以下是小编整理的“数学分析”课程中数学建模思想的融入研究论文,本文共14篇,欢迎阅读分享,希望对大家有帮助。

篇1:“数学分析”课程中数学建模思想的融入研究论文
“数学分析”课程中数学建模思想的融入研究论文
“数学分析”课程是数学类数学与应用数学、信息与计算科学、统计学等专业的一门主干基础课程。学好“数学分析”课程是学好其他一些后继课程如“微分方程”、“复变函数”、“实变函数”、“泛函分析”与“概率论与数理统计”等课程的必备基础。同时“数学分析”课程也是以更高层次、更深入地理解中学数学教材所必需的基础。通过“数学分析”课程基本知识的传授与相关习题、实例的训练,使学生养成严谨务实的学风,逻辑思维能力,分析和解决问题的能力有进一步提高。特别是注重学生发现问题、分析问题、解决问题的数学思想的培养。力争为把学生培养成既有严谨的逻辑思维能力、又有科学创新精神的人才打下良好的基础。因此该课程的教学好坏在一定程度上关系到学生数学思维与数学素质的培养与提高。
1数学建模及其思想内涵
模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,集中反映了原型中人们需要的那一部分特征。
数学模型(Mathematical Model)是关于部分现实世界和为一种特殊目的而做的一个抽象的、简化的结构。
具体来说,数学模型就是为了某种目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。
数学建模(Mathematical Modeling)简单理解就是建立数学模型的全过程,也就是在深入调查研究,了解实际问题,做出合理的简化假设,分析其内在规律等工作的基础上,获得数学模型,然后通过求解、计算得到的模型结果来解释实际问题,并接受实际的检验。数学建模的一般步骤如图1所示,全过程如图2所示。
2融数学建模思想于“数学分析”课程中的作用与意义
作为数学类最重要的基础课之一,数学科学的逻辑性和历史继承性决定了“数学分析”在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这一坚实的基础。“数学分析”由于对微积分在理论体系上的严格化和精确化,确立了在数学科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化、逻辑推理、最优分析、符号运算等,这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,“数学分析”课程正是其中最重要的一个环节。
“数学分析”的教学存在着诸多问题。例如,对于刚进入大学的新生,不太适应大学教师的教学方法与模式;学生认为“数学分析”课程过于抽象,与实际生活距离较远,对该课程缺乏学习热情和动力[1].融数学建模思想方法于“数学分析”课程的教学中,配合适量的数学模型内容进行教学,有利于学生对基础理论知识的掌握,提高学生分析问题、解决问题的数学实践应用能力,同时可以激发学生学习数学的积极性与热情,提高自身素质和素养。可以起到以下作用:激发学生的参与探索的兴趣;增强联系数学理论与实际运用的能力;促进“数学分析”教学的改革;提高大学生的数学素质。
3融数学建模思想于“数学分析”教学
“数学分析”教学中要求掌握的很多内容可以看作是数学建模的模型求解阶段,比如函数的可微性、定积分、重积分、曲线积分、曲面积分的计算等[2].因此,在实际教学过程中,应适当结合数学模型的建模全过程来进行讲解,使学生了解问题的来龙去脉,逐步的进行分析、求解等,使学生在学习的过程中系统地了解与掌握分析问题、解决问题的思想与方法,以提高学生学习数学的兴趣,更好的培养学生应用数学的能力。
3.1融数学建模思想于概念、定义教学之中
从恰当的案例中引入概念是将数学建模思想融入“数学分析”课程教学的重要形式[3].“数学分析”课程中有很多非常重要的概念,如函数、极限、连续、导数、微分、定积分、重积分、级数等,这些概念都是从一些具体问题出发,抓住其在数量关系等方面的共同本质和特性而加以概括、抽象出来的。在一些重要概念教学过程中,对概念的引入,任课教师要精心设计,这样在知识传授过程中,让学生学会数学思想、方法,领会数学的精神实质,知晓知识点的来龙去脉,使学生明白那些看似枯燥无味的概念不是头脑中所固有的,而是有着很强的现实背景,有其特有的物理原型和表象的。
例如,对于定积分概念,初学时学生倍感这一概念很抽象。其实,这一概念是在很多具体原型的基础之上抽象而得到的`,如求曲边梯形的面积、旋转体的体积等。在教学过程之中可以将求曲边梯形面积作为原型,借助“不变代变”的思想,通过“分划→近似→求和→取极限”4个步骤,最终将无限细分所得的近似值的极限定义为曲边梯形面积的值,从而这个几何问题得到解决[4].通过这一数学模型来进行教学,可以使学生更好地学习并理解这一概念,比把概念用抽象、不易理解的数学符号直接呈现给学生要生动、形象、有趣的多,更容易使学生记住、理解、掌握知识点,学习数学的热情势必会更高,可以达到事半功倍的教学效果。
又例如,在讲授无穷级数这一概念时,为了引入该概念,任课教师可以介绍“阿基里斯追龟悖论”.对于该悖论,教师在分析完该悖论的内容、产生的原因、哲学辨析之后,可建立简单的模型来解释,其详细过程可参见文献[5].芝诺悖论涉及到了无穷项求和,这是学生先前并未接触到的,只是熟知有限项求和的相关内容。教师引导学生利用已学的有限项求和概念,结合已学的极限理论,逐渐给出无穷项求和的可能性及基本方法,极大地激发学生学习的兴趣。
3.2融数学建模思想于定理、结论教学之中
“数学分析”中有很多较为抽象、不易理解的定理,如何讲授这样的定理,使学生更容易理解、掌握与灵活运用定理解决一些实际问题,这是教学过程的一大难点[6].对于定理的证明,可将定理的结论视为是一个数学模型,将定理的条件视为模型的假设条件,即可根据预先设置好的问题情景逐步地引导学生发现定理的结论,最终建立相应的模型。这样融入数学建模思想于教学的方法,一方面使学生学到了数学知识,另一方面让他们体验到探索、发现和创造的过程,是培养学生意识与创新能力的好途径。
多年来,在讲授数学课程的过程中,常常会遇到学生提出这样一个问题:数学知识究竟有什么用?许多学生知道数学知识有用,必须学好,但在实际生活中似乎又看不到数学有什么用,也不知道怎样用,在什么时候用,尤其是数学中的定理结论之类。这样一来,学生会丧失学习的兴趣。为了提高学生的兴趣,培养学生的数学应用能力,在一些定理、结论的教学过程中,适时增加一些数学模型的实例。
案例:椅子能在不平的地面上放稳吗[7]
模型的假设:①4条腿一样长,椅脚与地面点接触,4只脚连线呈正方形;②地面高度连续变化,可视为数学上的连续曲面;③地面相对平坦,使椅子在任意位置至少3只脚同时着地。
模型的构成:利用正方形的对称性,以椅脚连线为对称,椅脚按O点进行旋转,其旋转示意图如图3所示,用θ(对角线与x轴的夹角)表示椅子位置,4只脚着地表明4个椅脚与地面的距离为零,其中这4个距离都是θ的函数。根据正方形对称性,4个距离中可以进行组合,实际考虑两个距离:A,C两脚与地面距离之和,用f(θ)表示;B,D两脚与地面距离之和,用g(θ)表示。根据假设②可知,f(θ)与g(θ)为连续函数,椅子在任意位置至少3只脚着地,于是正方形ABCD绕O点旋转,对任意θ,f(θ),g(θ)中至少一个为0.这样,椅子能不能在不平的地面上放稳这一问题转化为数学模型:已知f(θ)与g(θ)为连续函数,对任意θ,f(θ)·g(θ)=0,且g(θ)=0,f(θ)>0,证明存在θ0,使f(θ0)=g(θ0)=0.
模型求解:由连续函数的根的存在定理解决此问题。
这样把理论应用到实践中去,解决一些实际问题,可以达到加深理解,深化、巩固所学理论的作用。
3.3融数学建模思想于作业之中
作业是学生经过独立思考,自觉、有目的地分析问题、解决问题,将学得的知识运用于实际的智力活动过程,是巩固新授知识,形成技能技巧,培养良好的思维品质,发展学生智力的重要途径,是课堂教学过程中不可跨越的一环。通过写作业可以检查学生学习的结果,加深对知识的理解和记忆,充分发挥学生的智慧和潜力,同时也有助于培养学生的思维能力。针对“数学分析”理论性较强的特点,有目的让学生解决一些实际问题。只有把理论应用到实践中去,解决几个实际问题,才能达到理解、深化、巩固所学理论的效果[8].在“数学分析”的习题课教学中,教师可根据实际情况适时将教材中的一些纯数学问题进行改编、加工成一些具有实际意义的应用题,引导学生运用所学的数学分析有关理论知识以及思想、方法来解决问题。这一过程事实上就是进行数学建模的过程。通过这样应用题目的解决,使学生能够更加深刻地体会到学习“数学分析”的乐趣和意义。
4融数学建模思想于“数学分析”教学中应注意的问题
融数学建模思想于“数学分析”教学中,一定要把握度的问题,在一些问题上不要刻意去追求。由于课时有限,课堂教学过程中“插入”内容课时不宜安排过多,否则将会影响课程教学计划;但又不能“蜻蜓点水”,没有一定的深度。这就要求教师要充分研究“数学分析”教学内容,精选合适的案例,充分发挥数学建模的思想,并将之作为“数学分析”课程教学的延伸性和推广性内容来讲授。在这过程中,需注意以下几条:注意循序渐进性,切记急功近利;案例要精,反映主题;正确处理好与数学分析课程学习的关系。
5结语
目前,在全国大学生数学建模大赛活动的影响与推动下,“数学建模”与“数学实验”等课程已是各个高校高年级的选修或必修课程。“数学分析”是大一年级的基础课程之一,融数学建模思想、方法于“数学分析”课程的教学中,这对教育教学改革具有积极的意义,这将有助于提高学生应用数学意识与能力,逐渐提高学生利用数学理论与原理解决实际问题的能力。在具体实施的过程中,教师应处理好教学内容的“严谨性”和“实用性”的关系,以促进教育教学改革的持续良性发展。
参考文献:
[1]师文英,陈俊敏,高红亚。关于数学分析课程教学的几点思考[J].教育教学论坛,(27):141-142
[2]徐艳艳,陈广贵。关于如何激发学生学习数学分析课兴趣的几点思考[J].高等教育研究,,31(1):18-20
[3]李声锋,张裕生,梅红。将数学建模思想融入“数学分析”课程教学的探索与实践[J].赤峰学院学报,2011,27(7):247-248
[4]王娟,侯玉双,刘兴薇,等。数学建模思想在数学分析课程教学中的应用[J].科技信息,(23):42-44
[5]罗朝晖。关于数学建模思想渗入数学分析教学的思考[J].教育与职业,(20):114-115
[6]黄敬频。数学建模思想在数学分析课程教学中的应用[J].广西大学学报,,28(s):21-24
