挖掘数据间潜在的联系规则。比如,在进行关联分析时,能发现类似哪些产品更受客户的欢迎、为什么、产品优势有哪些、有多少客户会再次购买等问题。
2.2序列模式分析
这个过程和第一个关联分析有些类似,但主要任务是发现数据间的`前后顺序联系,比如在这段时间里,企业先销售出x产品,随后销售y产品,然后是z产品,所以就形成x-y-z的销售序列,出现频率较高,进而对其进行分析。序列模式分析工作方向是:在指定的交易数据库中,找出按照时间排布的交易集,发现其中的高频序列,从而进行下一个步骤。
2.3分类分析
假设有一个数据库和一组互相区别的标记,利用特殊标记数据库中的每一个数据,这样的数据库被叫做训练集或者实例数据库。分类分析就是利用分析标记数据库中的每一个数据,对每个类别建立分析模型或做出精准的描述或者挖掘出分析模型,然后利用分类模式对数据库中的数据进行分类分析。
2.4聚类分析
聚类分析所根据的分类规则主要取决于聚类分析工具。不同的聚类方法,对于同样的记录集合会有不同的划分结果。聚类分析针对的未分类的记录,而且所有记录适合分成几类,事先也不知情,然后依据一定的分类规则,分析记录数据,确定每一个数据所对应的类别。
篇2:数据挖掘在电子商务中的应用论文
3.1优化企业资源
企业盈利的关键是节约成本,利用数据挖掘技术可以找到企业消耗资源的关键点和各种活动的投入与产出比例,进而为企业提供科学合理的调整方案,例如资源循环利用、降低库存等方法。通过数据挖掘技术,企业可以预先知道市场上的商业信息,使企业把握市场动态,创造更多的盈利。
3.2管理客户资料
俗话说知己知彼,百战不殆。对于企业来说,了解客户是至关重要的,比如客户是男是女、爱好是什么、职业是什么等,从而根据不同客户需求,改善网络结构,推出个性化网页,吸引更多的客户对本企业的关注。例如对电子商务网站的网站流量进行分析。人们在点击或者是访问某一个网站的同时,就将个人对网站内容的反馈信息反映了出来,用户点击了哪一个链接,在哪个网页中停留的时间最长,采用了哪个搜索的项目或者是总共使用的浏览时间等信息都会被保存在网站中,将这些信息保存下来,进行数据分析,能够有效的确定用户的访问特点以及产品特征,从而提高电子商务信息提供的精确性。
3.3评估商业信誉
一个企业若是没有良好的商业信誉做基础,一切都是空口说白话。所以建立有效的商业评估制度就成了重中之重。利用数据挖掘技术对企业营销进行追踪,开展资产评估、发展潜力预测以及利润收益分析,建立完善的安全系统,对企业商誉安全进行保障,可以有效的预防和解决信用风险,提高企业信誉度。例如,商品售卖出去,要进行科学有效的跟踪,了解客户用后体验,对客户使用产品情况进行追踪式分析,开展科学合理的资产评估,不断发展潜在用户体验,通过客户的反馈信息进行综合性分析,提高客户满意度,提高商家的信用。
3.4确定异常事件
在商业领域中,确定异常事件具有十分重要的商业价值。在企业经营时间里,经常会有异常事件发生,例如话费拖欠、客户流失、信用卡欺诈等,通过数据挖掘技术中的异常点分析可以十分准确快速地发现异常点,使企业及时修整系统,减少不必要损失。例如,当客户将商品加入购物车后,对没有付款的原因进行科学合理的分析,从而确定要催付的客户群体。这种催付的行为在一定程度上可能会打扰到客户,所以需要准确的分析其真正的原因。例如客户没有付款的主要原因为:遗忘、冲动消费不想买了、货比三家,发现更好地商品、支付发生故障等。这个时候就需要商家对号入座,确定是否要进行客户催付。这就需要数据挖掘技术发挥自身的优势,进行数据分析,提出相应的解决方案。在催付时间的选择上,根据数据挖掘技术的分析通常情况下理论上在第三天进行催付是最为合理的,因为在第二天有不少会自发付款的客户。同时还需要考虑到女性消费者冲动购物的习惯,过了这个冲动期就不容易再购买。所以实际上要在客户下单的第二天进行催付最为合理。在拟定催付内容的时候需要科学分析客户一天各个时间段的情绪变化,减少客户对商家的排斥与厌烦的心理。
4结语
随着网络技术的不断发展,电子商务已经成为现如今经济发展的主要方式。数据挖掘技术是电子商务发展的重要手段。利用数据挖掘可以帮助企业从大量的繁杂的数据中发现潜在的规律,找到有效的信息,以此指导企业调整经营策略,提高企业声誉,获得更有利的竞争能力。
篇3:数据挖掘在电子商务的应用论文
数据挖掘在电子商务的应用论文
摘要:数据挖掘就是对潜在的数据及数据关联进行探索和发现。随着信息技术的不断发展,这一技术在电子商务领域逐渐得到普遍应用。基于此,本文就数据挖掘在电子商务中的应用进行研究,首先就数据挖掘中的路径分析技术、关联分析技术、聚类分析技术和分类分析技术进行简要介绍,然后分析数据挖掘在电子商务中的实际应用,从而提高数据挖掘技术的应用水平,增强电子商务的发展实力。
关键词:数据挖掘;电子商务;潜在客户
一、数据挖掘在电子商务中的技术应用
就现阶段电子商务对数据挖掘技术的应用现状来看,主要应用到的技术包括以下几方面内容,分别是路径分析技术、关联分析技术、聚类分析技术和分类分析技术。就路径分析技术来看,主要对客户互联网访问路径的频繁性进行分析,通过大数据采集和处理,了解客户对各种网络页面的喜好程度和特点,从而对自身的设计进行针对性的改进,为客户提供更加人性化的服务;就关联分析技术来看,主要指的是对隐藏数据之间的关联进行分析,并且通过分析掌握其相互关联的规律,并根据这一规律对网络站点的结构进行相应的改进,使电子商务中存在相关性的商品能够一起被搜索出来,既为客户提供便利,同时提高交叉销售的几率;聚类分析技术指的是根据数据的信息,按照一定的'原则对数据进行分类。就分类分析技术而言,主要通过分析数据掌握分类规则,然后按照这一规则对数据进行分类。
二、数据挖掘在电子商务中的实际应用
1.对潜在客户进行挖掘在电子商务中应用数据挖掘技术能够对潜在客户进行挖掘。例如商家可以对网站的日志记录进行分析,探究该记录中存在的规律,从而按照这一规律对网站的访问客户进行相应分类。在分类过程中,商家应该对客户属性和相关关系进行确定,对新客户与老客户之间存在重叠的属性进行识别,从而实现对访问网站新用户快速分类,在分类完毕后,商家可以通过分析新客户的属性特点,从而对新客户进行潜在性判断,如果判断新客户可以被作为商家的潜在客户,就可以为该客户提供个性化的页面服务,从而将新客户发展成为老客户。2.对驻留时间进行延长对于电子商务而言,商家必须提高客户在商品页面的驻留时间,并且使客户的购买兴趣和欲望得到激发。电子商务与传统商务最大的不同在于销售商具有虚拟性的特点,因此客户在购物选择时,对销售商的印象是没有差异的。销售商在不断提升自身服务水平的同时,应该对客户的浏览行为和特点进行分析,从而对客户的兴趣和需求进行进一步的了解,以此为依据调整自身的商品页面,用符合客户需求的广告和商品文案吸引客户的驻留时间,从而提高交易的几率。3.对网络站点进行优化电子商务主要依托于网站,因此网站优化也是提高电子商务发展水平的有效措施。利用数据挖掘技术对网络站点进行优化主要由两方面构成,一方面是对存在相关性的网页进行链接设计。例如对用户浏览页面的几率和特点进行分析,然后找出存在相关性的页面,增加网页链接这一功能,使客户的搜索更加便捷;另一方面是对客户的期望位置进行探索,例如对用户频率较高的访问位置进行分析,从而将频率较高的位置设置为客户的期望位置,并且在实际位置与期望位置间建立链接。另外,可以对用户的网页浏览习惯和信息喜好进行分析,强化用户在网页中的自助服务,例如将网页信息参照超市模式进行摆放,根据相关性分类,使用户能够通过自主浏览选择到心仪的产品,从而提高交易的几率。4.对营销手段进行改进在电子商务的实际运营过程中,很多客户都会在购买一种物品时同时选择具有相关性的其他物品,因此销售商应该对销售方式进行改进,利用数据挖掘技术实现交叉销售,从而提高营销水平。在应用交叉销售这一手段时,主要应该利用数据挖掘技术,对客户的喜好进行分析,从而提供具有针对性的商品。
参考文献:
[1]姜宁,牛永洁.Web数据挖掘在电子商务中的应用——以淘宝网为例[J].计算机时代,(7):49-52.
[2]王红玉.数据挖掘在电子商务中的应用[J].电脑编程技巧与维护,2016(3):49-51.