[7]姜启源,谢金星,叶俊。数学模型[M].4版。北京:高等教育出版社,2011
[8]韦程东,罗雪晴,程艳琴。在数学分析教学中融入数学建模思想的探索与实践[J].高教论坛,(3):77-79
篇2:大学数学建模思想研究论文
大学数学建模思想研究论文
【摘要】在当今社会背景下。信息技术的发展日新月异,大学数学课程越来越朝着信息技术方面发展,在这种形势下,强化大学数学建模思想在其数学教学过程中的应用具有重要意义和作用,既有利于激发学生的学习兴趣,又能够有效提高教学质量和效率。基于这种背景,本文对大学数学建模思想进行了相应分析和探讨,以期能为相关人员提供借鉴和参考。
【关键词】大学数学;建模思想;探索
数学是一门应用性较强的学科,与实际生活具有紧密的联系,而数学建模主要是指将人们的现实问题演变为学生的数学学习问题的过程中,这种思想在教学过程中的有效应用,有助于培养学生的数学思维能力和创新能力,有效提升数学教学质量。所以对于数学建模思想在大学数学教学过程中应用的探索具有重要意义。
一、建模思想在大学数学教学中应用的重要性
(一)激发学生的学习兴趣
建模思想在大学数学教学中的应用,对于激发学生的数学学习兴趣具有重要作用。文中提到,数学建模主要是指将人们的现实问题演变为学生的数学学习问题的过程中,通过这种教学方式,能够将数学教学过程中的数学理论与学生的具体生活实践有机结合,有利于学生对于数学理论知识的理解和把握,激发了学习兴趣,增加了学习的主动性和积极性,提升了学生解决实际问题的能力。
(二)推进教学改革
在实际教学过程中,大学数学教学越来越注重理论性知识的教学,导致数学教学内容比较抽象,使得学生对数学知识的理解变得越来越困难。但是建模思想在数学教学中的应用,有效破解了这一问题,将抽象的知识融合到解决实际问题中,提升学生对于难点知识的理解,促进学生吸收知识和消化知识。这种教学模式是传统教学方法和教学手段的新突破。并且这种教学模式还打破了传统的大学数学教学模式,对于推进大学数学教学工作的改革具有重要作用。
(三)培养学生的数学能力
一方面利用建模思想进行大学数学教学时,通过将学生的实际生活问题引入到教学之中,可以搭建起学生与数学知识之间的情感共鸣,激发学生探究数学知识的兴趣,使学生主动地融入到课堂教学之中,从而培养学生的探索能力和创新精神。另一方面这种教学模式有利于学生吸收知识,消化知识,提升今后工作或学习中运用所学的数学知识解决实际问题的能力[1]。
二、建模思想在大学数学教学中的应用探索
(一)注重引导学生的自主学习
实际应用建模思想进行大学数学教学工作时,教师要注重引导学生进行自主学习,以提高学生的实际学习质量和效率,培养学生的探索精神和学习意识。当前我国的大学数学教学中主要有微积分、线性代数和概率论以及数理统计等三门主干课程。在实际教学中,教学框架和教学模式比较固定,数学教学概念比较抽象,数学公式的推导比较严谨。所以在应用建模思想进行大学数学教学时,就需要在总体教学框架下,对教学内容进行适当改进,注重对学生自主学习的引导。
(二)注重激发学生的学习兴趣
合理激发学生的学习效果对于促进建模思想在大学数学教学中的应用具有重要作用和意义。在实际教学过程中,教师可以针对学生感兴趣的话题或数学知识点,导入相关的数学知识,以激发学生的学习兴趣。例如:教师在进行大学数学的数学概率及其相关知识的实际教学工作时,可以引入学生比较感兴趣的缘分话题,引导学生进行择偶最佳法则的推导。通过这种教学模式,既能够满足学生的学习兴趣,同时又能够将学生的数学知识应用到实际的生活之中,可以起到事半功倍的教学效果,对于促进建模思想在大学数学教学中的应用具有重要作用。
(三)注重改进教学考核形式
在大学数学教学中应用数学建模思想,教师还应注重对教学考核形式的`改革。当前大学的数学教学考核形式大都采用传统的闭卷考试的考核形式,这种考核方式严重不利于教师对学生整体学习情况的了解,同时也没有突出对学生的实际数学应用能力和解决问题能力的考核。所以在应用建模思想进行大学数学教学时,要注重对教学考核形式的改进。例如:教师在实际教学时可以突出学生的平时成绩考核。教师可以对学生的课堂表现以及对数学问题的探索等进行记录,将其作为学生的考核依据,从而保障教学考核的有效性[2]。建模思想在大学数学教学中的引用,对于激发学生的学习兴趣,提高教学质量和效率具有重要作用。在大学数学教学大学未来发展中,要更加注重对建模思想的应用和探索,促进大学数学教学工作的未来发展。
参考文献:
[1]宋志广.对高校数学建模方法教学策略的研究[J].教育,(2):82.
[2]王洋.如何激发高职院校学生对大学数学的学习兴趣――以数学建模为突破口[J].时代教育,(7):249.
篇3:数学建模思想和方法研究论文
数学建模思想和方法研究论文
数学自诞生起目的就是解决实际问题,随科技日新月异的发展,数学对社会发展的巨大推动力日益凸显,在利用数学服务科技时,数学建模便成了必然选择。数学建模的思想和方法渗透并应用于经济、生物、航天等社会的方方面面。1994年起,教育部规定面向全国高校举办每年一次的全国大学生数学建模竞赛,全国高校掀起了数学建模热潮,目前全国大学生数学建模大赛已经成为全国大学生的四大竞赛之一,成为全国高校中规模最大、影响力最广的大学生课外科技活动,大大提高了数学教学中对数学建模思想和能力的培养,同时也促进了大学数学内容和方法的改革,笔者通过新疆地方高校的多年数学学科教学经历和大学生数学建模竞赛指导经历,结合对新疆地方高校的调查分析,对新疆地方高校数学建模教学的发展状况及对策建议进行探讨:
一、新疆地方高校数学建模的发展现状
(一)低年级大学生对数学建模知识认识欠缺
大学数学是理工类院校的重要基础课程,对专业课程起到了不可或缺的支撑作用,大学数学课程理论性强,新疆地方高校的学生本身学习起来就比较吃力,教师教学中更是无暇讲述和普及数学建模的思想和方法,所以相当一部分学生感到数学建模既神秘又高不可攀。
(二)新疆地方高校学生数学基础薄弱,大学数学课程的教学和专业学习存在脱节
受地域限制,新疆地方高校学生大部分来自于新疆各地州,包括汉、维、哈、柯、蒙等少数民族,数学基础参差不齐,相比较内地高校数学基础水平存在一定差距,学生学习数学兴趣不高,缺乏主动性,疲于应付考试,因此参加数学建模竞赛学生的比例比较低,导致理论知识与专业应用严重脱节,直接影响理工类专业学生的专业能力和培养质量。
(三)数学教学过程中,疏于数学教学建模思想和方法的渗透和培养
数学教学中渗透数学建模的思想和方法,要求授课教师不仅要有扎实的数学功底,而且还要有广博的知识面和丰富的数学建模经验。但实际教学中,由于课时的紧缺和教师专业方向的限制,完全仅限于所授课程知识的讲解,忽视了渗透数学建模的`思想和方法对学习大学数学课程的促进作用,尤其忽视其对数学理论知识和专业知识的贯通作用。
(四)新疆地方高校对数学建模教学的重视和投入有待提高
自20XX年以来,大部分新疆地方高校开始向应用型高校转型,工、农、医等应用型学科专业便成为各新疆地方高校的发展重点,在资金有限的状况下,数学类等基础学科便面临一个尴尬的境地,尤其是对数学建模的教育教学热情有所退却。但笔者以为,越是在向应用型高校转型之际,加强对数学类基础学科的投入,尤其重视数学建模思想和方法的渗透才能保障应用型学科高质量发展和新疆地方高校向应用型高校顺利转型。
二、新疆地方高校大学数学教学中融入数学建模思想和方法的建议与思考
(一)根据学生层次合理调整教学内容的侧重点
新疆地方高校大学生的多民族性、数学基础不等性特点对大学数学授课老师的经验水平提出更高要求,不但要了解学生的知识水平、民族学生的思维方式,还需要清楚中学数学的授课内容和欠缺知识点。根据本人近年民族教学的体会,结合学生入学成绩和知识层次教学中将新疆地方高校学生分为三个层次:1.“民考民”和“双语”学生,该层次学生入学成绩相对较低,汉语言水平不高,并且数学基础较差,该层次学生在大学数学授课中应侧重于对中学数学知识的补充和巩固,否则大学数学的知识和理论学生是无法理解的,而对大学数学的知识点就要侧重于基本概念、基本定理、基本方法的掌握与理解,那么对该层次学生进行数学建模思想和方法的融入,就要选择部分中学知识点和大学数学中较易理解掌握的知识点典型例题由浅入深,循序渐进的进行讲授。2.“民考汉”学生,该层次汉语言水平非常好,入学成绩也不错,与汉族学生混合编班,数学基础相比较同班汉族学生还是有差距,但该部分学生学习努力、态度端正,是任课教师需要重视的团体,可以偶尔选择晚自习辅导时间或其他时间对他们进行专门辅导,选择一些典型例题,由浅入深的进行数学建模的思想和方法的培养,从而也能激发他们的学习积极性,使之逐步赶超同班汉族同学。3.其他学生,新疆地方高校该层次学生主要来自于新疆各地州,入学成绩一般,数学知识差别不大,但基础知识还需要补充,个别的知识点,部分学生中学就没有学过,例如:参数方程、极坐标方程,反三角函数等知识点,但这些内容在大学数学教学中却是比较重要的知识点。
(二)在大学数学的日常教学中,改进教学方法和教学手段,有针对性的融入数学建模的思想和方法
能够适时选择授课知识点,针对学生所学专业讲述新课,同时融入数学建模思想和方法,例如:在“高等数学”第六章定积分的应用章节中,讲授利用“微元法”解决做功、水压力、引力等问题时,对物理学和工程类相关专业讲述数学建模思想和方法便是不错选择。例如:蓄水池抽水问题(如图1,图2)上图便是实际授课中课件,完全是定积分的内容,但这些例题具有非常典型的数学建模思想和方法,(1)题目符合实际生活问题,具有数学建模题型特点,完全是生活中的问题;(2)具有理工科专业特点,属于做功和热能问题;(3)解题过程本质就是数学建模的思想和方法,分析问题,建立数学模型,确定解题方法,给出结果,分析结果。只需经常性通过类似问题的讲解,使学生理解数学建模的主要过程:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验和模型应用,学生不仅掌握数学建模思想和方法,而且认识到大学数学对于专业课学习的重要性[1]。大学数学教学中渗透数学建模思想和方法,归纳起来应注意以下几点:(1)要循序渐进,由简单到复杂,逐步渗透。(2)应选择密切联系学生专业、易接受、有趣味性、实用性的数学建模内容。(3)在教学中列举建模案例时,仅仅是让学生学习数学建模思想和方法的初步、举例等少而精,忌大而冷,否则会冲击了大学数学理论知识的学习,因为没有扎实的理论知识,也谈不上应用。(4)大学数学教学中,恰当的处理好理论与应用的关系,应该清楚理论和应用是相辅相成的。扎实的理论是灵活应用的基础,而广泛的应用又促进对理论的深刻理解[2]。
(三)组织鼓励各专业学生参加大学生数学建模竞赛,培养创新型人才
为了广泛开展数学建模活动,促进学风建设,提高学生学习兴趣和创新能力,自20XX年开始,我校开始组织学生参加“全国大学生数学建模竞赛”,经过近十年的学习与摸索,形成了我校特色的大学生数学建模竞赛培训模式,经大学数学任课老师推荐和动员,不同专业学生报名后,培训工作分为三个步骤进行:每年4月至6月的建模竞赛初级培训、暑期集训和赛前强化。
三个阶段培训内容均以数学知识模块化,分别由相应专业方向老师进行包干培训。知识模块主要分为初等数学模块、运筹学模块、概率统计模块、方程模块等。初级培训阶段主要培训理论知识,补充巩固不同专业学生大学数学理论知识;暑期集训阶段主要讲述不同模块的典型例题,促进理论知识的理解和灵活应用;赛前强化主要是选例题,让学生自己实践练习,进行赛前仿真模拟比赛。对参加过“全国大学生数学建模竞赛”的学生,我们经过统计发现:(1)参加过该竞赛培训和实践比赛的学生,在各自专业的学习过程中,专业课知识学习能力和应用能力明显高于其他同学,尤其毕业论文和设计的完成质量高于其他同学;(2)参加过该比赛的学生在此后的学习热情明显高涨,萌生继续深造提高的愿望,并且开始主动备战参加考研,考研成功率也高于其他同学;(3)该比赛中的各类生活科研问题,也激发了学生的创新性。
大学生数学建模竞赛中的赛题大都为生活和科技中的热门问题和前沿科学问题,具有一定的科研前瞻性,经过该竞赛的洗礼,激发了这些参赛同学的创新能力,很多同学在比赛后仍继续研究比赛中的该问题,并把问题作为自己的毕业论文和毕业设计,并能高质量的完成,甚至有同学以此为出发点,申报了“大学生创新创业训练计划项目”,锻炼了大学生的科研能力和创新能力。结语随着社会的发展、科技的进步,数学已经不再是抽象的理论,其应用已深入到人类生活的各个方面,科学技术数学化、数学应用普及化已成为一种趋势,许多自然科学的理论研究实际就是数学研究,就是数学建模以及数学理论的探讨。
一个国家的国民素质,很大程度上是体现在其数学素质上,数学是思维的体操,数学是科学的研究工具,数学建模是架于数学理论和实际问题之间的桥梁[3]。数学建模活动的开展促进了新疆地方高校的学风建设,提高了新疆大学生的综合素质。我校的数学建模组织活动、日常教学中的数学建模思想的渗透手段、规范的数学建模管理、方式多样的培训方案、学生参与的科研活动等已然逐步形成了新疆地方高校的数学建模思想和方法的渗透模式。新疆地方高校的特殊性也给新疆地方高校的教学模式提出了挑战,如何根据自身的特点搞好数学建模教学工作,是一项具有探索性的实践研究,本文仅是一个初步研究,还有很多问题需要深入的思考和实践。
参考文献:
[1]晁增福,邢小宁.将数学建模融入大学数学教育的研究与实践[J].ConferenceonCreativeEducation.:1136-1138.
[2]何志树,叶殷.数学建模思想在教学中的渗透与实践初探[J].武汉科技学院学报,,(11):242-244.
[3]简国明.地方高校数学建模教学模式的探索与实践[J].大学数学,2005,(02):35-38.
篇4:高等数学建模思想研究论文
高等数学建模思想研究论文
摘要:对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。
关键词:数学建模;思想;高等教学
1引言
随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。
2数学建模在高职高专人才培养过程中的意义
从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。
3数学建模方式在高等数学中的应用
3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的.应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。
总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。
参考文献:
[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[J].景德镇高专学报,,(4).
[2]张卓飞.将数学建模思想融入大学数学教学的探讨[J].湘潭师范学院学报(自然科学版),,(1).
篇5:小学数学中的建模思想探讨论文
小学数学中的建模思想探讨论文
摘要:了解数学建模相关概念,发展学生模型思想,针对该老师建模教学存在的问题,教师要积极渗透建模思想,精心选取建模教学的内容,提高自身素养,更新各种知识,科学设计丰富的建模教学的环节,为学生以后的学习打下坚实的基础。
关键词:数学建模;数学老师;科学
顺应国际课程改革大趋势的必然要求,重视学生已有的经验,把数学应用到客观世界中,在实践中进行探索,建立较完整的小学数学建模思想理论,有助于促进学生全面发展,为新课标的实施提供新的理论依据。有助于培养学生的创新意识,建立逻辑思维方法,培养学生用数学的能力,培养学生用数学的能力,从而推动小学数学教育改革,激发学生学习数学的兴趣与自尊心,促进小学数学教师教学水平的提高。
1数学建模相关概念
面对实际生活中杂乱无章的现象,只要我们仔细去观察就会发现其中可以用数学语言来描述的关系,而做为数学研究者从中抽象出恰当的数学关系,然后再按照相应关系,将这个实际问题化成一个数学问题这样我们就能够按关系组建这个问题的数学模型的过程就是数学建模。从数学的产生,数学内部发展,数学外部关联,建立并求解模型的意识与观念,也就是让数学走出数学世界,是学生应该掌握的一种数学思想方法。我们分析数学内容,首先要说数,数是小学生接触的第一个抽象概念,对数有了一定的抽象认识后,就可以接触到数的运算,数的计算既包括计算方法,也包括计算法则小学生还需要掌握一些常见的数量关系,小学阶段一系列的编排都是为了学生之后学习整数打下基础,也就是要逐步培养学生建立抽象模型的意识,使他们掌握这些数量关系模型,一步步的渗透建模思想,能够根据具体的情境对模型进行变形,还要掌握常见的量及它们间的换算关系。图形与几何部分中可以抽象为数学模型,这体现在运用模型分析问题的.过程,在具体情境中构建数学模型,是学生逐步发展自己建模思想的过程,比如我们常用到的图形,学生先是了解图形的特点,更好的分析问题,从具体事物中抽象出图形,找出解决问题的最佳方案。对图形有了一定的了解后,学生具备了运用数学模型分析问题能力,能够理解并建立抽象的数学模型。
2小学数学建模教学存在问题及原因
从实际背景中抽象出数学问题,运用建模思想指导自己的教学实践,寻求结果、解决问题的过程,培养的建模意识,提高建模的能力。经调查研究表明,小学数学建模教学存在一些问题。表现为:建模教学的目标不明确,没有将数学建模纳入考虑范围,设计的教学目标缺乏操作性,不够具体,设计的教学目标模糊不清,没有针对其特点具体设计教学目标,在教学效果上造成学生很容易混淆;很多老师还采用传统的讲授法,学生在很大程度上是被动的。没有注意适度的安排练习的分量、次数与时间;教学环节的设计单一、陈旧,放大了练习法难以调动学生积极性,师并没将有提取数学信息作为重点,只简单讲解模型的应用过程,只是按照课本知识的排列顺序,讲授时也是按分析题意,画图,列算式;建模教学的效果不明显,没有,培养学生严谨的数学精神,没有多加练习并强调画图准确性的重要性,对于用图形表示数量关系还不熟练。究其原因,在教学中缺乏系统地渗透模型思想意识,没有精心选取能够进行建模教学的内容,不能围绕数学建模的过程性这一特点展开,学生很可能根本接收不到教师的这种潜在的想法,选择的教学方法也不适合开展建模教学,不利于学生把新的知识纳入已有的认知结构,学生学会的只是单一的知识点,不能使学生自己经历做数学、学数学,教师很少研读义务教育小学数学课程标准,不清楚数学模型建立的过程,没有充分了解小学数学课程的实质,不能让学生亲身经历建模的过程,没有注重发展学生的数感、符号意识,也很难深入理解模型的意义。另外,日常教学依据自己从前的教学经验,教师无法针对建模教学的特点设计教学,教师又很少主动更新自己的知识,因而导致建模教学效果较差,也就无法完成数学建模思想的渗透等基本要求。
3小学数学建模教学建议
小学数学老师要学会运用数学的环境,加强数学与生活的联系,增强建模意识,加强学生的合作交流能力、数学语言表达能力,因此必须培养教师的建模教学意识。这需要需要小学各年级教师通力协作,认真研读义务教育数学课程标准,更应该与时俱进,不断以新知识充实自己。提高学生建模能力,解决实际应用问题,小学数学教师也要注意在日常教学中提高学生数学化能力,合情推理能力,顺利建立模型,要帮助学生养成良好的阅读习惯,在各种不同性质的现象中建立联系,教师要精心设计概念教学,提高合情推理能力,提高数学化能力,灵活调整模型,教师要教给学生概括的方法,提高数学模型的求解能力,锻炼学生的阅读理解能力,顺利解决问题,教师要引导学生养成良好的计算习惯,很好地将数的运算内容贯穿于整个小学阶段,提升小学生数学运算的速度与正确率,从而达到好的教学效果。
参考文献:
[1]D.A.格劳斯.数学教与学研究手册[M].陈昌平,等译.上海:上海教育出版社,.
[2]王学军.师风教艺初探兼谈中国人民大学师德风范建设[M].北京:中共党史出版社,.
[3]李宁.陪学生一起做研究——小学数学综合实践活动探索[M].北京:北京大学出版社,.
[4]朱旭平,徐旭琴.小学数学教学中基于问题情境的建模范式解读[J].新课程研究(教师教育),(2).
篇6:高职数学建模思想探讨论文
高职数学建模思想探讨论文
【摘要】在计算机技术飞速发展的今天,数学不再仅仅是一门抽象的学科,计算机技术与数学的结合,使得数学建模在未来的各个行业大有可为.数学作为高职院校中基础或必修课程,同时,高职数学教学应以解决当前实际问题为出发点,让学生既掌握课堂数学知识,又能在实际生活中更好地应用数学,所以,将数学建模思想融入高职教学课堂尤为重要,本文以让数学更好地提高高职高专生的水平为出发点,通过数学建模,来慢慢实现数学向应用型学科的转变.
【关键词】数学建模;高职数学教学;教学改革
在高职教育中,数学既是基础课程,又是某些行业的专业课程,但现在高职的现状,由于对数学在高职教育重要性认识不足等原因,使得大部分学生没有足够牢固的数学基础,通过近些年来对于数学建模进行培训的工作总结,认识到了数学建模的思维有助于培养和提高学生在实际中解决问题的能力.如今,如何在高职数学教学中将数学建模思想和方法融入进去,成为高职院校开展数学建模的重要课题之一.