篇4:数据挖掘电子商务论文
数据挖掘电子商务论文
1数据挖掘技术和过程
1.1数据挖掘技术概述
发现的是用户感兴趣的知识;发现的知识应当能够被接受、理解和运用。也就是发现全部相对的知识,是具有特定前提与条件,面向既定领域的,同时还容易被用户接受。数据挖掘属于一种新型的商业信息处理技术,其特点为抽取、转化、分析商业数据库中的大规模业务数据,从中获得有价值的商业数据。简单来说,其实数据挖掘是一种对数据进行深入分析的方法。因此,可以描述数据挖掘为:根据企业设定的工作目标,探索与分析企业大量数据,充分揭示隐藏的、未知的规律性,并且将其转变为科学的方法。数据挖掘发现的最常见知识包括:
1.1.1广义知识体现相同事物共同性质的知识,是指类别特点的概括描述知识。按照数据的微观特点对其表征的、具有普遍性的、极高概念层次的知识积极发现,是对数据的高度精炼与抽象。发现广义知识的方法与技术有很多,例如数据立方体和归约等。
1.1.2关联知识体现一个事件与其他事件之间形成的关联知识。假如两项或者更多项之间形成关联,则其中一项的属性数值就能够借助其他属性数值实行预测。
1.1.3分类知识体现相同事物共同特点的属性知识与不同事物之间差异特点知识。
1.2数据挖掘过程
1.2.1明确业务对象对业务问题清楚定义,了解数据挖掘的第一步是数据挖掘目的。挖掘结果是无法预测的,但是研究的问题是可预见的,仅为了数据挖掘而数据挖掘一般会体现出盲目性,通常也不会获得成功。基于用户特征的电子商务数据挖掘研究刘芬(惠州商贸旅游高级职业技术学校,广东惠州516025)摘要:随着互联网的出现,全球范围内电子商务正在迅速普及与发展,在这样的环境下,电子商务数据挖掘技术应运而生。电子商务数据挖掘技术是近几年来数据挖掘领域中的研究热点,基于用户特征的电子商务数据挖掘技术研究将会解决大量现实问题,为企业确定目标市场、完善决策、获得最大竞争优势,其应用前景广阔,促使电子商务企业更具有竞争力。主要分析了电子商务内容、数据挖掘技术和过程、用户细分理论,以及基于用户特征的电子商务数据挖掘。
1.2.2数据准备第一选择数据:是按照用户的挖掘目标,对全部业务内外部数据信息积极搜索,从数据源中获取和挖掘有关数据。第二预处理数据:加工选取的数据,具体对数据的完整性和一致性积极检查,并且处理数据中的噪音,找出计算机丢失的数据,清除重复记录,转化数据类型等。假如数据仓库是数据挖掘的对象,则在产生数据库过程中已经形成了数据预处理。
1.2.3变换数据转换数据为一个分析模型。这一分析模型是相对于挖掘算法构建的。构建一个与挖掘算法适合的分析模型是数据挖掘获得成功的重点。可以利用投影数据库的相关操作对数据维度有效降低,进一步减少数据挖掘过程中数据量,提升挖掘算法效率。
1.2.4挖掘数据挖掘获得的经济转化的数据。除了对选择科学挖掘算法积极完善之外,其余全部工作都自行完成。整体挖掘过程都是相互的,也就是用户对某些挖掘参数能够积极控制。
1.2.5评价挖掘结果这个过程划分为两个步骤:表达结果和评价结果。第一表达结果:用户能够理解数据挖掘得到的模式,可以通过可视化数据促使用户对挖掘结果积极理解。第二评价结果:用户与机器对数据挖掘获得的模式有效评价,对冗余或者无关的模式及时删除。假如用户不满意挖掘模式,可以重新挑选数据和挖掘算法对挖掘过程科学执行,直到获得用户满意为止。
2用户细分理论
用户细分是指按照不同用户的属性划分用户集合。目前学术界和企业界一般接受的是基于用户价值的细分理论,其不仅包含了用户为企业贡献历史利润,还包含未来利润,也就是在未来用户为企业可能带来的利润总和。基于用户价值的细分理论选择客户当前价值与客户潜在价值两个因素评价用户。用户当前价值是指截止到目前用户对企业贡献的总体价值;用户潜在价值是指未来用户可能为企业创造的价值总和。每个因素还能够划分为两个高低档次,进一步产生一个二维的矩阵,把用户划分为4组,价值用户、次价值用户、潜在价值用户、低价值用户。企业在推广过程中根据不同用户应当形成对应的方法,投入不同的.资源。很明显对于企业来说价值用户最重要,被认为是企业的玉质用户;其次是次价值用户,被认为是金质用户,虽然数量有限,却为企业创造了绝大部分的利润;其他则是低价值用户,对企业来说价值最小,成为铅质用户,另外一类则是潜在价值用户。虽然这两类用户拥有较多的数量,但是为企业创造的价值有限,甚至很小。需要我们注意的是潜在价值用户利用再造用户关系,将来极有可能变成价值用户。从长期分析,潜在价值用户可以是企业的隐形财富,是企业获得利润的基础。将采用数据挖掘方法对这4类用户特点有效挖掘。
3电子商务数据挖掘分析
3.1设计问卷
研究的关键是电子商务用户特征的数据挖掘,具体包含了价值用户特征、次价值用户特征、潜在价值用户特征,对电子商务用户的认知度、用户的需求度分析。问卷内容包括3部分:其一是为被调查者介绍电子商务的概念与背景;其二是具体调查被调查对象的个人信息,包含了性别、年龄、学历、感情情况、职业、工作、生活地点、收入、上网购物经历;其三是问卷主要部分,是对用户对电子商务的了解、需求、使用情况的指标设计。
3.2调查方式
本次调查的问卷主体是电脑上网的人群,采用随机抽象的方式进行网上访问。一方面采用大众聊天工具,利用电子邮件和留言的方式发放问卷,另一方面在大众论坛上邀请其填写问卷。
3.3数据挖掘和结果
(1)选择数据挖掘的算法利用Clementine数据挖掘软件,采用C5.O算法挖掘预处理之后数据。
(2)用户数据分析
1)电子商务用户认知度分析按照调查问卷的问题“您知道电子商务吗?”得到对电子商务用户认知情况的统计,十分了解20.4%,了解30.1%,听过但不了解具体使用方法40.3%,从未听过8.9%。很多人仅听过电子商务,但是并不清楚具体的功能与应用方法,甚至有一小部分人没有听过电子商务。对调查问卷问题“您听过电子商务的渠道是什么?”,大部分用户是利用网了解电子商务的,占40.2%;仅有76人是利用纸质报刊杂志上知道电子商务的并且对其进行应用;这也表明相较于网络宣传纸质媒体推广电子商务的方法缺乏有效性。
2)电子商务用户需求用户希求具体是指使用产品服务人员对应用产品或服务形成的需求或者期望。按照问题“假如你曾经使用电子商务,你觉得其用途怎样,假如没有使用过,你觉得其对自己有用吗?”得到了认为需要和十分需要的数据,觉得电子商务有用的用户为40.7%,不清楚是否对自己有用的用户为56.7%,认为不需要的仅有2.4%。
3)电子商务用户应用意愿应用意愿是指消费者对某一产品服务进行应用或者购买的一种心理欲望。按照问题“假如可以满足你所关心的因素,未来你会继续应用电子商务吗?”获得的数据可知,在满足各种因素时,将来一年之内会应用电子商务的用户为78.2%,一定不会应用电子商务的用户为1.4%。表明用户形成了较为强烈的应用电子商务欲望,电子商务发展前景很好。基于用户特征的电子商务数据研究,电子商务企业通过这一结果能够更好地实行营销和推广,对潜在用户积极定位,提高用户体验,积极挖掘用户价值。分析为企业准确营销和推广企业提供了一个有效的借鉴。
4结语
互联网中数据是最宝贵的资源之一,大量数据中包含了很大的潜在价值,对这些数据深入挖掘对互联网商务、企业推广、传播信息发挥了巨大的作用。近些年来,数据挖掘技术获得了信息产业的极大重视,具体原因是出现了大量的数据,能够广泛应用,并且需要转化数据成为有价值的信息知识。通过基于用户特征的电子商务数据挖掘研究,促使电子商务获得巨大发展机会,发现潜在用户,促使电子商务企业精准营销。
篇5:Web数据挖掘技术在电子商务中的应用论文
Web数据挖掘技术在电子商务中的应用论文
电子商务的迅猛发展产生了海量的Web数据,从电子商务的大数据中发现潜在的、有用的知识和信息,是电子商务健康发展的需要。在电子商务中应用Web数据挖掘技术,可实现从电子商务的Web文档和Web活动中抽取出隐藏的有用模式。本文通过介绍Web数据挖掘技术,分析其在电子商务中的挖掘流程,对其在电子商务中的具体应用进行了探讨。
0 引言
我国电子商务交易量增长迅猛,电子商务平台和网站越来越多,数据呈现爆炸式增长。面对海量的Web数据,对企业而言,构建良好的客户管理关系,吸引新客户留住老客户,发现顾客潜在的购买兴趣等都成为了企业要关注的问题。
对用户而言,如何从爆炸式的大数据中发现与自己相关的信息存在一定的难度。数据挖掘技术是一种从大量的、不完全的、有噪声的、随机的、模糊的数据中提取隐含在其中的人们事先不知道的,但又具有潜在价值的信息和知识的技术[1-2]。在电子商务中应用数据挖掘技术,从已有的信息数据中挖掘出潜在的有用的信息,已成为人们关注和研究的热点。
1 Web数据挖掘
Web数据挖掘是将传统的数据挖掘思想和技术应用于Web环境中,从Web文档集和Web活动中抽取出感兴趣、潜在的、有用的模式和知识的过程。Web数据挖掘根据Web信息不同可以分为Web内容挖掘、Web结构挖掘和Web使用挖掘三个方面。
Web内容挖掘是从文档内容或其描述中直接抽取有用信息的过程,通过对文本内容的检索,获取和提炼知识和信息。
用于Web内容挖掘的数据既有无结构的自由文本,也有网民留言、帖子、中文微博等半结构化的信息和来自于数据库的结构数据。所以Web内容挖掘需要从Web页面及后台数据库中开展挖掘任务,从大量元数据、文本、视频、音频等网络数据集中找到特定的信息[2]。
Web结构挖掘是从Web组织结构和链接中推导知识,对页面进行分类、聚类,提高检索效率和找出权威页面,目的是发现页面的内部结构和文档间的结构,利用这些结构蕴含的信息帮助发现有用的知识和模式。
超链接是Web页面的基本元素,经常可以利用超链接对Web结构进行挖掘。进行Web结构挖掘的常用算法有计算页面权威的PageRank算法、基于网页分析的HITS算法等。
Web使用挖掘是从服务器端记录的用户访问日志或用户的浏览信息中获取数据,通过分析这些数据抽取出隐藏在这些数据后面的用户模式,进行预测性分析。通过Web使用挖掘,可以发现隐藏的与用户访问行为相关的规律,如频繁访问路径、相似用户群和相似的Web页面等[3]。
2 面向电子商务的Web数据挖掘
2.1 Web数据挖掘过程
在电子商务环境下,Web数据挖掘过程要经历以下几步,它是不断反复修正的过程,直至得到准确的知识,如图1所示。
⑴ 确定挖掘任务,建立挖掘模型。构建模型的任务主要是将数据进行规格化处理,使用不同的算法、调整参数来优化挖掘任务,数据挖掘技术本身就是一个不断反复、不断迭代的过程,通过多次的循环构造才能得出更好的评估模型[2]。
⑵ 数据源:电子商务网站每天都会产生海量的交易数据和用户访问记录,收集的数据数量和质量都会影响到挖掘的结果。由于Web的结构大体为客户端→代理服务器→Web服务[4],所以Web的数据源主要有Web服务器上的Web日志文件、从代理服务器端收集信息及其从Web页面中提取数据等。
⑶ 数据预处理:数据预处理的目的是提高挖掘效率,提供有效的挖掘数据,使得结果更合理。Web文档的数据很多都是半结构或非结构化的,很难对采集的Web数据直接进行处理。采集的Web数据需根据挖掘主题选择相关的数据项,经过初步的筛选,缩小数据处理范围。另外,Web数据具有不完全性、冗余性和模糊性等特性,通过补全不完全项、去除冗余项、处理模糊项等,去掉无用、不合理的数据,最后生成标准的数据集。
⑷ 模式发现:根据挖掘需求选择合适的Web挖掘算法和工具,实现从数据集发现潜在的、有用的知识和模型。常用的Web挖掘算法有:路径分析用来发现Web站点中最经常被访问的路径;关联规则用于关联知识的发现,了解网页之间的关系;序列模式可以挖掘出交易集之间有时间序列关系的模式;运用分类和聚类算法对数据进行分组等Web挖掘。
⑸ 模式分析:对于发现的.模式进行验证、解释、说明,获取对决策支持有用的信息。根据模式分析的反馈,如果没有得到合适的结果,重复上述步骤,重新挖掘知识,直至得到满意的结果。