一、为什么要将数学建模应用于在高职数学教学中
数学建模是把实际问题与数学联系起来的中介,实际问题的解决,依靠的是数学的思维思想方法.数学建模的中心思想,以解决实际问题为主线,以学生掌握为中心,以培养解决实际应用能力及创新能力为目标.通过数学建模,把课堂所学的数学知识用到实践中,有助于让学生能够直观地感受到数学的价值,进而使学生对学习数学产生兴趣,并且提高了学生运用所学到的知识的能力,提高学生应用数学的能力.
(一)培养学生的逻辑能力与发散思维意识.数学建模要求学生能够对于自己学到的数学知识和数学思想进行分析,充分发挥自己的想象力,创造力与发散的思维能力,最后总结出一个能最大限度地描述出现的实际问题的数学模型,在通过利用计算机与一些可以使用的数学理论与方法进行计算,得出结论,通过实践证明,现实中看似一些联系微弱的甚至毫无关联的实际问题,通过使用数学建模方法,最后会得到基本相同的数学模型.这就需要学生们灵活的应用所学知识,利用总结归纳,类比归纳,从一般到特殊等数学思想,同时也需要培养学生勇于创新,不甘于现状的优秀品质.
(二)培养和提高学生学习数学的兴趣.随着社会的进步,对技术性工作人员提出了更高的`要求,其数学素养要比较高.然而现在很多学生对数学的认识不到位,觉得数学不过是计算教材上的例题及应付考试的工具,甚至认为大学数学没什么用处.练习使用数学建模有助于改变学生的这种思维.因为通过数学建模和频繁地使用所学到的数学知识,就可以感受到数学的应用价值,从而使学生对学习数学产生兴趣.
(三)提高学生使用计算机的能力.随着社会的进步和计算机越来越普遍的应用,大数据时代的来临,以及科学技术的发展,现今有了很多计算功能很强大的数学软件,使得很多比较烦琐的数学计算变得简单了许多,也使得现在许多领域更广泛的使用计算机.而数学模型的求解,往往存在巨大的计算量,所以使用计算机和数学软件是很有必要的,学生通过使用数学建模,也有助于使学生能够更加熟练使用计算机和数学软件,对于提高学生使用计算机来解决数学问题的能力有促进作用,使得学生更具有竞争力.
二、如何在高职数学教学中渗入数学建模的思想
高职教学的目的是培养高等技能应用人才,这些人才都拥有一项或多项高等技能.学生参加工作后经常需要利用数学知识和专业知识技能,还有多方面的综合知识,通过建立数学模型解决实际问题.高职教育要在信息化如此之高的时代培养出具有强有力竞争的高技术应用型人才,面对的难度可想而知,因此,高职数学教学把数学建模引入其中已是势在必行.
(一)构建科学合理的高职数学教学体系和比较完善的教学大纲.一份好的教学大纲有助于提高数学教学质量,也有助于培养高等技能人才,是安排教学进度和任务的根据.制订科学的教学计划、设置合理的教学内容,有助于激发学生学习数学的兴趣.以为学生负责为出发点,我们要根据学校不同专业对于培养人才的需要与专业课教师一起讨论和制订数学课程的教学内容、目的和进度等的安排,从而形成有不同专业特色的数学教学体系.另外还可以根据不同专业,来分别设置公共模块和选学模块.
(二)编写一系列具有鲜明高职特色的教材,在教材中.融入生活工作有关的案例及数学建模思想和方法在教学中,教材是不可或缺的,起着引导教学方向的作用.高职培养的是技能型人才,而数学建模又是一项实践性的活动.高职院校数学教材的基础应该是生产实践,围绕着满足职业岗位需求的中心,把创新教育作为目的,把培养和提高学生综合素质作为教育观念,从而把进行数学建模的思想和方法表现出来.应该多把实践性,创新性的教学内容编入教材,尽可能地满足高职人才培养的需求.
(三)在数学教学中,使用鲜明有趣的案例有助于增强.学生对学习数学的兴趣和意识在进行数学教学过程中,对于每一个陌生的,学生未接触的公式、定理、抽象的概念等等,都尽量应用一些日常生活中存在的案例来举例以引导学生,在讲解每个知识点的时候,最好都能够使用知识点与实际生活和学生的专业紧密联系的实例,让学生能够充分地感受到数学渗透到了日常生活的每一个角落,无处不在,数学实际上就是一个通过数学符号来描述世界的模型,并不仅仅是对于理论的推导,枯燥而没有实际意义的工作.例如,微信红包、卫星发射轨迹、借贷偿还问题,以及经济学中分析的边际效用的这些例子.这些不仅能让学生学习到数学知识,而且能让他们体会到数学与日常生活的联系以及将数学知识与实际生活相结合的乐趣.数学建模有助于培养学生应用数学能力,值得在高职院校中大力推广.
(四)进行数学实验,培养学生的动手和动脑能力.数学建模的关键步骤之一就是通过使用计算机来求解模型,在数学建模过程中,数学实验是其重要组成部分之一.因为通过进行数学实验,可以使学生能够更加透彻的理解数学概念,学生学习数学时感觉更加简单,进而使学生在学习数学时更加积极.数学实验为学生提供了一种通过使用计算机进行相互学习的环境,学生能够根据自己大脑中大胆的设想,通过动手做实验来验证自己的想法.通过这样的教学方式,能够提高学生学习数学的积极性和主动性,另外,也可以培养提高学生的观察能力、归纳能力、思维能力以及动手能力,进而极大地提高了学生的综合素质.
(五)通过使用数学建模,在教学中培养学生运用数学的能力利用数学解决实际生产生活问题,利用数学来提高工作效率作为高职院校数学教育的根本任务,对于目前高职院校进行数学教学是关键的一环,能够运用数学,对于学生来说也是一种能力.因为它与数学的计算方式和思维方式以及空间想象力等都紧密相关.另外,数学建模也被引用到其他方面,使其应用范围非常广泛.
三、结束语
在高等数学的改革中,把数学建模的思维方式与方法加入其中,这是不可避免的,因为它顺应了时代的需求.我们应该抓住教育改革这一契机,对改革的深度与力度进行适当的加大,首先通过数学建模来提高高职的教学水平,从而提高高职院校学生的综合素质与综合能力,进而培养出拥有高等技能的优秀人才,为社会发展建设做出更大的贡献.
【参考文献】
[1]毛建生.高职数学与数学建模相结合的应用研讨[J].泸州职业技术学院学报,(3):17-21.
[2]李建杰.数学建模思想与高职数学教学[J].河北师范大学学报(教育科学版),2013(6):93-94.
篇7:高职数学建模思想渗透渠道研究论文
数学建模是指利用数学符号对数学实践问题以公式形式表述出来,再通过相关计算解决实际问题。数学建模可以为学生创设适宜的学习条件,让学生在假设、研究、分析、比对中形成学习结论。教师要借助教学内容展开渗透操作,利用实际问题为学生创设实践机会,根据教法改进渗透建模思想,从而促进建模思想的全面渗透,提升学生的数学核心素养。
一、借助教学内容渗透建模思想
在数学教学过程中,教师要对教材内容进行筛选和剖析,找到文本思维和生本思维的对接点,让学生顺利介入数理讨论学习之中。教师利用教学内容对学生渗透数学建模思想,利用教辅手段创设教学环境,可以有效唤醒学生的数学思维。利用多媒体创设教学情境,运用数学公式进行数学推演操作,都涉及数学建模思想的渗透。因此,教师要积极整合教学内容。借助教学内容渗透建模思想时,教师要结合多种教学调查情况展开相关操作。筛选教学内容时,教师需要观照不同群体学生的不同学力基础。如解读定积分概念时,教师可以通过推导曲边梯形的面积公式,鼓励学生对曲边梯形进行分割、归类、求和、取极限等实际操作,建立定积分数学模型,并让学生在实际操作中完成对物体体积和质量的具体计算。这些数学模型具有广泛性,学生在实践中再遇到类似情境时,也会运用相关模型进行实际操作。推演数学公式时,教师可引入建模思想,让学生参与问题的设计、推演、验证,并利用推演结果反过来解决实际问题,给学生带去全新的学习体验。教师根据教学内容渗透数学建模思想,能够为学生提供更清晰的学习渠道,能够促使学生运用现成的数学模型来解决数学问题,进而加深对知识的理解。
二、利用实际问题渗透建模思想
教师在数学建模教学实施过程中,需要有接轨生活的意识。数学来源于生活,教师结合生活实际问题渗透建模思想,可以有效提升学生的数学概念意识,并使学生在假设、推理、验证过程中形成数学能力。利用生活实际问题渗透数学建模思想,符合学生数学认知成长的`实际需要,教师要结合学生的数学知识掌握情况展开设计,让学生利用已知数学等量关系解决实际问题,这势必能促使学生形成数理认知基础。高职数学教学中,教师不妨鼓励学生展开质疑活动,让学生列举疑惑问题,对这些问题进行整合优化处理,并结合数理知识进行实践探索。这些也属于数学建模思想的渗透。如教学“假设检验”时,教师可让学生展开假设创设,并通过多重操作实践进行检验。另外,教师设计课外作业时,也可渗透数学建模思想,让学生运用建模思想解决实际问题,以提升学生的数学综合素质。数学建模思想不仅是一种数学认知理论,还是一种解决数学问题的方法和措施。学生结合生活实际和学习认知基础展开相关操作,自然能够促进数学基本技能的提升。高职数学具有较强的抽象性,教师要针对学生的学力基础,为学生布设适宜的学习任务。结合学生生活实际提出问题,利用建模思想解决问题,需要关涉很多专业理论,教师应该进行示范操作,让学生有学习的榜样,这样才能提升数学课堂教学效度。
三、借助教法改进渗透建模思想
教师要重视数学学法的传授,增加教学的灵活性、针对性和实践性。由于高职学生学力基础、学习悟性、学习习惯等存在差距,所以教师需要做好学情调查,降低数学学习难度,运用简单通俗的语言解读抽象的数学概念。这样,学生才能听得明白、学得好。渗透建模思想时,教师需要鼓励学生主动参与数理讨论互动,这不仅能引导学生展开质疑、释疑活动,还有利于学生树立数学建模理念,形成良性学习认知。教师打破传统教法束缚,采用先进的计算工具、数学软件、多媒体等教学辅助手段,或者利用网络搜集平台展开教学设计,都可以为学生提供难得的学习契机。高职学生通常拥有一定的信息技术应用能力,教师可借助信息媒体展开教学设计,与学生的生活认知接轨。如翻转课堂的适时介入,便属于数学建模典范设计。多数学生都有智能手机,可以随时随地参与网络信息共享活动,因此,教师应具备信息共享和网络互动意识,为学生布设相关学习任务,让学生在多元互动操作中逐渐达成学习共识,进而建立数理综合认知体系。将数学建模思想渗透到教学过程之中,每一个环节都有可能,教师要做好全面考量,针对学生实际进行科学设计。教师要加强对数学建模思想方法的研究,并将这些方法与学生学习实践相结合,从而调动学生的数理学习思维,提升学生的数学应用品质。总之,高职数学教学中渗透建模思想时,教师需要具备整合意识,对建模资源信息展开搜集整理,对学生学力基础进行全面判断,为建模思想的顺利渗透创造良好条件。数学教学设计应不断更新,教师教学水平也亟待提升,而建模思想的全面渗透,给教师的教学带来了全新契机。教师要根据教学实际展开创新设计,有效提升数学课堂教学效率。
参考文献:
[1]李建杰.数学建模思想与高职数学教学[J].河北师范大学学报,(06).