⑹ 结果可视化:Web数据挖掘的意义不是获取庞大的数据信息,而是要将获取的知识或者模型采取用户可理解的方式展现给用户,这意味着要将分析结果可视化。数据可视化主要是借助于图形化手段,依据数据本身及其内在的模式和关系,清晰有效地传达与沟通信息。
2.2 Web数据挖掘在电子商务中的应用
将Web数据挖掘技术应用在电子商务中,从技术角度,可以提供优化网站结构和页面的策略;从商家角度,可以增加交叉销售量,尽可能将浏览者变为消费者;从用户角度,为用户提供了个性化服务。以下是Web数据挖掘在电子商务中的具体应用。
⑴ 改进站点的访问效率。通过对Web结构和Web日志的分析,对Web页面之间的组织关系、引用关系和超链接关系的分析,可以挖掘用户网页浏览行为模式、页面浏览情况等,对页面的重要性进行评估,有助于商家重新调整页面结构和页面布局,改进Web站点设计,提升访问效率,吸引更多用户。
⑵ 提供个性化服务。电子商务的快速发展,为用户提供了更多的选择,同时,面对电商网站众多的商品和越来越复杂的网站结构,如何能快速查找到自己感兴趣的商品是一个费时费力的问题。个性化服务是电子商务网站争取更多用户、防止用户流失以及实现市场目标的重要手段。协同过滤算法是目前使用最多、应用最成熟的一种推荐技术[5]。在电子商务中,运用协同过滤等推荐算法,构建基于Web电子商务的个性化推荐系统,可以制定不同的个性化营销策略。
⑶ 商品推荐服务。运用聚类、分类、关联规则等数据挖掘技术,可以从用户的访问数据中发现商品之间的联系,挖掘用户感兴趣的商品。比如通过用户购买商品A,推导出商品B也是用户感兴趣的商品。通过基于Web电子商务的智能推荐系统,客户可以在较短时间内购买到满意的商品,同时增加商家的交叉销售量。
⑷ 识别电子商务潜在客户。通过对Web已有的老客户数据的公共属性、类别关键属性及其属性间的相互关系进行分析,建立分类模型。对于一个新的用户,根据已建立的分类模型,对新用户进行正确的分类,根据类别判断用户是否潜在客户。
⑸ 理解客户意图。通过分析用户的浏览路径等多个数据源,运用路径游历模式等发现算法,发现被频繁访问的路径,从而发现用户的真实访问意图。
3 结束语
Web挖掘能够在海量的大数据中寻找出潜在的有用的信息和知识,Web挖掘技术在电子商务中的应用越来越广泛,制作基于Web挖掘的个性化推荐系统、智能化的电子商务系统已经成为电商网站的发展趋势。但同时电子商务数据存在异构性、规模大、复杂性等特点,使得传统的Web挖掘技术遇到挑战,下一步需要深入研究针对电子商务数据的Web挖掘算法。
篇6:电子商务中数据挖掘方法浅论论文
电子商务中数据挖掘方法浅论论文
[论文摘要]在电子商务中,数据发掘有助于发现业务发展的趋势,匡助企业做出正确的决策。本文对于目前电子商务中的Web数据发掘法子进行了总结,并对于电子商务中的Web数据对于象进行了分类,对于网络数据发掘的作用进行了分析,为今后电子商务中实用Web数据发掘软件的开发与利用提供了参考。
1、电子商务以及数据发掘简介
电子商务是指个人或者企业通过Internet网络,采取数字化电子方式进行商务数据交流以及展开商务业务流动。目前国内已经有网上商情广告、电子票据交流、网上订购,网上银行、网上支付结算等多种类型的电子商务情势。电子商务正以其本钱低廉、利便、快捷、安全、可靠、不受时间以及空间的限制等凸起优点而逐渐在全世界流行。
数据发掘(Data Mining)是伴同着数据仓库技术的发展而逐渐完美起来的。数据发掘主要是为了匡助商业用户处理大量存在的数据,发现其后隐含的规律性,同时将其模型化,来完成辅助决策的作用。它请求从大量的、不完整的、有噪声的、隐约的以及随机的数据中,提取人们事前不知道的但又是潜伏有用的信息以及知识。数据发掘的进程有时也叫知识发现的进程。
而电子商务中的数据发掘即Web发掘,是应用数据发掘技术从www的资源(即Web文档)以及行动(即We服务)中自动发现并提取感兴致的、有用的模式以及隐含的信息,它是1项综合技术触及到Internet技术学、人工智能、计算机语言、信息学、统计学等多个领域。
2、Web数据发掘对于象的分类
Web数据有三种类型:HTML标记的Web文档数据,Web文档内连接的结构数据以及用户走访数据。依照对于应的数据类型,Web发掘可以分为三类:
一.Web内容发掘:就是从Web文档或者其描写中筛选知识的进程。
二.Web结构发掘:就是从Web的组织结构以及链接瓜葛中推导知识。它的目的是通过聚类以及分析网页的链接,发现网页的结构以及有用的模式,找出权威网页。
三.Web使用记录发掘:就是指通过发掘存储在Web上的走访日志,来发现用户走访Web页面的模式及潜伏客户等信息的进程。
3、电子商务中数据发掘的法子
针对于电子商务中不同的发掘目标可以采取不同的数据发掘法子,数据发掘的法子有良多,主要包含下面三大类:统计分析或者数据分析,知识发现,基于预测模型的发掘法子等。
一.统计分析。统计分析主要用于检查数据中的`数学规律,然后应用统计模型以及数学模型来解释这些规律。通常使用的法子有线性分析以及非线性分析、连续回归分析以及逻辑回归分析、单变量以及多变量分析,和时间序列分析等。统计分析法子有助于查找大量数据间的瓜葛,例如,辨认时间序列数据中的模式、异样数据等,匡助选择合用于数据的恰当的统计模型,包含多维表、剖分、排序,同时应生成恰当的图表提供给分析人员,统计功能是通过相应的统计工具来完成回归分析、多变量分析等,数据管理用于查找详细数据,阅读子集,删除了冗余等。
二.知识发现。知识发现源于人工智能以及机器学习,它应用1种数据搜索进程,去数据中抽守信息,这些信息表示了数据元素的瓜葛以及模式,能够从中发现商业规则以及商业事实。应用数据可视化工具以及阅读工拥有助于开发分析之前发掘的数据,以进1步增强数据挖掘能力。其他数据发掘法子,如可视化系统可给出带有多变量的图形化分析数据,匡助商业分析人员进行知识发现。
三.预测模型的发掘法子。预测模型的发掘法子是将机器学习以及人工智能利用于数据发掘系统。预测模型基于这样1个假定:消费者的消费行动拥有必定的重复性以及规律性,这使患上商家可以通过分析搜集存储在数据库中的交易信息,预测消费者的消费行动。按消费者所拥有的特定的消费行动将其分类,商家就能将销售工作集中于1部份消费者,即实现针对于性销售。
篇7:数据挖掘在CRM中的应用论文
数据挖掘在CRM中的应用论文
摘要:对于CRM数据挖掘的应用程序,本文做出了系统性的总结和研究,这包括了面向CRM数据挖掘的体系和结构,立足于客户生命周期的角度,并结合本行业发展的前景,对CRM中的数据挖掘进行了分析。
关键词:数据挖掘;客户关系管理(CRM);知识发现
如今,经济全球化发展的速度不断加快,在市场经济的背景之下呈现出蓬勃发展的局面,外加互联网技术的日益普及化,促使当前的市场竞争不断加剧。众所周知,客户对于一家企业来说至关重要,因此为了更好的促使现代企业发展顺利,理应不断维护好企业与客户之间的关系。这种关系对于不断增强企业的综合竞争力十分重要,因此企业不断改善客户关系,便成了企业发展中一项重要的任务。客户分析是企业发展中处理好客户关系管理的基本,然而如何做好客户分析呢,这就需要对数据挖掘进行应用,数据挖掘的研究应用在现代企业客户关系管理意义非凡。
1CRM体系结构
客户关系管理(CustomerRelationshipManagement,CRM)起源于上个世纪的八十年代初期,首次提出了接触管理,也就是不断收集客户与企业联系的所有有关信息。到了九十年代初,又增加了电话服务以及客户服务支持数据等相关的分析。经过20多年的发展,如今企业发展中的客户之间的关系其管理的手段和方式逐渐走向成熟化,并且在理论和实践方面不断成熟化。CRM是一个把客户看做中心的营销理念,通过信息化的技术方式,重新设计企业业务单元,优化工作中的每一个环节的过程。它将现代信息技术也就是我们常说的互联网技术、多媒体信息技术、电子商务技术、数据仓库管理信息技术、专家数据管理系统以及人工智能呼叫中心等融合在了一起。CRM具有较强的自动化特点,并且能够处理好销售与客户管理之间的关系。它的目的在于不断的缩短销售的周期以及销售中投入的成本,进而不断增加企业在盈利方面的能力,并且寻找一片新的产品市场,逐渐增加企业的业务领域,从而提高潜在客户以及忠诚客户的满意度,盈利能力以及忠诚度等。
2CRM中数据挖掘的应用研究领域
2.1从客户生命周期角度分析数据挖掘技术的应用
从CRM的广义来看,可以简单化的理解为管理所有的和客户之间的一系列互动。在购买实践的过程中,这就需要运用多种信息对客户之间的多维关系进行预测以及分析。在不同的阶段过程中,客户关系可以看做是客户的生命周期。一般说来,客户的生命周期可以划分为3个主要的过程:其一是寻找到客户,其二是能够提升客户的价值,其三是不断维护好效益客户,使其持续受益。如果实现了各个阶段效益的最大化,便可以在此基础上不断提高企业的利润。其一是借助数据挖掘寻找潜在的新客户:CRM中首先应该做的便是识别那些潜在的客户,寻找到之后就要尽可能使其转变成企业发展中的忠实客户,数据挖掘可以帮助企业实现这一切。其二是不断提升客户的价值:通过客户盈利能力的相关具体化分析,进一步挖掘和预测客户本身所具有的盈利能力以及未来的具体变化;通过对客户购买模式的相关研究,实现客户的细分化,这样一来可以针对性的提供更加具有针对性的个性化服务,从而能够有效的实现多维化的交叉销售。其三是维护好客户,要及时的对客户忠诚度进行分析研究,以防客户流失。借助数据的深入研究和挖掘,及时分析好客户的历史交易记录,提醒消费者行为,并提出相应的对策和建议。
2.2各行业中CRM的应用
(1)零售业CRM中的数据挖掘零售业CRM它是数据挖掘领域中最重要的应用方面,伴随着网络以及电子商务模式的不断发展而呈现出繁荣发展的态势。通过对零售数据的挖掘可以对客户的购买行为进行识别和具体化的分析,并且及时发现客户的购买嗜好以及未来的购买趋势,这样便不断提高了服务的质量,为客户满意度的提高提供了条件。例如,我们可以借助多个特性化的数据进行全面的销售,这样一来便实现了客户与产品之间的多维联系,使用多维、相关化的分析来做好促销的'有效性,借助序列模式我们可以挖掘客户忠诚度,通过相关性分析可以为购买参考提供建设性的意见和建议。(2)电信业CRM中的数据挖掘当前的电信行业,已经从纯粹的市话服务领域不断转向提供一些综合性的电信服务。它能够把互联网、电信网以及其他的各种通信和计算融合在一起,这是时代发展的大潮流。借助数据挖掘等相关技术可以为一些商业化的实践提供条件,确定好电信服务的基本方式,捕捉每一个盗窃,从而更好地借助技术方面的资源,实现颇具人性的服务。电信数据一般具有多维化的分析功能,可以实现数据的识别与比较,更可以实现数据通信与系统负载等。通过量化分析,聚类分析以及异常值分析对盗用、异常模式进行识别和破解。(3)金融业CRM中的数据挖掘如今,大部分的银行以及一些金融性的专业机构能够为客户提供了多种选择,例如最基本的储蓄、投资以及信贷服务等。有时也可以提供一些保险和股票服务。在金融市场中,数据生成已经相对成熟,从整体看来金融领域的数据相对较完整、可靠,它为数据分析提供了基点。下面的几个是平时常见的应用情况:通过多维化的数据分析、挖掘可以做好数据仓库的基本任务;通过特征比较研究做好数据的衡量和计算帮助客户对贷款偿还进行科学化的预测和分析;通过分类以及聚类的方式对客户群体进行识别,对目标市场进行分析;借助数据的可视化以及关联性分析对金融洗钱以及其他的一些金融犯罪进行侦破。
作者:吴 磊 单位:吉林省长春市吉林建筑大学计算机科学与工程学院
参考文献
[1]王一鸿.体检中心CRM构建及数据挖掘的应用研究[D].华东理工大学.
[2]潘光强.基于数据挖掘的CRM设计与应用研究[D].安徽工业大学.2011
[3]石彦芳,石建国,周檬.数据挖掘技术在CRM中的应用[J].中国商贸.(02)
[4]王芳,杨奕.论数据挖掘技术在客户关系管理(CRM)中的应用[J].现代商贸工业.(01)
[5]郑玲,陶红玉,阚守辉.数据挖掘在CRM中的应用[J].中国电力教育.(S3)
篇8:数据挖掘在电子商务图书
数据挖掘在电子商务图书推荐
摘要:在这样庞大的图书信息中选择自己想要的信息是比较困难的,这样反而是增加了用户购 买图书的难度。为了有效的解决 这一问题,出现了图书推荐系统。 本文将从数据挖掘方面对电子
1.数据挖掘中关联规则的概念 数据挖掘就是大量数据中提取或者挖掘知识,这种数据应该是海量的。还有另一种说法是把数据挖掘看成是数据库中知识的发现过程的一个基本步骤。 1.1关联规则的概念 关联规则可以说是在数据挖掘中相对来说比较常用的一种方法了,Agmwal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题。在这以后有诸多的研宄员对数据挖掘中的关联规则进行了大量的研究。他们的工作有很多,其中就包括对原有的算法进行了优化处理。比如,引进了随机采样、并行思想等。 关联规则挖掘的过程是这样的一个流程,首先利用算法根据最小支持度找到频繁项集,再依托找到的频繁项集结合置信度生成形如X—Y的强关联规则。在关联关联规则挖掘过程中用到两个最重要的参数,支持度和置信度。 设I={il’i是项集,其中ik(k=l,2,…,m)可以是购物篮中的物品,也可以是保险公司的顾客。设任务相关的数据D是事务集,其中每个事务T是项集,使得TSI。设A是一个项集,且A£T。关联规则是如下形式的逻辑蕴涵:A=>B,ASI,BGI,且AnB=A关联规则具有如下两个重要的属性: 支持度:P(AUB),即A和B这两个项集在事务集D中同时出现的概率。 置信度:P(BIA),即在出现项集A的事务集D中,项集B也同时出现的概率。 同时满足最小支持度阈值和最小置信度阈值的规则称为强规则。给定一个事务集D,挖掘关联规则问题就是产生支持度和可信度分别大于用户给定的最小支持度和最小可信度的关联规则,也就是产生强规则的问题。 1.2 Apriori算法 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。很多的的挖掘算法是在Apriori算法的基础上进行改进的,比如基于散列(Hash)的方法,基于数据分割(Partition)的方法以及不产生候选项集的FP-GROWTH方法等。因此要了解关联规则算法不得不先要了解Apriori算法。 Apriori算法使用的是频繁项集性质的先验知识,是使用了一种称为逐层搜索的迭代方法,其中k项集用于探索(k+1)项集。首先,通过对数据库的扫描,累计每一项的计数,并收集满足最小支持度的项,这样就能找出频繁项的集合。这样得到的集合可以标记L,。然后,使用3^找出频繁项集L2,使用L2找出L3。这样循环下去,直到找到频繁项集k项集为止。这样就对数据库进行了一次完整的扫描。 2.关联规则在电子商务图书推荐系统中的具体应用 2.1数据收集、预处理 用户可以通过登录到公司的网站进行个人信息的注册,从而形成用户个人信息注册表。用户可以进行图书信息浏览,或查看其他用户对图书产品的评价和感受。当用户对某件图书产品进行购买行为,形成订单之后。数据就会被采集,并进行清洗、集成和转换。当此用户再次进行图书购买行为时,购买记录同样会被采集,并根据图书类别进行分析,逐渐形成关联数据。并存储到图书交易数据库中。 2.2生成关联规则 假设某个项目集S={sl,s2...,sn}是频繁项目集,假设D是一个数据集,其中T是一个非空的项集。再假设A是一个项集并且有T包含A。有这样一个式子形如A=>B。其中A£I,B£i, B^0,并且AHB=0。 这样的规则人=>8在事物集D中是成立的,具有支持度s。概率是P(AUB),还有就是置信度c,概率是P(BIA)。规则人=>8在事物集中的支持度为support,即 support(AUB)=support(AUB,D)=So(3)规则A=>B的置信度可以容易的从A和AUB的支持度计数推出,即表示为P(Y|X)=c%。这样给出式子: confidence(A^B)=P(B|A)=support(AUB^D)/siq)port(A*D)(4) 其中,support(AUB,D)是包括项集AUB的支持度,support(A,D)是项集X的支持度。 对于已经给定的数据集D,求出同时满足最小支持度minsup和最小置信度minconf的关联规则。关联规则须满足这样两个条件:support(A=»B)>minsup;confidence(A=>B)>minconf。 2.3关联规则的改进方法 大部分关联规则挖掘算法都使用支持度-置信度框架。但是由于算法本身的原因,可能即使满足了最小支持度和最小置信度对用户不感兴趣的信息的探查,仍然会产生一些让用户感到不用的信息。 在获得用户购买的行为模式后,并不一定所有的强关联规则都能成为用户所感兴趣的,这样就使得这个规则的可用性并不理想。此时,就需要用到其他的方法来判断用户的兴趣所在。 假设我们分析涉及购买“Java入门经典”和购买“Java实战”两本书的事务兴趣。假设事务A表示包含“Java入门经典”,事务B表示包含“Java实战”。在接下来要进行分析的10000个事务中,得到数据显示为6000个顾客事务包含“Java入门经典”,7500个事务包含“Java实战”,而4000个事务同时包含“Java入门经典”和“Java实战”。现在假设有一个关联规则要在这样的数据上进行分析,可以使用最小支持度为30%,最小置信度为60%。将发现下面规则: buys(X,’’A”)=>buys(X,”B”)[support=40%,confidence=66%] 这样可以很容易的看出来这个关系式是属于强关联的,因为它的支持度为4000/10000=40%。置信度为4000/6000=66%,同时满足了最小支持度和最小置信度阈值。实际上,这是一种误导,因为购买“Java实战”的概率是7500/10000=75%,比66%还高,这就容易出现不明智的商业营销策略。 正如上面出现的问题,支持度和置信度度量不足以过滤掉无趣的关联规则。为了解决这个问题,可以使用其他关系式来进行同时筛查强关联规则,比如,使用相关性度量来进行扩充,可以使用这样的`相关规则(correlationrule): A=>Bfsupport,confidence,correlation] 通过这个关系式可以看出,相关规则不仅用支持度和置信度,而且还用项集A和B之间的相关度量。 2.4 使用提升度相关分析 提升度(lift)是一种简单的相关性度量,相关度的定义是:项集A的出现独立于项集B的出现,如果P(AUB)=P(A)P(B);否则,作为事件,项集A和B是依赖的和相关的.这样就得到计算式: . lift(A,B)=P(AUB)/P(A)P(B)(4) 如果这个值小于1,则A的出现与B的出现是负相关的,意味着一个出现可能导致另一个不出现。如果值大于1,则A和B是正相关的,如果值等于1,则A和B是独立的。这个式子也称关联规则A=>B的提升度。 这样我们再去看前面的例子,容易得到购买“Java入门经典”的概率P(“A”)=0.6,购买“Java实战”的概率P(“B”)=0.75,而购买两者的概率是P({“A”,”B”})=0.4。则提升度为: P({“A”,”B”})/(P(“A”)xp(“B”))=0.4/(0.6x0.75)=0.89 该值小于1,从而得出购买这两本书的事务是负相关的,因此这两种图书的购买行为不会进行推荐,但这种负相关是不能被支持度-置信度框架识别的。 2.5 电子商务图书推荐过程 首先根据每个顾客的图书产品购买记录或则是浏览记录的数据进行预处理,形成交易数据库。在己经得到的数据库的基础上使用选用好的关联规则挖掘算法对数据库进行关联规则分析和挖掘,形成关联规则数据集合R。之后在通过分析得到的数据集合R为每个顾客设置一个候选推荐集,并将初始值设置为空。对每个用户搜索关联规则数据集合R,找出该用户支持的所有关联规则集合。将符合与当前用户购买图书产品相关联的所有图书产品加入到当前用户的候选推荐集中。将候选推荐集中用户己经购买的图书产品删除。然后可以根据置信度对候选推荐集中的候选项进行排序,从候选推荐集中选择置信度高的图书项作为推荐结果。 3.结束语 现在越来越多的电子商务网站都在出售图书类产品,这可以使用户几乎足不出户就能购买到需要的图书,但是不像在以前到书店购买图书,没有导购员向顾客介绍图书产品信息,顾客也就不会知道那种或那类图书销售最好,最受欢迎。电子商务图书推荐系统的出现,有效的解决了顾客对图书类产品进行“盲选”的尴尬状态。这也成为各商家竞争的一大“主力”。关联规则作为数据挖掘的主要方法之一,也逐渐的引起了人们越来越多的关注。在不久的未来,我相信像这一类推荐系统,一定可以使得将来的电子商务网站更加的人性化,个性化,更符合不同顾客的需求。 文/赵伟毅 作者单位 北方工业大学计算机学院北京市100144篇9:网络经济数据挖掘在工商管理中的应用论文
网络经济数据挖掘在工商管理中的应用论文
网络经济数据挖掘在工商管理中的应用论文【1】
摘要:数据挖掘是当前数据库和信息决策领域的最前沿研究方向之一。
该文从知识发现和数据挖掘的概念出发,总结了数据挖掘常采用的技术方法,同时对数据挖掘的应用及发展进行了阐述。
该文以一个淘宝网行业的数据挖掘案例探讨了数据挖掘在网络经济下工商的应用;从技术和商业需求两个方面分别研究了数据挖掘商务应用的可行性,并指出因竞争战略的细化导致了对数据挖掘的商业需求。
关键词:数据挖掘;网络经济;序列模式
随着数据库和网络等技术的迅速发展,我们产生和收集数据的能力已经迅速提高,大量的数据储存在数据库和数据仓库中,我们已被淹没在数据和信息的汪洋大海中。
这项以数据库技术、网络技术、统计分析、人工智能等为依托的综合性运用技术的出现有其必然性和可行性。
人们需要有新的、更有效的手段地各种大量数据进行挖掘以发挥其潜能,数据挖掘正是在这样的应用需求环境下产生并迅速发展起来的,它的出现为自动和智能地把海量的数据转化为有用的信息和知识提供了手段。
1网络经济
网络经济,一种建立在计算机网络基础之上,以现代信息技术为核心的新的经济形态。
它以信息为基础,以计算机网络为依托,以生产、分配、交换和消费网络产品为主要内容,以高科技为支持,以知识和技术创新为灵魂。
它不仅是指以计算机为核心的信息技术产业的兴起和快速增长,也包括以现代计算机技术为基础的整个高新技术产业的崛起和迅猛发展,更包括由于高新技术的推广和运用所引起的传统产业、传统经济部门的深刻的革命性变化和飞跃性发展。
它实际上是一种在传统经济基础上产生的、经过以计算机为核心的现代信息技术提升的高级经济发展形态。
2数据挖掘商网络经济的案例
2.1电子商务行业概况
随着电子商务行业不断发展,新的供应商仍在进人市场与传统企业竞争。
电子商务行业促使杂货、药品、玩具零售商提供更低的价格和更全的商品。
电子商务正以低成本、高效率、覆盖广、协调性强、透明度高等一系列明显的交易优势席卷经济的各个层面。
中国移动互联网市场规模达393.1亿元,同比增长97.5%,移动电子商务的飞速发展正是中国移动互联网市场快速增长的主要推动力。
20,移动电商在移动互联网市场中的占比已接近三成,预计在末可以达到57%以上。
传统互联网电商企业在发展到一定规模后,有足够的经验和资本向移动终端转移,是移动电商快速增长的主要原因。
2.2数据挖掘分析过程
上面面用一个针对淘宝网滁州店铺采集的样本数据,进行挖掘的例子来说明数据挖掘的具体应用。
表1给出了数据源的部分字段格式。
表2、表3给出了经过整理和转换后的适用于挖掘工具的数据样本。
在本案例中,我们自行编写挖掘工具。
限于篇幅,具体数据挖掘过程省略。
2.3数据挖掘应用分析结论
从上面电子商务行业数据挖掘后分析可以得出:
电子商务销售的主体:我们找到进行网络销售的主体人(店铺)及相关个人店铺信息;
电子商务销售的内容:我们可以查询店铺所销售的商品信息,对销售商品是否违规进行监管;
电子商务市场行为分析:特定范围内市场消费倾向是什么,以便引导,制定销售、决策方案;
监管范围的扩展:传统工商监管只对实体店铺进行监管,通过对网络的市场监管,可以扩大工商管理监管范围,更加规范的市场。
3网络数据挖掘的分析方法
针对网络经济形态下的数据挖掘,我们主要采用以下三种方式进行数据挖掘:
3.1关联分析
利用关联规则进行数据挖掘。
在数据挖掘研究领域,对于关联分析的研究开展得比较深入,人们提出了多种关联规则的挖掘算法,如APRIORI、STEM、AIS、DHP等算法。
关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如“90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。
关联分析就是生成所有具有用户指定的最小置信度和最小支持度的关联规则。
3.2分类分析
设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。
分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其它数据库中的记录进行分类。
3.3序列模式分析
序列模式分析和关联分析法相似,其目的也是为了采掘出数据之间的联系,但序列模式分析的侧重点在于分析数据间的前后(因果)关系。
运用序列模式分析销售记录,零售商则可以发现客户潜在的购物模式,例如客户在购买微波炉前常购买何种商品。
3.4数据挖掘与信息过滤技术的结合
网络的迅速发展导致了“信息过载”、“信息超载”现象,利用网络数据挖掘中得到的数据进行信息过滤机制就是为了克服上述现象,减少用户在获得信息过程中的负担,同时向用户提供数量适宜、质量优良的信息应运而生的。
比如在网络内容挖掘之前对网络文档中包含的信息进行过滤、筛选、分类和归档等操作,使网络内容挖掘所要处理的数据量得以减少,使输入数据的质量、网络内容挖掘的信息挖掘速度及精确度和用户所得信息的时效性得以提高。
4网络数据挖掘步骤
1)确定应用领域:包括此领域的基本知识和目标。
2)建立目标数据集:选择一个数据集或在多数据集的子集上聚焦。
3)数据预处理:在大数据集中,根据需求,利用数据净化和整合技术,选择与任务相关数据,在不降低其准确度的状况下减少处理数据量。
4)数据转换:找到数据的特征进行编码,减少有效变量的数目。
5)数据挖掘:根据数据和所要发现知识的种类来确定相应的挖掘算法。
6)数据评价:将挖掘出的知识和数据以各种可视化方式显示,并将其以图形、文本等方式存储在库中,以便对它们进一步挖掘,直至满意为止。
7)实施和应用:利用数据挖掘技术所建立模型在实际项目中的应用,包括数据库的构建,个性化用户服务、基于知识的企业信息管理(MIS)、企业目标管理、决策支持等等。
5网络数据挖掘的未来展望
以上数据时网络经济形态下,在工商管理部分的应用,实际的工商管理目标是为工商管理与决策提供服务,未来的数据挖掘将会形成标准的数据挖掘语言或其他方面的标准化工作的数据挖掘系统。
数据挖掘能发现网络中隐含的有价值的信息和知识,从而提高标引、自动摘要、自动分类和自动聚类等的准确率;能促进用户兴趣模型的构建,从而为用户提供更好的个性化信息,难以满足网络信息用户的动态需求。
在网络信息检索的实际应用中,往往不是单一地运用数据挖掘技术,数据挖掘需和其他相关技术结合,才能发挥出更大的效用。
参考文献:
[1]刘彩虹,杨玉红.论图书馆文献信息服务的创新[J].图书馆工作与研究, (1):59-61.