[2]刘学才.高职数学建模教学的现状及对策[J].湖北职业技术学院学报,(07).
篇8:小学数学如何渗透数学建模思想论文
小学数学如何渗透数学建模思想论文
一、以建模思想推动教学新理念
(一)传统数学教学的局限性。数学建模与传统数学课程中的应用题在形式上比较接近,但在实际运用中,却有明显的优势,传统的数学应用题在形式上清楚明确,没有多余条件,且结论唯一,这就使数学化的过程被简单概括,导致学生很少思考是否需要进一步调整和修改已有的模型,从而忽视了数学建模的重点和难点。传统应用题多比较简单,不能完全体现数学建模的典型过程,所以存在较大的局限性。
(二)数学建模教学的意义用。建模方法来解决实际问题,其过程可以分为表述、求解、解释、验证等。首先,在小学数学中渗透数学建模的思想,能使数学知识与现实生活相结合,从而培养学生将数学知识应用于日常生活、社会实践的意识;其次,数学建模还要求学生运用数学语言和工具,对部分现实世界的信息(现象、数据等)进行简化、抽象、翻译、归纳,将数量关系用数学公式、图形或表格等形式表达出来,这样就可以锻炼和提高学生的表达能力;最后利用数学建模来解答了问题后,还需要用现实对象的信息进行检验,以确认结果的正确性。
二、小学数学建模常见步骤
(一)生活情境。要建模首先必须对生活原形有充分的了解,在课堂教学中,教师要通过信息技术或情景展示等手段,向学生提供现实问题情景。如果条件允许可以让学生亲自经历事情的'发生和发展过程,让学生主动获取相关的信息和数学材料。在提供问题的背景时,首先考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。我们可以创造性地使用教材,根据目前教材所提供的教学内容,结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为教学的问题背景,使学生对问题背景有一个详实的了解,这不但有利于学生对实际问题的简化,而且能提高学生的数学应用意识。
(二)引出问题。教师引领学生解读、分析生活情景,激活学生已有的生活经验,并利用学生已有生活经验来感受、发现、提出其中所蕴含的数学问题,从而建构新的认知结构。在这个过程中,教师要有机地进行引导,在引导时主要采取两种方法:一是针对情景“以问引问”,使情景和数学问题有机的整合起来,提高学生的提问能力;二是呈现多个情景有序地推进数学问题的深入。
(三)提出假设。根据情境核问题的特征以及解决问题的需要,对数学问题进行必要的简化,并用比较精确地数学语言提出解决问题的假设。(四)构建模型。让学生对发现的问题进行概括整理,从中寻找其普通的规律,并能抽象出数学模型,如:应用题的数量关系、公式、性质、法则等,这样学生才能进入到一个较理性思考问题阶段。在组织学生对数学问题进行探索时,有时让学生独立探索,有时让学生协作学习,有时是独立探索和协作学习相结合,要根据数学问题的难易程度,灵活选择探索方法,达到数学建模的目的。
三、数学建模教学与思维的创新
数学建模教学应把培养应用数学的意识落实到平时的教学过程中,即以教材为载体,以改革教学方法为突破口,通过数学内容的科学加工、处理和再创造,使学生达到在教学中做数学,在做数学中用数学的目的,从而习得数学思想和方法。根据建模对象的特征和建模的目的,对实际数学问题或现实情境进行观察、比较、分析、抽象、概括,进而作出必要的、合理的简化,用精确的语言提出合理问题,是数学模型成立的前提条件,也可以说是建模关键的一步。有时问题过于详细,试图把复杂的实际现象的各个因素都考虑进去,可能很难继续下一步的工作,所以要善于辨别问题的主要和次要方面,舍弃次要的、非本质的因素,抓住问题主要的、本质的因素,为模型的建构提供方向。例如:例如限速80km/h,许老师3小时行了240千米,超速了吗?学生有的说没有,有的说有。师让学生讨论,这时学生有的就说了有时比80高,有时比80低,充分理解240÷3=80(千米/小时)求的是平均速度。
综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。
篇9:将数学建模思想渗透到高职院校数学课堂教学研究中论文
将数学建模思想渗透到高职院校数学课堂教学研究中论文
1在高职数学课堂教学中渗透建模思想是必要的
我国高等职业技术教育的目标是培养社会主义现代化建设需要的一线高技能型人才,因此培养学生能力至关重要。数学教育在人才培养中有着不可替代的重要作用,高速发展的现代科技对人才的数学素质、应用数学的意识与能力已经提出了更高的要求。现在高职学院数学教学已不太适应社会发展的需求,需要进行教学改革。数学建模对培养学生的思维、提高数学应用意识、培养数学素养等方面起着重要的作用,在数学教学改革中渗透数学建模思想是非常必要的,也是可行的。
传统的数学让许多学生感觉高深莫测、枯燥无味的原因之一,是学生很难把数学知识和实际问题联系在一起。在高职学院数学课堂教学中渗透数学建模思想、方法,把数学知识与数学应用有机的结合在一起,能增强数学学习的目的性,加强学生的应用意识,有利于提高学生学习数学的积极性,更好的学习、掌握、应用数学的思想、方法,提高学生的综合素质。如何在课堂教学中渗透数学建模思想是非常值得研究的。
2关于在课堂教学中渗透建模思想的研究
建立数学模型就是用数学语言描述实际现象的过程,是把错综复杂的`实际问题简化、抽象为合理的数学结构的过程,是运用数学的语言、方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。通常数学建模的过程包括:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验、修正及模型的应用与推广等。在日常的数学课堂教学中完整展示以上过程是有难度的。我们不妨把数学建模分成两个模块。第一部分是将现实生活中的实际问题的内在规律抽象为数学问题,构建数学模型;第二部分是求解数学模型检验、修正、应用。显然传统数学课程教学侧重于求解,然而实际应用中模型的构建是十分关键、同时也是十分困难的一步。同时在构建数学模型中数学语言与实际问题之间的“双向”翻译也特别重要,如果不能将实际问题用数学语言翻译出来,那么将无法完成数学模型的建立。我们可以充分利用微积分中蕴藏的数学模型题材,突破这个难点,比如定积分概念的教学。下面以定积分概念的教学为例,探讨如何将数学建模思想渗透到高职院校数学课堂教学之中。
3《定积分概念》的教学设计
定积分在微积分学中占有非常重要的地位。正确、深刻的理解、掌握定积分的概念,有助于运用定积分的微元思想解决实际问题,达到学以致用的目的。
传统定积分概念授课方式是照讲解两个引例,即引例1:求曲边梯形面积;引例2:求作变速直线运动物体的位移,通过引例的结论过度到定积分的概念。当前高职学生的数学基础普遍较差,难以接受用大量数学语言讲解的引例,特别是在校高职生普遍对数学语言不太熟悉,对定积分这样大段落数学语言表述的概念更觉得难以理解。如何引导高职学生学习掌握定积分这个重要的概念?针对当前高职学生现状,为突破教学重难点,笔者选择把课堂教学重点放在引例1上,渗透数学建模的思想方法,将引例一讲清楚、讲透彻。引例1的讲解是采用螺旋式的方法:分步讲授,逐层递进。分三部分逐层讲解,具体如下:
第一步:按照构建数学模型(模块1)的思路讲解。①提出具体问题:求自然界中任意一片树叶的面积;②通过对具体问题的分析讨论,抽象出主要问题:如何求曲边梯形的面积;③提出初步的解决方案:分割、近似。④提出问题:如何提高近似程度。分析得出结论:分割越细,近似程度越好。将上述过程小结为“分割、近似、求和”。实际教学中,这一步学生都能够理解、掌握。
第二步:采用螺旋式的讲解方法,对第一步中得到的结论细化。用数学语言表述“分割、近似、求和”等步骤。如:在“分割”中用插人分点的方式分割曲边梯形,逐步使用数学语言表述出学生已经认同的结论,学生比较容易接受一些。
进一步讨论第一步的结论:分割越细,近似程度越好。借助计算机辅助教学,取不同的数值,引导学生观察数值变化趋势。运用极限将普通的近似计算进行升华,用和式的极限解决曲边梯形面积的计算问题·在此,学生不仅解决了实际生活中的问题,还能更深刻的理解、运用极限运算。
需要注意的是,为了突出重点,小区间的划分方式、毛的取法等问题放在第三步中解决。
第三步:完整的用数学语言将求曲边梯形的过程叙述一遍,并分析、探讨小区间的划分方式、毛,的取法对运算结果的影响。最后提出问题:上述解决问题的方法能应用于其它问题上吗,顺利进人对引例2的讲解。这正对应着数学建模第2模块中的检验、修正、应用。数学模型的检验、修正、应用在解决实际问题时非常重要,但在传统数学教学中常常被弱化。
通过对二个引例的分析、讨论得到的结论,最后抽象出的定积分概念不再让学生感到畏惧。在教学中通过渗透建立数学模型思想、方法,帮助学生更好地掌握了定积分的概念。学生对那些大段的数学语言不再那么陌生,降低了学习难度,消除学生心中对学习高等数学的恐惧,同时将数学思维的方式、方法以润物细无声的方式植人学生的大脑中,为学生今后的发展打好基础。通过对比试验也证明这种教学模式的教学效果优于传统教学方式。
篇10:高职高专数学教学中建模思想的应用论文
高职高专数学教学中建模思想的应用论文
随着李总理的大众创业、万众创新时代的到来,应用型人才的培养的需求愈加突显,社会与各企业对人才的运用知识能力和实践能力提出了新的要求,作为培养职业人才的高职高专类院校,不仅需要培养学生专业方面的理论知识,更需要着力培养较强的实践能力与动手能力,培养其成为适应社会需要的、能够在不同条件下创造性地用所学知识解决实际问题的能力。
与此同时,为了实现应用型人才培养的目标,对我们教师也提出了新的要求与挑战。数学建模是大学数学课程与现实问题的桥梁,全国大学生数学建模竞赛是目前国内规模最大,影响力比较大的科技类竞赛,逐步成为在校大学生展现自己创新能力、解决实际问题能力的舞台,通过数学建模竞赛,不仅展示了学生的综合能力和创新能力,同时也提高了教师的教学能力,为高校数学教学改革提供了新的思路与方法。数学建模竞赛的试题案例涉及面广,与现实问题贴切,适合“应用型”的要求。将数学建模的思想与方法融入到高等数学课程的教学中去,是高职高专类院校教学改革的一大措施。
1、教学过程融入建模思想的具体方法
数学建模是对实际问题进行抽象简化,并构造出数学模型来求解该问题。事实上高等数学与其它学科与专业领域的联系非常密切,利用数学来解决实际问题的思路与方法涉及了很多专业领域。笔者通过多年和数学建模竞赛指导与培训,积累了一定的经验,并认识到建模的本质是数学理论与实际问题相融合的结果。而因为许多的现实问题都牵涉到众多实际因素,因此在建立数学模型时,往往都需要进行适当的模型假设,简化模型来计算。尽管众多建模问题不尽相同,但其内在联系都是把问题中相关变量的关系通过数学方法来抽象出其具体形式。在教学过程融入建模思想可从如下几点着手:
1.1、教材的选用应重点突出数学建模方法的应用