[2]王振强.用知识管理思想建设企业竞争情报——通过信息综合利用实现企业竞争智能[EB/OL].(-12-15).
[3]周黎明,邱均平.基于网络的内容分析法[J].情报学报, (5):594-599.
[4]罗春荣,曹树金.因特网的信息资源评价[J].中国图书馆学报, (3):45-52.
[5]苗杰,倪波.面向集成竞争情报系统的数据挖掘应用研究[J].情报学报,2001 (8):443—450.
[6]翁烨.知识管理系统与市场数据挖掘的融合[J].中国信息导报, (7):52-53.
[7]郑宏珍,韩静萍.异构平台数据仓库与数据挖掘技术[J].中国信息导报,2003 (2):53-55.
网络经济对工商管理的影响及对策【2】
摘 要:网络经济就是依托网络技术发展的经济,主要特点就是信息,表现形式为信息产业和服务业。
网络经济还存在众多名称:“数字经济”、“信息经济”、“新经济”。
随着我国科学技术的发展,这种新型经济形式表现出强大的生命力,进一步加快了经济增长、经济结构、经济运行规则的转变。
工商管理部门作为国家管理经济、市场的有力工具,在建立和维护市场经济秩序中发挥着重要作用,由于网络经济形式的出现,工商管理部门也需顺应时代发展,而创新管理思路和管理方法,以促进这种新型经济的健康发展。
关键词:网络经济;工商管理;影响;对策
篇10:数据挖掘在培训管理中的应用论文
数据挖掘在培训管理中的应用论文
1、引言
对很多培养机构而言,目前急需解决的问题主要有:如何根据不同成员需求设置合理的课程、如何通过教学方式提高成员学习积极性、如何提高成员培训效果、如何通过考核检验成员学习成果等,都是培养机构发展过程中必须面对的问题。随着我国信息化进程的加快,一些培养机构也开始进行信息化建设,通过信息系统对培训相关事宜进行管理。但目前在针对培养机构的信息系统中,所实现的功能和模块是进行简单的查询、统计。在了解培训评估效果时,目前的信息系统中,学员通过系统对不同课程的教师进行打分,系统自对进行汇总、统计,得出教师评价。但这种汇总、统计是最简单的,对教师评价也缺乏全面性和深度。
2、数据挖掘在培训管理系统中的应用
大数据时代下,数据信息呈现出海量特点。如何从海量、不完全的信息中寻找到真正有用的信息,是大数据时代中重要的问题。由此便利用到数据挖掘,顾名思义,数据挖掘就是从众多数据信息中寻找到有用、有价值的信息。大数据时代下,教育行业中,信息量也是海量的,要想提高教学质量就需要运用数据挖掘找寻到有用的教育信息,并运用到实际教学中。信息系统通过一段实际应用后,里面存储了大量数据,相应的,学习管理系统也是如此,里面蕴含了大量数据信息。如在线课程等功能中藏有大量师生应用过程中的数据资料。如图1为数据挖掘在培训管理中的流程图。
2.1初步探索
培训管理系统中一般具有数据统计功能,将相关事宜进行统计。如网络课程开展过程中,数据挖掘在培训管理系统中的应用文/张宏亮在大数据时代,如何使用现有的数据对学员进行培训管理,从而提高培训效率是当前培训管理中所面临的问题。本文分析了数据挖掘在培训管理中的`应用主要表现在初步探索、数据预处理以及数据挖掘过程。其中数据预处理和数据挖掘是培训系统的核心功能。
2.2数据预期处理
数据预处理时,原始数据库会发生转变,以适应数据挖掘、数据挖掘算法等的要求。在处理结构化的数据时,数据预处理需要完成两项任务,即消除数据缺陷现象的存在和为数据挖掘奠定良好基础。数据处理是对现有的数据进行前期处理,方便后期数据挖掘。如图2为培训管理系统中数据预处理模块。
2.3数据挖掘
WangJ开发了一个将数据挖掘技术与基于模拟的培训相结合的混合框架,以提高培训评估的有效性。以信仰为基础的学习概念,用于从知识/技能水平和信心水平的两个维度来评估学员的学习成果。数据挖掘技术用于分析受训人员的个人资料和基于模拟的培训产生的数据,以评估学员的表现和学习行为。提出的方法论以台湾基于模拟的步兵射击训练的实例为例。结果表明,提出的方法可以准确地评估学员的表现和学习行为,并且可以发现潜在的知识来提高学员的学习成果。BodeaCN使用数据挖掘技术进行了培训学习管理,用于分析参加在线两年制硕士学位课程项目管理的学生的表现。系统数据来源是收集学生意见的调查数据,学生记录的操作数据和电子学习的平台记录的学生活动数据。
3、总结
目前培训机构在进行教学评估时,所选择的指标都是参考其他机构的,并没有真正从自身实际出发进行评估,因此教学评估时存在诸多问题。其中最明显的两个问题是:第一教学评估方式单一化严重,只以数字评估为主;第二评估时容易受各种主观因素影响。
参考文献
[1]菅志刚,金旭.数据挖掘中数据预处理的研究与实现[J].计算机应用研究,,21(07):117-118.
[2]王全旺,赵兵川.数据挖掘技术在Moodle课程管理系统中的应用研究[J].电化教育研究,(11):69-73.
[3]陈怡薇.数据挖掘技术:教育培训管理新手段[J].石油化工管理干部学院学报,(04):49-52.
[4]肖明,陈嘉勇,栗文超.数据挖掘在学习管理系统中应用的研究进展综述[J].现代教育技术,,20(09):127-133.