在高等数学教学中融入数学建模思想与方法,教材选用至关重要。目前来说高等数学相关教材达到上百种,可是能够体现数学建模思想与方法的高数教材较少,大部分高职高专类院校所选用的教材大多是借鉴或参照综合性大学的本、专科高等数学教材,使得大部分的教学内容都没有体现自己的“应用型人才”培养的特色。
个人认为,教材应达到理论知识贴近生活且易于理解,所涉及专业方面知识不能过多,把渗透数学建模思想作为首要参考标准,从根源上提高学生利用数学知识来解决现实问题的兴趣,让学生初步认识到“数学原来是有用的”。
1.2、以应用型例题为突破口,教学中体现建模思想
众所周知,传统的数学课堂讲授方式较为呆板,大多数的数学教师都习惯与把数学看成是一种墨守成规的工具,而往往忽视了大学数学在培养学生的创造力与创新性能力方面的主要作用,教师不注重或不擅于去搜集一些体现学生创新能力培养相关的素材与实例,使得教学与现实严重脱节,学生在课堂学习中失去主动积极性,培养出来的学生也只会考试而不会用理论联系实际来解决问题。
数学在我们的生活中无处不在,众多实际问题大多都能在数学的知识点中找到相关联系,多采纳一些与教学内容结合紧密的例题。而一般选取的实例要尽量贴近教材,接近高职高专类层次学生的认知水平与他们的实际生活,培养学生初步的建模能力,比如一次函数模型,指数函数模型等,达到在数学的教学中融入数学建模思想的目的。
所以除了选用适用的教材之外,教师平时应注意搜集一些注重学生创新能力培养的素材与实例,提高课堂教学的趣味性与学生学习的主动性。
1.3、在相关定义、定理等内容的讲解中渗透数学建模思想
从本质上说,数学来源于现实生活,高等数学教材里的相关定义比如函数极限、导数与微分、无穷级数等都是从现实问题中抽象出来的数学模型。教师在教学过程中,可以通过对原型问题的再现,从学生所熟知的生活实例引入,使其认识到书本中的定义并不是“死”的,而是与实际生活密切联系的。
在讲授相关概念的时候,可尽量结合实际提供有关于数学建模基本方法方面的丰富而直观的问题背景。例如在讲解数列极限的概念时,可引入刘徽的割圆术、几何图形、坐标系中点的动画演示等较为直观的背景材料,尽可能地使学生直观地理解定义,使其了解现实问题中的规律与数学理论知识的联系,初步学习、掌握数学建模的思想。又比如在讲解定积分的概念时,可把变力作功、曲边梯形的面积、旋转体体积等问题的求解与之相结合,通过“微元法”求解这类实际问题,从中抽象出定积分的定义,让学生认识到数学原来还有这么深厚的现实背景,相对于枯燥乏味的纯理论的填鸭式教学来说,这样更能激起学生的学习兴趣,无形中培养他们挖掘生活与理论之联系的.建模能力。
1.4、可结合高等数学相关知识面向学生开展专题的数学建模活动
目前越来越多的高职高专类院校也开始参与数学建模竞赛活动,与“应用型”人才的培养相互映衬。在教学过程中,教师可适当地让学生多参与,培养动手能力,使学生们能够在实践中体验数学的乐趣。改变传统的教学方式,针对所学知识开展专题类建模活动,使他们能够对实际问题中的各因素间的相互关系进行抽象并建立数学模型。例如请学生们以小组为单位,通过利用网络资源或去有关部门查询本市之后的常住居民数,通过所学的数学知识,建立数学模型解决以下问题:①该市的人口年增长率;②通过你所计算出的人口增长率,预测出初该市的人口总数。
并以小组专题论文的形式进行探讨交流。这样的活动其实很多,比如等比数列教学中,关于银行贷款利息的计算。可请学生关注利率变化的基础上,考虑如果向银行贷款50万元还清的情况下,采用如下两种不同的还款方式:①等额本金法还款;②等额本息还款。利用所学知识,通过建立数学模型解决月还款额问题,并对比两种还款方式不优劣与不同。
2、结束语
在数学建模竞赛的推动之下,高等数学的教学改革也有了更快速的发展,把数学建模思想融入到高等数学的教学中,不失为一种推动数学教学改革的一种的有效途径,亦可达到以赛促教之目的,与教学相辅相成,使教学改革得到长足的进展。
【参考文献】
[1]张珠宝.将数学建模思想和方法融入数学课程教学———关于高等职业教育数学教学改革探索[J].高等数学研究,(6):24-27.
篇11:建模思想融入高校经济学教学的探索与实践研究论文
建模思想融入高校经济学教学的探索与实践研究论文
摘要:建模思想作为能有效引导学生理论联系实际,提高学生分析和解决实际经济问题能力的工具之一,得到越来越多的高校教学的关注。本文从当前高校经济学教学中所存在的问题和建模思想融入高校经济学教学的意义两个方面,论述了建模思想融入高校经济学教学的必要性。阐述了建模思想融入高校经济学教学的具体途径,强调在教学过程中注重经济术语表述口语化、案例教学推广深入化、建模工具运用日常化,以期促进学生树立建模思想,推动高校经济学教学的进一步深化。
关键词:教育改革 建模思想 经济学教学 教学目标
一、引言
宏微观经济学是教育部审定的经济管理类核心课程,是经济与管理类专业的专业基础课,在普通高校的教学过程中一直受到高度重视。如何使学生将学到的理论知识运用到实践当中,通过经济学教学改革完成宏微观经济学的教学目标,是许多普通高等院校经济管理专业教师共同关注的问题。阮守武认为经济学的教学关键是要让学生掌握经济学的基本原理和基本方法,以方法论的角度来看待经济学的发展,帮助学生建立起经济学的思维方式;李桂娥()提出借鉴剑桥大学研究型教学的经验,以创新教学理念为指导,以问题为导向,从课堂教学和课外指导两个方面开展研究型教学,对于培养学生的创新意识有显著作用;曹建忠()认为应将微观经济学课程教学改革的目标设定为培养学生的学习兴趣、帮助学生建立经济学的思维模式、提高学生分析实际问题的能力。
数学建模于20世纪80年代初,引入我国复旦大学、中国科技大学等课堂中。自“全国大学生数学建模竞赛”工作会议召开后,全国高校掀起数学建模热潮。建模思想作为能有效提升学生动手实践和创新思考能力的工具之一,越来越受到高校教师的关注。因此,如何将建模思想渗透到数学课程教学成为我国学者的研究热点,并且成果丰硕。然而,在宏微观经济学中也存在大量的数理模型,我国学者对于如何将建模思想融入高校经济学教学的研究略显不足。实践证明,经济学模型对培养学生的观察力、想象力、逻辑思维能力及分析问题解决问题的能力起到了很大的作用。通过研究如何将建模思想融入到高校经济学教学中,把经济学理论知识与建模思想进行有效融合,引导学生理论联系实际,提高分析和解决实际经济问题的能力,这对于我国高校更好地完成宏观微观经济教学目标具有重要的理论与实践意义。
二、建模思想融入高校经济学教学的必要性
1.当前高校经济学教学中存在的问题
(1)缺乏对学生经济学思维的培养。作为经济学科的学生,除了需要掌握经济学原理之外,更重要的是要具有经济学的思维模式。然而经济学知识相较一些科目理论性强,原理、知识点深奥,初学者不易理解,教师大多重视知识的传承,为学生提供的案例性学习、探索性学习的机会比较缺乏,忽视了对学生经济学逻辑思维的培养。
(2)教学方法传统。现实教学中,经济学的教学方法普遍存在单一、枯燥等现象,“讲授-接受”式教学在一定程度上仍然居于主导地位,教师与学生在课堂上的交流互动较少,这必然导致教学质量和教学效果难以提高。传统的教学模式,虽使学生获得了暂时性的理解和记忆,但缺乏让学生进行独立思考和用经济学模型解决实际问题的训练,导致学生知识吸收的僵化。
(3)教学中建模案例的匮乏。经济学是应用性很强的社会学科,以理论教学为主的.教学方法使得学生在学习了理论之后,仍然不会运用这些理论分析实际问题,实际教学中,教师采取的措施多是单纯地套用经典案例,忽视了对建模案例的指导。
2.建模思想融入高校经济学教学的意义
(1)有利于推进高校经济学教学的进一步深化改革。现实教学中,经济学的教学方法普遍存在单一、枯燥等现象,灌输式教学在一定程度上仍然居于主导地位。在目前经济学教学目标中,要完成计划的教学内容,传统的经济学教学方式很难实现,而如果在教学过程中有效融入建模思想,就可以解决这一问题,促使经济学教学目标得以实质性的完成。可见,建模思想融入高校经济学教学,是经济学课程教学目标本身的需要,有利于推动高校经济学教学的进一步深化改革。
(2)有利于推进高校经济学应用型人才的培养。在经济学教学中,由于经济学知识相较一些科目理论性强,原理深奥,不易理解,学生在学习时容易表现出消极态度。把建模思想引入到经济学教学中,重点培养应用型本科人才分析问题、解决问题的能力,可促使学生应用经济学知识的能力在具体的建模过程中得到较大提高。同时,在建模过程中,学生需独立查阅相关的文献资料,进行针对性阅读并及时消化,将其应用到建模中来,可提高学生获取新知识以解决复杂问题的能力,有利于高校经济学应用型人才的培养。
(3)有利于激发学生学习兴趣,培养学生创新能力。在经济学教学过程中,教师在内容处理上,偏重理论与习题的讲解,往往由于内容单调,影响了学生的学习兴趣,而通过构建经济学模型可以改善学生对经济学学习主动性和积极性不高的情况。因为运用经济学模型解决的问题均源于实际的生活,所提出的问题容易引起学生的兴趣。同时,建模思维具有很大的灵活性,结果不唯一,学生可从不同角度,建立相应的模型来解决实际问题,有利于学生创新能力的培养。
三、建模思想融入高校经济学教学的途径
高校经济学教学融入建模思想的目的,就是促使学生学会运用数理模型和经济学模型,把现实中的经济问题进行提炼、进而采用模型对问题进行解答。建模思想体系的内容是培养学生在遇到实际经济问题时,首先要通过分析与推理,将实际问题用经济学语言加以表述,并提出一系列符合该问题实际背景的假设,建立起相应的经济学模型,进而寻求适当的计量工具来获取模型的结果,最后还需将模型的结果用通俗的语言表达出来,用于解决实际问题。具体途径如下:
第一步:实际问题的提出。结合日常生活,对于生活中出现的经济现象提出疑问。
第二步:提炼,抽象化。这一步是把实际问题进行提炼、简化,把实际问题抽象成经济术语。同时,收集必要的信息,弄清楚对象的特征,找出相对应的经济学理论。
第三步:形成模型假设。把问题融入经济学理论之后,需要提出一系列符合该问题实际背景的假设,为建立起相应的经济学模型做铺垫。
第四步:建立模型。基于模型假设,建立相关的经济学模型,并阐释模型原理,对问题进行量化处理,运用数理模型把现实中的经济问题进行提炼、抽象为数学问题。
第五步:求解模型。对模型求解,得出解决的方案。可以使用传统的解方程、画图、证明的方法,也可以使用计量经济学软件等。
第六步:在以上过程得出的结果后,将结果结合实际问题,进行说明和阐释,最终解决疑问。
同时,在教学过程中培养学生树立建模思想时,还需要注意以下几点。
1.经济术语表述口语化
在最初的教学阶段,由于经济学知识理论性较强,原理深奥,不易理解,学生在学习时会感觉到枯燥无味,容易表现出消极态度,学习积极性不高。所以,面对初学经济学的学生,首先要引导学生在可以触摸到的平常生活中去理解经济学的概念,用生活语言来解读经济学的各种概念,让学生觉得教材里的概念不是枯燥乏味的,而是与生活息息相关。譬如经济学中的价格弹性、机会成本、经济利润、道德风险等概念,任课教师需要用通俗易懂的语言并配备具体生动的例子进行讲解,这样既可以激发起学生的学习兴趣,又会加深学生对基本概念的理解,从而收到较好的教学效果。