篇11:数据挖掘技术在客户关系管理中怎么应用探讨管理论文
数据挖掘技术在客户关系管理中怎么应用探讨管理论文
根据波特的影响企业的利益相关者理论,企业有五个利益相关者,分别是客户、竞争对手、供应商、分销商和政府等其他利益相关者。其中,最重要的利益相关者就是客户。现代企业的竞争优势不仅体现在产品上,还体现在市场上,谁能获得更大的市场份额,谁就能在竞争中占据优势和主动。而对市场份额的争夺实质上是对客户的争夺,因此,企业必须完成从“产品”导向向“客户”导向的转变,对企业与客户发生的各种关系进行管理。进行有效的客户关系管理,就要通过有效的途径,从储存大量客户信息的数据仓库中经过深层分析,获得有利于商业运作,提高企业市场竞争力的有效信息。而实现这些有效性的关键技术支持就是数据挖掘,即从海量数据中挖掘出更有价值的潜在信息。正是有了数据挖掘技术的支持,才使得客户关系管理的理念和目标得以实现,满足现代电子商务时代的需求和挑战。
一、客户关系管理(CRM)
CRM是一种旨在改善企业与客户之间关系的新型管理方法。它是企业通过富有意义的交流和沟通,理解并影响客户行为,最终实现提高客户获取、客户保留、客户忠诚和客户创利的目的。它包括的主要内容有客户识别、客户关系的建立、客户保持、客户流失控制和客户挽留。通过客户关系管理能够提高企业销售收入,改善企业的服务,提高客户满意度,同时能提高员工的生产能力。
二、数据挖掘(DM)
数据挖掘(Data Mining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。
常用的数据挖掘方法有:
(1)关联分析。即从给定的数据集中发现频繁出现的项集模式知识。例如,某商场通过关联分析,可以找出若干个客户在本商场购买商品时,哪些商品被购置率较高,进而可以发现数据库中不同商品的联系,进而反映客户的购买习惯。
(2)序列模式分析。它与关联分析相似,其目的也是为了控制挖掘出的数据间的联系。但序列模式分析的侧重点在于分析数据间的前后(因果)关系。例如,可以通过分析客户在购买A商品后,必定(或大部分情况下)随着购买B商品,来发现客户潜在的购买模式。
(3)分类分析。是找出一组能够描述数据集合典型特征的模型,以便能够分类识别未知数据的归属或类别。例如,银行可以根据客户的债务水平、收入水平和工作情况,可对给定用户进行信用风险分析。
(4)聚类分析。是从给定的数据集中搜索数据对象之间所存在的有价值联系。在商业上,聚类可以通过顾客数据将顾客信息分组,并对顾客的购买模式进行描述,找出他们的特征,制定针对性的营销方案。
(5)孤立点分析。孤立点是数据库中与数据的一般模式不一致的数据对象,它可能是收集数据的设备出现故障、人为输入时的输入错误等。孤立点分析就是专门挖掘这些特殊信息的方法。例如,银行可以利用孤立点分析发现信用卡诈骗,电信部门可以利用孤立点分析发现电话盗用等。
三、数据挖掘在客户关系管理中的应用
1、进行客户分类
客户分类是将大量的客户分成不同的类别,在每一类别里的客户具有相似的属性,而不同类别里的客户的属性不同。数据挖掘可以帮助企业进行客户分类,针对不同类别的客户,提供个性化的服务来提高客户的满意度,提高现有客户的价值。细致而可行的客户分类对企业的经营策略有很大益处。例如,保险公司在长期的保险服务中,积累了很多的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。保险公司必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在保险种类、保险年份和保险金额上具有极高的相似性,因而形成了具有共性的.客户群体。经过数据挖掘的聚类分析,可以发现他们的共性,掌握他们的保险理念,提供有针对性的服务,提高保险公司的综合服务水平,并可以降低业务服务成本,取得更高的收益。
2、进行客户识别和保留
(1)在CRM中,首先应识别潜在客户,然后将他们转化为客户
这时可以采用DM中的分类方法。首先是通过对数据库中各数据进行分析,从而建立一个描述已知数据集类别或概念的模型,然后对每一个测试样本,用其已知的类别与学习所获模型的预测类别做比较,如果一个学习所获模型的准确率经测试被认可,就可以用这个模型对未来对象进行分类。例如,图书发行公司利用顾客邮件地址数据库,给潜在顾客发送用于促销的新书宣传册。该数据库内容有客户情况的描述,包括年龄、收入、职业、阅读偏好、订购习惯、购书资金、计划等属性的描述,顾客被分类为“是”或“否”会成为购买书籍的顾客。当新顾客的信息被输入到数据库中时,就对该新顾客的购买倾向进行分类,以决定是否给该顾客发送相应书籍的宣传手册。
(2)在客户保留中的应用
客户识别是获取新客户的过程,而客户保留则是留住老顾客、防止客户流失的过程。对企业来说,获取一个新顾客的成本要比保留一个老顾客的成本高。在保留客户的过程中,非常重要的一个工作就是要找出顾客流失的原因。例如,某专科
学校的招生人数在逐渐减少,那么就要找出减少的原因,经过广泛的搜集信息,发现原因在于本学校对技能培训不够重视,学生只能学到书本知识,没有实际的技能,在就业市场上找工作很难。针对这种情况,学校应果断的抽取资金,购买先进的、有针对性的实验实训设备,同时修改教学计划,加大实验实训课时和考核力度,培训相关专业的教师。
(3)对客户忠诚度进行分析
客户的忠诚意味着客户不断地购买公司的产品或服务。数据挖掘在客户忠诚度分析中主要是对客户持久性、牢固性和稳定性进行分析。比如大型超市通过会员的消费信息,如最近一次消费、消费频率、消费金额三个指标对数据进行分析,可以预测出顾客忠诚度的变化,据此对价格、商品的种类以及销售策略加以调整和更新,以便留住老顾客,吸引新顾客。
(4)对客户盈利能力分析和预测
对于一个企业而言,如果不知道客户的价值,就很难做出合适的市场策略。不同的客户对于企业而言,其价值是不同的。研究表明,一个企业的80%的利润是由只占客户总数的20%的客户创造的,这部分客户就是有价值的优质客户。为了弄清谁才是有价值的客户,就需要按照客户的创利能力来划分客户,进而改进客户关系管理。数据挖掘技术可以用来分析和预测不同市场活动情况下客户盈利能力的变化,帮助企业制定合适的市场策略。商业银行一般会利用数据挖掘技术对客户的资料进行分析,找出对提高企业盈利能力最重要的客户,进而进行针对性的服务和营销。
(5)交叉销售和增量销售
交叉销售是促使客户购买尚未使用的产品和服务的营销手段,目的是可以拓宽企业和客户间的关系。增量销售是促使客户将现有产品和服务升级的销售活动,目的在于增强企业和客户的关系。这两种销售都是建立在双赢的基础上的,客户因得到更多更好符合其需求的服务而获益,公司也因销售增长而获益。数据挖掘可以采用关联性模型或预测性模型来预测什么时间会发生什么事件,判断哪些客户对交叉销售和增量销售很有意向,以达到交叉销售和增量销售的目的。例如,保险公司的交叉营销策略:保险公司对已经购买某险种的客户推荐其它保险产品和服务。这种策略成功的关键是要确保推销的保险险种是用户所感兴趣的,否则会造成用户的反感。
四、客户关系管理应用数据挖掘的步骤
1。需求分析
只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对现有资源如已有的历史数据进行评估,确定是否能够通过数据挖掘技术来解决用户的需求,然后将进一步确定数据挖掘的目标和制定数据挖掘的计划。
2、建立数据库
这是数据挖掘中非常重要也非常复杂的一步。首先,要进行数据收集和集成,其次,要对数据进行描述和整合。数据主要有四个方面的来源:客户信息、客户行为、生产系统和其他相关数据。这些数据通过抽取、转换和装载,形成数据仓库,并通过OLAP和报表,将客户的整体行为结果分析等数据传递给数据库用户。
3、选择合适的数据挖掘工具
如果从上一步的分析中发现,所要解决的问题能用数据挖掘比较好地完成,那么需要做的第三步就是选择合适的数据挖掘技术与方法。将所要解决的问题转化成一系列数据挖掘的任务。数据挖掘主要有五种任务:分类,估值预测,关联规则,聚集,描述。前三种属于直接的数据挖掘。在直接数据挖掘中,目标是应用可得到的数据建立模型,用其它可得到的数据来描述感兴趣的变量。后两种属于间接数据挖掘。在间接数据挖掘中,没有单一的目标变量,目标是在所有变量中发现某些联系。
4、建立模型
建立模型是选择合适的方法和算法对数据进行分析,得到一个数据挖掘模型的过程。一个好的模型没必要与已有数据完全相符,但模型对未来的数据应有较好的预测。需要仔细考察不同的模型以判断哪个模型对所需解决的问题最有用。如决策树模型、聚类模型都是分类模型,它们将一个事件或对象归类。回归是通过具有已知值的变量来预测其它变量的值。时间序列是用变量过去的值来预测未来的值。这一步是数据挖掘的核心环节。建立模型是一个反复进行的过程,它需要不断地改进或更换算法以寻找对目标分析作用最明显的模型,最后得到一个最合理、最适用的模型。
5、模型评估
为了验证模型的有效性、可信性和可用性,从而选择最优的模型,需要对模型进行评估。我们可以将数据中的一部分用于模型评估,来测试模型的准确性,模型是否容易被理解模型的运行速度、输入结果的速度、实现代价、复杂度等。模型的建立和检验是一个反复的过程,通过这个阶段阶段的工作,能使数据以用户能理解的方式出现,直至找到最优或较优的模型。
6、部署和应用
将数据挖掘的知识归档和报告给需要的群体,根据数据挖掘发现的知识采取必要的行动,以及消除与先前知识可能存在的冲突,并将挖掘的知识应用于应用系统。在模型的应用过程中,也需要不断地对模型进行评估和检验,并做出适当的调整,以使模型适应不断变化的环境。
篇12:浅谈数据分析在电子商务中的应用
浅谈数据分析在电子商务中的应用
【摘要】电子商务(EC)在现代商务企业的发展中占有越来越重要的地位。如何利用信息技术掌握更多的商务信息已备受商家们的关注,站点分析技术正是为商家和网站提供了这样一种有效的分析工具。随着Internet的普及,电子商务的兴起,人们的商务理念正在改变,电子商务的广泛应用使企业产生了大量的业务数据,如何更快、更好地利用各种有效的数据更好地开展电子商务,如何通过数据分析确定你的网店是否符合客户喜好,这是目前电子商务急需解决的问题。
【关键词】电子商务 数据分析 数据挖掘 信息技术
一、市场调查
根据一份市场调查显示;卖家本身体现的实力给人与信任可依赖程度越高,用户越愿意来购买商品。
在我评论之前,我申明一下,一家之言只代表一个群体的言论,并不能涵盖每个人的想法与判断,电子商务的数据报告只能说明趋势,并不能完全反应出每个顾客真实的意图。卖家信誉-28%。价格-26%。网站的外观和感觉-16%。网站易用性-15%。商品打折-4%。快递和交付等原因-3%。出现在搜索引擎上-2%。
这是一份市场调查的结果,数据报告对实际商业产生怎样的影响,一个关键问题就是筛选问题的分类方式,他是否独立又相互依存,论点论据之间重合度越低,数据报告能说明的问题越准确。但在这之前首先是样本数据的获取与筛选方法,这里就不追溯了。我只是想根据个人对电子商务的理解,结合这份报告说点事,实际上这一组数据比较接近我个人对网购的理解,首先我们逐条说明这些影响一个网店的因素。
二、卖家信誉
之所以被普遍认为是最重要的,是因为我们网购时并不真实的接触到产品,也并不了解向你推销商品的人是否值得可信,这都是顾客基本的一个需要认知过程,互联网上哪里去确认?当然如果你在一家多卖家的平台上,往往都会有商家信用,评论等功能,很容易通过别的顾客消费情况增加自己对商家的认知。电子商务为什么要打假信用?这只是顺应顾客需求,维护健康秩序所必须做的事情。所以作为卖家不要轻易尝试作假信用,或者你今天逃过一劫,但说不定你明天网店刚做大的时候被强行关闭了。
三、价格
价格是一道屏障,在相互比拼中,有人拼得起,有人拼不起,但如何更好的控制价格,削减顾客成本,不仅为自己赢得更多展示机会,也会赢得更多顾客。价格不会是越低廉越好,最好的平衡体系没有,只有一个方法,如何在综合上为自己赢得市场??有人习惯选一些比如3.99美元的价格,看上去不加拿一分钱顾客潜在心理是这个人没赚钱,但值得说的是商品定价因产品,因地域时间,顾客等因素制宜,现在的顾客不都是傻子,商品有的是比价机会。也有人选择款0利润或者赔本的商品推,但在商品里关联组合商品卖,通过吸引用户购买自己的组合商品或者别的商品来拉动自己销售利润;还有的人也是利用免费赠送或者赔本的方式挂商品,但通过物流利润来保证自己不亏本的方式拉动店铺其他产品行销。
四、网站的外观与感觉
有的人店铺半年一年都是淘宝默认的最烂的那套模板,也不知道为什么淘宝没更新还是咋的,我没卖过商品,还不是很了解那个,但我买东西基本不光顾这样的店铺,店主对店铺的打理程度决定了我对店主的'看法,因为信用不是绝对可靠的;产品,服务好不好,全在你的形象与行为上。
五、网站易用性
你能忍受自己在一个网站哗啦了半天结果没搞懂应该怎么买商品吗?我一个朋友,按照我的认识他也是比较理性,属于心思敏捷的,他说他在XX网站搞了好久,都不知道怎么买东西,所以以后都没去过;虽然易用的应用都还是不能被所有人接受,但简单清楚的,没有歧义的每一步流程总是好的。不过这个虽然用户关注的多,但我觉得但凡有点认识的,认识相应语言的人大概都明白很多网购系统的操作流程。这里就不说什么了。
篇13:数据挖掘论文
题目:档案信息管理系统中的计算机数据挖掘技术探讨
摘要:伴随着计算机技术的不断进步和发展,数据挖掘技术成为数据处理工作中的重点技术,能借助相关算法搜索相关信息,在节省人力资本的同时,提高数据检索的实际效率,基于此,被广泛应用在数据密集型行业中。笔者简要分析了计算机数据挖掘技术,并集中阐释了档案信息管理系统计算机数据仓库的建立和技术实现过程,以供参考。
关键词:档案信息管理系统;计算机;数据挖掘技术;
1数据挖掘技术概述
数据挖掘技术就是指在超多随机数据中提取隐含信息,并且将其整合后应用在知识处理体系的技术过程。若是从技术层面判定数据挖掘技术,则需要将其划分在商业数据处理技术中,整合商业数据提取和转化机制,并且建构更加系统化的分析模型和处理机制,从根本上优化商业决策。借助数据挖掘技术能建构完整的数据仓库,满足集成性、时变性以及非易失性等需求,整和数据处理和冗余参数,确保技术框架结构的完整性。
目前,数据挖掘技术常用的工具,如SAS企业的EnterpriseMiner、IBM企业的IntellientMiner以及SPSS企业的Clementine等应用都十分广泛。企业在实际工作过程中,往往会利用数据源和数据预处理工具进行数据定型和更新管理,并且应用聚类分析模块、决策树分析模块以及关联分析算法等,借助数据挖掘技术对相关数据进行处理。
2档案信息管理系统计算机数据仓库的建立
2.1客户需求单元
为了充分发挥档案信息管理系统的优势,要结合客户的实际需求建立完整的处理框架体系。在数据库体系建立中,要适应迭代式处理特征,并且从用户需求出发整合数据模型,保证其建立过程能按照整体规划有序进行,且能按照目标和分析框架参数完成操作。首先,要确立基础性的数据仓库对象,由于是档案信息管理,因此,要集中划分档案数据分析的主题,并且有效录入档案信息,确保满足档案的数据分析需求。其次,要对日常工作中的用户数据进行集中的挖掘处理,从根本上提高数据仓库分析的完整性。
(1)确定数据仓库的基础性用户,其中,主要包括档案工作人员和使用人员,结合不同人员的工作需求建立相应的数据仓库。
(2)档案工作要利用数据分析和档案用户特征分析进行分类描述。
(3)确定档案的基础性分类主题,一般而言,要将文书档案归档状况、卷数等基础性信息作为分类依据。
2.2数据库设计单元
在设计过程中,要针对不同维度建立相应的参数体系和组成结构,并且有效整合组成事实表的主键项目,建立框架结构。
第一,建立事实表。事实表是数据模型的核心单元,主要是记录相关业务和统计数据的表,能整合数据仓库中的信息单元,并且提升多维空间处理效果,确保数据储存过程切实有效。(1)档案管理中文书档案目录卷数事实表:事实表主键,字段类型Int,字段为Id;文书归档年份,字段类型Int,字段为Gdyear_key;文书归档类型,字段类型Int,字段为Ajtm_key;文书归档单位,字段类型Int,字段为Gddw_key;文书档案生成年份,字段类型Int,字段为Ajscsj_key,以及文书档案包括的文件数目。(2)档案管理中文书档案卷数事实表:事实表主键,字段类型Int,字段为Id;文书归档利用日期,字段类型Int,字段为Date_key;文书归档利用单位,字段类型Int,字段为Dw_key;文书归档利用类别,字段类型Int,字段为Dalb_key;文书归档利用年份,字段类型Int,字段为Dayear_key等[1]。
第二,建立维度表,在实际数据仓库建立和运维工作中,提高数据管理效果和水平,确保建立循环和反馈的系统框架体系,并且处理增长过程和完善过程,有效实现数据库模型设计以及相关维护操作。首先,要对模式的基础性维度进行分析并且制作相应的表,主要包括档案年度维表、利用方式维表等。其次,要建构数据库星型模型体系。最后,要集中判定数据库工具,保证数据库平台在客户管理工作方面具备必须的优势,集中制订商务智能解决方案,保证集成环境的稳定性和数据仓库建模的效果,真正提高数据抽取以及转换工作的实际水平。需要注意的是,在全面整合和分析处理数据的过程中,要分离文书档案中的数据,相关操作如下:
deletefromdaggdtemp//删除临时表中的数据
Chcount=dag1.importfile(dbo.uwswj)//将文书目录中数据导出到数据窗口
Dag1.update//将数据窗口中的数据保存到临时表
相关技术人员要对数据进行有效处理,以保证相关数据合并操作、连接操作以及条件性拆分操作等都能按照数据预处理管理要求合理化进行,从根本上维护数据处理效果。
2.3多维数据模型建立单元
在档案多维数据模型建立的过程中,相关技术人员要判定联机分析处理项目和数据挖掘方案,整合信息系统中的数据源、数据视图、维度参数以及属性参数等,保证具体单元能发挥其实际作用,并且真正发挥档案维表的稳定性、安全性优势。
第一,档案事实表中的数据稳定,事实表是加载和处理档案数据的基本模块,按照档案目录数据表和档案利用状况表分析和判定其类别和归档时间,从而提高数据独立分析水平。一方面,能追加有效的数据,保证数据仓库信息的基本质量,也能追加时间判定标准,能在实际操作中减少扫描整个表浪费的时间,从根本上提高实际效率。另一方面,能删除数据,实现数据更新,检索相关关键词即可。并且也能同时修改数据,维护档案撤出和档案追加的动态化处理效果。
第二,档案维表的安全性。在维表管理工作中,档案参数和数据的安全稳定性十分关键,由于其不会随着时间的推移出现变化,因此,要对其进行合理的处理和协调。维表本身的存储空间较小,尽管结构发生变化的概率不大,但仍会对代表的对象产生影响,这就会使得数据出现动态的变化。对于这种改变,需要借助新维生成的方式进行处理,从而保证不同维表能有效连接,整合正确数据的同时,也能对事实表外键进行分析[2]。
3档案信息管理系统计算机数据仓库的实现
3.1描述需求
随着互联网技术和数据库技术不断进步,要提高档案数字化水平以及完善信息化整合机制,加快数据库管控体系的更新,确保设备存储以及网络环境一体化水平能满足需求,尤其是在档案资源重组和预测项目中,只有从根本上落实数据挖掘体系,才能为后续信息档案管理项目升级奠定坚实基础。另外,在数据表和文书等基础性数据结构模型建立的基础上,要按照规律制定具有个性化的主动性服务机制。
3.2关联计算
在实际档案分析工作开展过程中,关联算法描述十分关键,能对某些行为特征进行统筹整合,从而制定分析决策。在进行关联规则强度分析时,要结合支持度和置信度等系统化数据进行综合衡量。例如,档案数据库中有A和B两个基础项集合,支持度为P(A∪B),则直接表述了A和B在同一时间出现的基础性概率。若是两者出现的概率并不大,则证明两者之间的关联度较低。若是两者出现的概率较大,则说明两者的关联度较高。另外,在分析置信度时,利用Confidence(A→B)=(A|B),也能有效判定两者之间的关系。在出现置信度A的状况下,B的出现概率则是整体参数关系的关键,若是置信度的数值到达100%,则直接证明A和B能同一时间出现。
3.3神经网络算法
除了要对档案的实际资料进行数据分析和数据库建构,也要对其利用状况进行判定,目前较为常见的利用率分析算法就是神经网络算法,其借助数据分类系统判定和分析数据对象。值得注意的是,在分类技术结构中,要结合训练数据集判定分类模型数据挖掘结构。神经网络算法类似于人脑系统的运行结构,能建立完整的信息处理单元,并且能够整合非线性交换结构,确保能凭借历史数据对计算模型和分类体系展开深度分析[3]。
3.4实现多元化应用
在档案管理工作中应用计算机数据挖掘技术,能对档案分类管理予以分析,保证信息需求分类总结工作的完整程度。尤其是档案使用者在对档案具体特征进行差异化分析的过程中,能结合不同的元素对具体问题展开深度调研。一方面,计算机数据挖掘技术借助决策树算法处理规则化的档案分析机制。在差异化训练体系中,要对数据集合中的数据进行系统化分析以及处理,确保构建要求能适应数据挖掘的基本结构[4]。例如,档案管理人员借助数据挖掘技术能整合档案使用人员长期浏览与关注的信息,并且能集中收集和汇总间隔时间、信息查询停留时间等,从而建构完整的数据分析机制,有效向其推送或者是带给便捷化查询服务,保证档案管理数字化水平的提高。另一方面,在档案收集管理工作中应用数据挖掘技术,主要是对数据信息进行分析,结合基本结果建立概念模型,保证模型以及测试样本之间的比较参数贴合标准,从而真正建立更加系统化的分类框架体系。
4结语
总而言之,在档案管理工作中应用数据挖掘技术,能在准确判定用户需求的同时,维护数据处理效果,并且减少档案数字化的成本,为后续工作的进一步优化奠定坚实基础。并且,数据库的建立,也能节省经费和设备维护成本,真正实现数字化全面发展的目标,促进档案信息管理工作的长效进步。
参考文献
[1]曾雪峰.计算机数据挖掘技术开发及其在档案信息管理中的运用研究[J].科技创新与应用,(9):285.
[2]王晓燕.数据挖掘技术在档案信息管理中的应用[J].兰台世界,(23):25-26.
[3]韩吉义.基于数据挖掘技术的高校图书馆档案信息管理平台的构筑[J].山西档案,(6):61-63.
[4]哈立原.基于数据挖掘技术的高校图书馆档案信息管理平台构建[J].山西档案,2016(5):105-107.