2.案例教学推广深入化
融入建模思想的本质就是要联系实际。因此,在高校经济学教学过程中,我们不是仅仅在讲课的过程中偶尔插入几个例题,而是把联系实际的教学原则贯穿经济学教学全程。应该尽量结合实际,设计适宜的问题情境,引导学生参与教学活动,让学生体验到通过自己的思考能够解决实际的经济问题。因此,在课堂教学中,以具体案例作为教学内容,通过具体问题的建模范例,介绍建模的思想方法。同时,选取的例子要贴近教材内容,贴近学生认知水平,贴近现实生活实际。涉及的专业知识不能太多,且要易于理解。此阶段的重点是站在提高学生素质的高度,通过师生共同讨论,把渗透建模的意识作为首要任务,注重培养学生的阅读理解能力和应用模型解决实际问题的能力。比如我国股票市场多次暴涨暴跌,央行多次降准降息,全力护市,这些发生在现实中的经济学案例贴近学生认知水平,贴近学生生活实际,若把这一案例结合经济学教学中的货币政策、财政政策、IS-LM模型等相关知识对学生进行讲解,必能激发起学生探讨的积极性,从而达到培养学生分析问题、解决问题的能力。
3.建模工具运用日常化
经济模型求解的过程一般比较繁琐,需要较强的数学功底,要求熟知模型的应用原理。随着教改不断推进,现代教学辅助仪器也在不断地进入课堂。从以前传统的黑板到十多年前的投影仪,再到现在的多媒体,这些现代仪器的应用,给现代教学带来了极大的方便。所以教师应充分利用这些辅助设施来提高自己的教学质量。尤其是计算机的普及,给经济学模型求解带来了很多的方便。教师如果能够好好利用计量软件的话,那么教学就可以达到事半功倍的效果。同时,教师还要引导学生加强课后练习,提高对软件的熟悉程度。课后练习是培养学生使用计量软件应用能力的重要环节,在设计课后练习题的时候,应该选择一些适合初学学生能较好操作的实际问题,这样既可以让学生掌握理论知识,又可以让学生获得用使用计算机解决实际问题的能力。
四、结语
宏微观经济学是教育部审定的经济管理类的核心课程,在普通高校的教学过程中一直受到高度重视。目前,由于高校经济学教学中存在理论知识传授重于思考能力培养、教学方法方式传统等一些弊端,导致知识固化,使得学生无法将学到的理论知识运用到实践当中。建模思想作为能有效提升学生动手实践和创新思考能力的工具之一,得到越来越多的高校教学的关注。高校经济学教学融入建模思想的根本,就是促使学生学会运用数理模型把现实中的经济问题进行提炼、抽象为数学问题,进而对问题进行解答。通过培养学生在遇到实际经济问题时,首先要通过分析与推理,将实际问题用经济学语言加以表述,并提出一系列符合该问题实际背景的假设,建立起相应的经济学模型,进而寻求适当的计量工具来获取模型的结果,最后还需将模型的结果用通俗的语言表达出来,用于解决实际问题,进而形成建模思想体系。另外,为了将建模思想有效地融入高校经济学的教学,在教学过程中,任课教师要注重经济术语表述口语化、案例教学推广深入化、以及建模工具运用日常化,从而推动高校经济学教学改革的进一步深化,推动高校经济学应用型人才的培养以及学生创新能力的提高。
参考文献
[1] 谭冰.经济学专业本科人才培养模式研究[J].中国教育学刊,(11):99-100
[2] 刘金石,刘方健.教学方式创新:运用经济学的三种语言[J].中国大学教学,2011(9):86-89
[3] 李海明,翁卫国.宏观经济学:教学范式新探索[J].西南大学学报(社会科学版),2011,37(2):112-116
[4] 冯英华.数学建模思想在高等数学教学改革中的应用[J].黑龙江教育,(10):17-18.
[5] 覃思义等.数学建模思想融入大学数学基础课的探索性思考及实践[J].中国大学教学,2010(3):36-39
[6] 杨启帆,谈之奕.通过数学建模教学培养创新人才――浙江大学数学建模方法与实践教学取得明显人才培养效益[J].中国高教研究,2011(12):84-85,93
篇12:大学生思想道德修养课程研究论文
大学生思想道德修养课程研究论文
摘要:思想道德修养与法律基础课程是高校思想政治理论课程的主要组成部分,也是高校思想政治教育体系的主要渠道和主要阵地,思想道德修养与法律基础课程主要对大学生在思想道德观以及法律基础知识上起到塑造与完善的重要作用。
关键词:互联网;思想道德修养与法律基础;体验式教学;策略
一、引言
思想道德修养与法律基础课程对大学生高尚人格的形成、大学生社会责任感的增强、大学生法律意识的形成具有重要的作用,该课程也是高校思想政治理论课的重要课程,显示出国家对培养人才的重视,以及高校在培养人才上的重视程度。随着素质教育的推进,以及国家对培养全面发展人才的要求,高校在教学方法以及教学内容上面进行了大刀阔斧的改革,然而效果并不明显。尤其是思想政治理论教学方法的好坏直接关系到教学质量的高低,也直接影响到思想政治理论学生的塑造与影响。在发达的互联网时代,传统与单一的灌输式教学方法,已经不能适应时代的要求,高校思想政治理论课程在教学方法方面的改革显得尤为迫切。
一是互联网的出现以及开放,给大学生了解更多的思想政治与法律内容知识提供了更加开拓的视野,从而给高校思想政治理论课程教师的权威地位带来了挑战。如大学生可以在互联网上公开参与话题,可以很快地了解世界以及国内发生的各种政治热点问题,教师不再是学生获取思想政治与法律知识唯一的渠道,学生可以在互联网上对各种事件进行正面的、反面的多方面的评价,从而给高校思想政治教师如何给大学生树立正面的价值观,引导大学生树立积极向上的价值观,提出了更高的、更严格的要求;
二是,互联网上丰富的内容给思想政治理论课程带来了挑战,原有的教学内容显得捉襟见肘,互联网上多元化的信息资源,更能够激发起学生的学习兴趣;三是以互联网为载体的信息传递方式给传统的教学带来了极大的挑战,传统的老师讲、学生听的授课方式已经完全不能够适应互联网时代学生发展的需求,教师应该开展多元化、多种方式的教学来感染学生、激发学生的兴趣。体验式教学是一种能够让学生参与课堂,并且尊重学生的主体地位,让学生产生兴趣的情感,学生进行情感共鸣,他能够积极调动学生在道德情感以及道德行为上的塑造。
因此,体验式教学是实现学生知行统一的有效渠道,它也可以增强学生之间的合作学习以及情感互动,对高校思想政治课程教学改革、提高教学效果具有重要的作用,也是当前高校思想道德修养与法律基础课程应对互联网对该课程提出挑战的主要解决办法。
二、网络对思想道德与法律基础课程产生的影响
互联网的出现改变了学生学习思想道德修养与法律基础课程的方式,它既有积极的一面,同时也有消极和不足的一面。互联网对思想道德修养与法律基础课程教学的积极影响主要体现在三个方面,
一是互联网丰富了思想道德修养与法律基础课程的教学资源。由于互联网中蕴含了大量的资源信息,包括动画、声音、图片、文字以及传输技术等,在当前高校教学中,得到了广泛的推广与应用,同时,这些资料大部分可以作为思想道德修养与法律基础课程的辅助资料,让该课程拥有更加丰富、更加广泛的资料来源,从而充盈了传统思想道德修养与法律基础课程的教学内容。比如高校思想道德修养与法律基础课程主要是帮助大学生树立正确的世界观、人生观以及价值观,并且让大学生了解相关的法律知识。然而,传统的课程教学主要依靠课本知识以及教师单方面查资料进行授课,重复性的资料弱化了对课堂的吸引力,缺乏时代性,也脱离了学生的生活,因此大大的限制了教学的质量;
二是互联网的出现,拓展了思想道德修养与法律基础课程的教学空间,网络可以不受时空的限制,使教学不再局限于室内的某一间教室和某一个时间点,这种课堂教学方法不仅效率低,而且也限制了学生的创造力。互联网的出现正在迅速拓展着教学的空间,它可以打破时间和空间的限制,学生可以随时自主的获取信息,提高自学能力,增强与教师的互动交流,还可以打破传统的说教方式,让教学从静态变为动态,实现更加立体化的学习。因此互联网环境下,思想道德修养与法律基础课程的教学具有超越时空性;
三是互联网的出现,使得思想道德修养与法律基础课程教学更加凸显了学生的地位。网络的出现,使得教育主体与客体之间的地位趋向平等,从而突出了学生的主体地位。比如,在互联网上进行信息的共享,可以自由平等的获取,学生可以拥有主动权,教师不再是权威者,而与学生的地位趋向于平等。同时,网络互动性的特点,更加容易激发学生的学习欲望,为大学生进行自我教育,自我塑造自我学习,提供了更加开阔的空间与平台,教师的地位从讲授转换到了引导。
然而,互联网的出现也对思想道德修养与法律基础课程的教学产生了一定的负面影响,主要有以下几个方面:
一是大学生过于依赖网络。据调查,我国大学生是互联网使用的主体,这给高校思想道德修养与法律基础课程的教学提出了极大的挑战,学生可以通过互联网了解各种事情和信息,而教师的讲授则难以起到太大的知识传递的作用。但是,网络上的信息不仅有积极向上的,还有消极扭曲的,如果大学生长期沉迷于网络,则很容易将一些鱼龙混杂的信息深入自己的道德观念中,这不仅会削弱大学生对道德思考的问题,还会给大学生的人格形成带来阻碍,很容易让大学生对自身现实生活与网络的虚拟性形成混淆,充满误解,从而形成不健康的人生观与价值观。
二是互联网环境下高校思想道德修养与法律基础课程的.教师缺乏对学生进行积极的引导。主要是由于部分教师对于互联网以及互联网环境下体验式教学存在一定的偏见,对其不完全了解,忽视了课堂中学生的情感体验,只是按照自己的思路进行教学,没有将学生所需要得到的东西融入课堂之中,因此起不到道德教育的作用。
三、利用网络环境提升思想道德与法律基础的教学策略
第一,高校思想道德修养与法律基础课程的教师,应该加强学习和运用体验式教学方法,树立以学生为本,运用体验式教学的理念,在互联网日益发展的今天,高校思想道德修养与法律基础课程教师应该转变教学观念,让互联网成为一种新的教学方式,让体验成为学生学习的主要方式,让学生在参与体验中真正了解感受,并且塑造积极向上的思想道德修养。二是,高校思想政治教师应该学习和提高运用网络信息的技能,为了更好的利用互联网的优势,高校教师首先应该整合提高自己的互联网修养,能够敏锐地接受互联网信息,并且形成较强的信息处理能力,将这种能力完全融入到思想道德修养与法律基础课程的教学中,将网络优势与体验教学的优势整合发挥,取长补短,促进教学效果的提升。
第二,高校思想政治教师应该为学生创造丰富的体验教学模式。比如,课堂讨论、讲座、演讲、案例教学等等,都是有效的体验教学模式。课堂讨论可以增加师生之间学生之间的互动交流,具有较强的互动性以及合作性,而且具有互补性,通过课堂讨论,可以提高学生课堂参与度,并且升华师生的情感,达到体验教学的目的。演讲是一种更为真切的体验教学方式,学生可以将自己的真情实感,自己个人对思想道德修养与的见解敞开心扉的演讲出来,应该会更加具有吸引力,更加具有情感。
参考文献:
[1]徐雁.基于网络环境下高校思想政治理论课教学模式的创新[J].中国成人教育.(12).