篇14:数据挖掘论文
题目:机器学习算法在数据挖掘中的应用
摘要:随着科学技术的快速发展,各种新鲜的事物和理念得到了广泛的应用。其中机器学习算法就是一则典型案例——作为一种新型的算法,其广泛应用于各行各业之中。本篇论文旨在探讨机器学习算法在数据挖掘中的具体应用,我们利用庞大的移动终端数据网络,加强了基于GSM网络的户外终端定位,从而提出了3个阶段的定位算法,有效提高了定位的精准度和速度。
关键词:学习算法;GSM网络;定位;数据;
移动终端定位技术由来已久,其主要是利用各种科学技术手段定位移动物体的精准位置以及高度。目前,移动终端定位技术主要应用于军事定位、紧急救援、网络优化、地图导航等多个现代化的领域,由于移动终端定位技术能够带给精准的位置服务信息,所以其在市场上还是有较大的需求的,这也为移动终端定位技术的优化和发展,带给了推动力。随着通信网络普及,移动终端定位技术的发展也得到了一些帮忙,使得其定位的精准度和速度都得到了全面的优化和提升。同时,传统的定位方法结合先进的算法来进行精准定位,目前依旧还是有较大的进步空间。在工作中我选取机器学习算法结合数据挖掘技术对传统定位技术加以改善,取得了不错的效果,但也遇到了许多问题,例如:使用机器学习算法来进行精准定位暂时无法满足更大的区域要求,还有想要利用较低的设备成本,实现得到更多的精准定位的要求比较困难。所以本文对机器学习算法进行了深入的研究,期望能够帮忙其更快速的定位、更精准的定位,满足市场的需要。
1数据挖掘概述
数据挖掘又名数据探勘、信息挖掘。它是数据库知识筛选中十分重要的一步。数据挖掘其实指的就是在超多的数据中透过算法找到有用信息的行为。一般状况下,数据挖掘都会和计算机科学紧密联系在一齐,透过统计集合、在线剖析、检索筛选、机器学习、参数识别等多种方法来实现最初的目标。统计算法和机器学习算法是数据挖掘算法里面应用得比较广泛的两类。统计算法依靠于概率分析,然后进行相关性决定,由此来执行运算。
而机器学习算法主要依靠人工智能科技,透过超多的样本收集、学习和训练,能够自动匹配运算所需的相关参数及模式。它综合了数学、物理学、自动化和计算机科学等多种学习理论,虽然能够应用的领域和目标各不相同,但是这些算法都能够被独立使用运算,当然也能够相互帮忙,综合应用,能够说是一种能够“因时而变”、“因事而变”的算法。在机器学习算法的领域,人工神经网络是比较重要和常见的一种。因为它的优秀的数据处理和演练、学习的潜力较强。
而且对于问题数据还能够进行精准的识别与处理分析,所以应用的频次更多。人工神经网络依靠于多种多样的建模模型来进行工作,由此来满足不同的数据需求。综合来看,人工神经网络的建模,它的精准度比较高,综合表述潜力优秀,而且在应用的过程中,不需要依靠专家的辅助力量,虽然仍有缺陷,比如在训练数据的时候耗时较多,知识的理解潜力还没有到达智能化的标准,但是,相对于其他方式而言,人工神经网络的优势依旧是比较突出的。
2以机器学习算法为基础的GSM网络定位
2.1定位问题的建模
建模的过程主要是以支持向量机定位方式作为基础,把定位的位置栅格化,面积较小的栅格位置就是独立的一种类别,在定位的位置内,我们收集数目庞大的终端测量数据,然后利用计算机对测量报告进行分析处理,测量栅格的距离度量和精准度,然后对移动终端栅格进行预估决定,最终利用机器学习进行分析求解。
2.2采集数据和预处理
本次研究,我们采用的模型对象是我国某一个周边长达10千米的二线城市。在该城市区域内,我们测量了四个不同时间段内的数据,为了保证机器学习算法定位的精准性和有效性,我们把其中的三批数据作为训练数据,最后一组数据作为定位数据,然后把定位数据周边十米内的前三组训练数据的相关信息进行清除。一旦确定某一待定位数据,就要在不同的时间内进行测量,按照测量出的数据信息的经纬度和平均值,再进行换算,最终,得到真实的数据量,提升定位的速度以及有效程度。
2.3以基站的经纬度为基础的初步定位
用机器学习算法来进行移动终端定位,其复杂性也是比较大的,一旦区域面积增加,那么模型和分类也相应增加,而且更加复杂,所以,利用机器学习算法来进行移动终端定位的过程,会随着定位区域面积的增大,而耗费更多的时间。利用基站的经纬度作为基础来进行早期的定位,则需要以下几个步骤:要将边长为十千米的正方形分割成一千米的小栅格,如果想要定位数据集内的相关信息,就要选取对边长是一千米的小栅格进行计算,而如果是想要获得边长一千米的大栅格,就要对边长是一千米的栅格精心计算。
2.4以向量机为基础的二次定位
在完成初步定位工作后,要确定一个边长为两千米的正方形,由于第一级支持向量机定位的区域是四百米,定位输出的是以一百米栅格作为中心点的经纬度数据信息,相对于一级向量机的定位而言,二级向量机在定位计算的时候难度是较低的,更加简便。后期的预算主要依靠决策函数计算和样本向量机计算。随着栅格的变小,定位的精准度将越来越高,而由于增加分类的问题数量是上升的,所以,定位的复杂度也是相对增加的。
2.5以K-近邻法为基础的三次定位
第一步要做的就是选定需要定位的区域面积,在二次输出之后,确定其经纬度,然后依靠经纬度来确定边长面积,这些都是进行区域定位的基础性工作,紧之后就是定位模型的训练。以K-近邻法为基础的三次定位需要的是综合训练信息数据,对于这些信息数据,要以大小为选取依据进行筛选和合并,这样就能够减少计算的重复性。当然了,选取的区域面积越大,其定位的速度和精准性也就越低。
3结语
近年来,随着我国科学技术的不断发展和进步,数据挖掘技术愈加重要。根据上面的研究,我们证明了,在数据挖掘的过程中,应用机器学习算法具有举足轻重的作用。作为一门多领域互相交叉的知识学科,它能够帮忙我们提升定位的精准度以及定位速度,能够被广泛的应用于各行各业。所以,对于机器学习算法,相关人员要加以重视,不断的进行改良以及改善,切实的发挥其有利的方面,将其广泛应用于智能定位的各个领域,帮忙我们解决关于户外移动终端的定位的问题。
参考文献
[1]陈小燕,CHENXiaoyan.机器学习算法在数据挖掘中的应用[J].现代电子技术,2015,v.38;No.451(20):11-14.
[2]李运.机器学习算法在数据挖掘中的应用[D].北京邮电大学,2014.
[3]莫雪峰.机器学习算法在数据挖掘中的应用[J].科教文汇,2016(07):175-178.
篇15:数据挖掘论文
数据挖掘在电力调度自动化系统的运用
关键词:数据挖掘;电力调度自动化系统;周期性关联规则挖掘算法
摘要:电力调度自动化系统对电力数据的收集和整理工作质量有着较高要求,而为了满足这一要求近年来数据挖掘技术日渐受到电力行业重视,基于此,文章就数据挖掘技术进行了简单介绍,并对数据挖掘在电力调度自动化系统中的应用进行了深入论述,期望论述资料能够为相关业内人士带来必须启发。
前言
电力数据收集、整理质量直接影响电力调度自动化系统的控制和管理水平,但由于很多价值较高的数据信息往往位于隐藏的数据之中,这就使得传统方法不能较好满足电力调度自动化系统需要,而为了解决这一问题,正是本文就数据挖掘在电力调度自动化系统中应用展开具体研究的原因所在。
1数据挖掘技术
在大数据时代到来的这天,数据挖掘技术能够从海量数据信息中准确找到所求信息,因此本文将数据挖掘技术视作“采用有效工具和措施从海量数据库中提取数据和模型关系”的技术,由此企业的决策能够得到充足的决定依据。为了更直观了解数据挖掘技术,本文将数据挖掘的过程和步骤概括为以下几个方面:(1)确定业务对象。确定业务对象属于数据挖掘过程的基础工作,这一过程的实质是了解业务问题。(2)准备数据。透过选取数据、数据预处理、转换数据三个层面的工作,即可完成针对于挖掘算法的分析模型构建,并最终完成必须领域的数据挖掘。
2数据挖掘在电力调度自动化系统中的应用
2.1应用方式
神经网络、灰色分析法、关联规则均能够用于电力调度自动化系统的数据挖掘,具体应用如下所示。
(1)神经网络。作为应用较为广泛的一种人工智能研究方法,神经网络早已在我国实现了较为广泛的应用,电力调度自动化系统的数据挖掘也是其应用的重要领域,由于数据自行处理、数据分布存储、高度容错性是神经网络的应用优势所在,这就使得神经网络较为适用于模糊、不完整、不准确数据的处理。在电力调度自动化系统的数据挖掘中,神经网络主要透过关联分析的方式实现数据逻辑处理,具体处理能够分为以下几个方面:a.整合统一基础数据。由于电力调度自动化系统包含的数据具备庞大复杂、种类繁多的特点,因此神经网络的应用需要透过整合统一使相关数据构成结构模型,透过神经网络系统实现数据统一管理。b.实现不同环节电力调度的关联。应用数据挖掘神经网络方法整理不同环节的电流状态和参数,并保证相关数据信息的整合性,即可实现不同环节电力调度的关联。c.分析与决策。结合神经网络整理的整合数据,即可开展分析、决策以及数据共享。
(2)灰色分析法。灰色分析法能够较好分析电力调度过程出现的不完整数据,但不适用于较为庞大的数据是该数据挖掘方法存在的不足。一般状况下,灰色分析法的应用需要深入了解设备数据参数,如用户用电状况预测、母线负荷数据值、电力销售状况预测等,结合分析确定电力调度边界电量,即可提升数据收集的可靠性,电力调度自动化系统的运行也将由此获得较为有力的支持。
(3)关联规则。作为数据挖掘的重要分支,关联规则能够透过发觉超多数据项集之间的搞笑关联和相互联系实现信息的高质量分析,刚刚提到的神经网络严格好处上也属于关联规则范畴,但是本文关于关联规则的研究主要围绕周期性关联规则挖掘算法展开。周期性关联规则挖掘算法具备扫描数据库次数较少、避免扫描数据库的时间开销、连接程序中相同项目的比较次数较少、数据项集频度统计速度较高等优势,由此实现的周期性数据集挖掘、关联规则挖掘便能够大大降低电力调度自动化系统的事故发生概率。值得注意的是,本文研究的周期性关联规则挖掘算法结合了蚁群算法,这是由于原算法使用了超多的搜索操作、分类检索和路径检索,蚁群算法下走过的路上会留下信息素,这就使得较短路径上的信息素浓度较高,结合负信息素理论,即可保证有信息素的地方蚂蚁不能走过。如使用表1所示的事务数据库D(部分),即可结合时态事务数据库D分类数据集改善、每一个分类数据集周期性数据集挖掘改善,以数据项A分类为例,即可求得表2所示的时态属性差,由此开展更深入计算则能够更深入了解周期性关联规则挖掘算法的思想,也能够认识到蚁群算法的重要性。
2.2应用实践
为提升研究实践价值,本文围绕周期性关联规则挖掘算法建立了基于周期性关联规则挖掘的数据分析系统,这一系统的建立过程如下所示。
(1)开发平台选取。结合系统功能需要,选取了微软的平台作为主要系统开发平台,该平台具备的强大数据库访问潜力、扩展丰富等特点,能够较好满足系统开发需要。
(2)基于数据桥的数据集成模块设计。思考到我国当下电力事业的数据集成标准较为复杂、混乱,系统设计采用了自己的数据集成方法,同时应用了清晰数据清洗策略,由此即可实现不完整数据、重复数据、错误数据三类脏数据的清洗,数字数据不完整、日期数据不完整、错误日期型数据、重复数据等仅属于清洗资料,其中除重复数据不予处理外,其他数据均采用修补空值和默认值的方式,如数字数据不完整采用“补0,补null,默认值”的清洗策略。此外,无类型文件数据集成、数据库数据集成、异构数据库数据集成也是这一环节设计的重要资料[3]。
(3)数据库管理模块设计。采用微软公司的SQLServer数据库系统,由此数据库管理被分为层次数建模、数据表管理、数据表导出三部分,其中数据表管理包含数据管理、结构管理、删除三方面功能,而数据表导出则包括文本文件、Excel文件、Access文件、Xml文件、其他数据库五部分资料。
(4)数据分析功能模块设计。数据分析功能模块由同期数据分析、周期性数据分析、数据预警分析、数据关联分析四部分组成,各部分设计如下所示:a.同期数据分析模块设计。该模块的运行流程主要由负荷数据、网损数据、力率数据、有功总加数据比较组成,分析流程能够概括为:“输入所有比较条件→合法→根据条件生成SQL语句→显示查询结果→打印比较图像”。b.周期性数据分析模块设计。围绕报警周期性、负荷周期性、遥测周期性三方面开展数据挖掘,即可完成该模块设计。c.数据预警分析模块设计。分析流程为:“初始化数据集及参数→输入预警分析参数→合法→分析预测→决定预测类型→有无推荐→输出报警类型和推荐→输出报警类型”。d.数据关联分析模型设计。采用默认用户手动输入数据集方法,程序流程为:“初始化已有周期性数据集→输入参数→合法?→数据集交叉?→计算Conf、Sup→计算下一对数据集→完成”。
3结束语
数据挖掘能够较好地服务于电力调度自动化系统。而在此基础上,本文研究建立的基于周期性关联规则挖掘的数据分析系统,则证明了研究的实践价值。因此,在相关领域的理论研究和实践探索中,本文资料能够发挥必须参考作用。
参考文献:
[1]王谦,李烽.电力调度的自动化网络安全分析及实现[J].电子技术与软件工程,2017(21):116.
[2]刘宾,朱亚奇,吴莎.数据挖掘在电力调度自动化系统中的应用[J].电子技术与软件工程,2017(20):158.
[3]曹铁生.电力调度自动化系统应用现状与发展趋势研究分析[J].硅谷,2014,7(23):74+76.
[4]周洋.数据挖掘在电力调度自动化系统中的应用解析[J].科技创新与应用,2017(35):149-150.
[5]李梦鸣.大数据挖掘平台在电力运营监测工作的应用[J].科技创新与应用,2016(26):21-22.
作者:何宇雄;苑晋沛;聂宇;罗超;高小芊;寇霄宇;李蔚单位:国网湖北省电力公司武汉供电公司
文档为doc格式