[2]佘双好.关于思想政治理论课体验式教学的思考[J].思想教育研究.2012(04).
[3]萨日娜,原丽红.网络普及化对高校思想政治理论课课堂教学的挑战[J].中国成人教育.2012(05).
[4]邱靖.网络对高校思想政治理论课教学的挑战及对策思考[J].教育探索.2011(11).
篇13:数学建模思想融入高职高等数学教学的探索与实践论文
有关数学建模思想融入高职高等数学教学的探索与实践论文
引言
当前,高考第五批和中专对口升学学生成为高职院校的主要生源,高等数学在高职院校不仅是工科学生公共必修课,同时也为经济类的专业基础课,对学生学习后续专业课程非常重要。但学生数学基础相对薄弱,对学习不感兴趣,自制力差。而学生对线性代数抽象的概念定理及其冗繁的计算难以接受成为线性代数教学的突出表现,因此,在线性代数教学中融入数学建模思想方法是解决学生理解困难和实现教学目标的有效途径。
一、高职院校线性代数教学情况与建模发展概况
1.线性代数教学情况。行列式、矩阵和线性方程组是目前高职院校线性代数部分教学的主要内容,所用的教材是以理论计算为主体,教学偏重其基本定义和定理,过分强调理论学习,忽视其方法和应用,有关线性代数应用实例几乎不涉及。再者高职院校高等数学总体课时少,因此线性代数部分课时也非常有限,但其理论抽象,内容较多,教师在课堂上大多采用填鸭式的教学方式,导致该课程与实际应用严重脱离,造成了学生感觉线性代数知识枯燥,计算繁杂,学习它无用处,大大降低了学生的学习热情。
2.数学建模及其发展概况。数学建模的基本思想是利用数学知识解决实际问题,是对问题进行调查、观察和分析,提出假设,经过抽象简化,建立反映实际问题的数量关系;并利用数学知识和Matlab、Lingo、Mathematics等数学软件求解所得到的模型;再用所得结论解释实际问题,结合实际信息来检验结果,最后根据验证情况来对模型进行改进和应用,它使学数学与用数学得到统一。数学建模大专组竞赛开展已有,参赛的高职院校逐年增加,我院在多年的参赛中取得了一定的成果,但因数学建模难度大和学生数学基础薄弱以及高职院校学制的原因,参加数学建模培训的学生基本为大一新生,而且只有小部分,明显受益面小。
二、数学建模思想融人线性代数教学中的具体实施线性代数因其理论抽象,逻辑严密,计算繁琐,让人对其现实意义感受不到,使高职学生学习起来有困难,也就很难激发学生的.学习兴趣,因此,线性代数教学过程中就要求教师介绍应用案例应体现科学性、通俗性和实用性。
1.数学建模思想融入线性代数理论教学中。线性代数中的行列式、矩阵、矩阵乘法、线性方程组等复杂抽象的概念都可以通过实际问题经过抽象和概括得到,故而可以恰当选取一些生动的实例来吸引学生的注意力,通过对实际背景问题的提出、分析、归纳和总结过程的引入线性代数定义,同时自然地建立起概念模型,让学生切实体会把实际问题转化为数学的过程,逐步培养学生的数学建模思想。比如讲授行列式定义之前,可以引入一个货物交换模型,并介绍模型是由诺贝尔经济学奖获得者列昂杰夫(Leontief)提出,让学生拓展视野。引导学生分析问题,建立一个三元线性方程组来求解该问题,再以此问题引出行列式,使学生了解行列式应用背景是为求解线性方程组而定义的。从简单的经济问题入手,让学生了解知识的应用背景,使学生感受到学习行列式是为生产实践服务的,提高学生学习的积极性[2],明确学生学习的目的性。
2.数学建模思想融入线性代数案例教学中。选择简单的实际案例作为线性代数例题,给学生讲授理论知识的同时引导学生对问题进行分析,对案例进行适当简化并做出合理假设,再建立数学模型并求解,进而用结果解释实际案例,学生通过这样的学习过程容易理解掌握理论知识,同时也体会了数学建模的基本思想,更让学生认识到线性代数的实用价值,而且有利于提高学生分析问题和解决问题的能力。对于不同的专业,可以根据专业需要引入相应的数学模型,但专业性不能太强,由于大一学生还暂时没有学,因课时限制,在线性代数课堂教学中应该采用简单的例子。比如经管类专业的学生学习矩阵和线性方程组的相关例题时,可以分别选择简单的投入产出问题和互付工资问题的数学模型;而电子通信类专业的学生学习矩阵和线性方程组的相关例题时,可以加入简单的电路设计问题和电路网络问题的数学模型。
3.数学建模思想融入线性代数课后练习中。高职院校线性代数教学内容侧重于理论,课后习题的配置大多数只是为学生巩固基础知识和运算技巧的,对线性代数的定义、定理的实际应用问题基本没有涉及,学生的实际应用训练不够,因此适当地补充一些简单的线性代数建模习题,让学生通过对所学的知识与数学建模思想方法相结合来解决。我们从两个方面具体实施:
(1)在线性代数课程中加入Matlab数学实验,利用2个学时介绍与行列式、矩阵、线性方程组等内容相关的Matlab软件的基础知识,再安排2个学时让学生上机练习并提交一份应用Matlab计算行列式、矩阵和线性方程组相关内容的实验报告。
(2)针对所学的内容,开展1次数学建模习题活动,要求学生3人一组利用课余时间合作完成建模作业,作业以小论文形式提交,提交之后,教师让每组选一个代表简单介绍完成作业的思路和遇到的问题,其余队员可作补充,再针对文章的不同做出相应的点评并指出改进的方向。通过这种学习模式,不但提高学生自学和语言表达以及论文写作能力,而且利于培养学生团队合作和促进师生关系,教学效果也得以提升。
4.数学建模思想的案例融入线性代数教学中。案例1:矩阵的乘积。现有甲、乙、丙三个商家代理某厂家的A、B、C、D四款产品。四款产品的每箱单价和重量分别为A:20元,16千克;B:50元,20千克;C:30元,16千克;D:25元,12千克。甲代理商代理的产品与数量分别为A:20箱,B:5箱,D:8箱。乙代理商代理的产品与数量分别为B:12箱,C:16箱,D:10箱。丙代理商代理的产品与数量分别为A:10箱,B:30箱。求解三家代理商代理产品总价和总重量。模型假设:①在没任何促销优惠措施下严格按照单价和数量计算总价;②同款产品对即使不同级别的三家代理商执行同样的单价。模型建立:由已知数据分析可知,发往各代理商的产品类别不尽相同,通过用0代替,可以列成表。由此,分别将产品的单价和单位重量。
三、改革的初步成效
数学建模思想方法与线性代数的教学适当结合并灵活运用,这一教学改革提高了学生们的能力和素质,主要表现在以下几个方面:(1)熟练掌握Matlab等数学软件的使用,利用数学软件加深了数学理论知识的理解和应用;(2)学生学习积极性明显提高,启发学生初步产生用数学解决实际问题的意识;(3)学生已逐步形成一种建模思维,逐步形成良好的分析和处理问题的习惯。另外,适时应用数学建模思想教学,促进了线性代数教学方法的改进,提高教学水平和教学效果,利于高职高等数学的教学改革进一步推进和课程建设的长效发展。
总之,在高职院校高等数学各个教学模块中逐渐地融入数学建模思想方法,能使学生的数学素养有较大提高,并对教师教学理念的转变起到促进作用。
篇14:数学建模思想探索与实践论文
数学建模思想探索与实践论文
摘要:运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.
关键词:数学建模;运筹学;教学实践
运筹学是信息与计算科学专业的一门重要的专业课,它是一门应用科学,广泛地应用现有的科学技术知识和数学方法,解决实际中提出的专门问题,为决策者选择最优决策提供定量依据.在解决问题的过程中,为制定决策提供科学依据是运筹学应用的核心,而针对实际问题建立正确的数学模型则是运筹学方法的精髓.数学建模是利用数学工具解决实际问题的重要手段,从一定意义上来讲,数学建模属于运筹学的一部分,模型的正确建立是运筹学研究中关键的一步.所以说,二者有着密切联系,在运筹学教学中应适当地融入数学建模思想[1],能够培养学生理论应用于实践的能力,提高教学效果.
1运筹学教学中融入数学建模思想的必要性
数学建模和运筹学2个课程联系密切,也各有特点,但在实际教学中却不能很好地结合起来[2].运筹学教学中只注重讲授理论和解题方法,而忽略了与实际问题相联系,导致了学生在遇到实际问题时,不知从何处入手;在数学建模课程中则强调建模思想和方法的运用,注重的是建立起什么样的模型,而对模型的求解讲授得过少,导致很多时候学生在处理实际问题时虽然能够建立模型,但却不知如何求解.所以,在运筹学教学中要注意突出数学建模的思想,增强学生的数学应用意识[3].在运筹学教学过程中贯穿数学建模思想,使得教学过程不再是着力于单纯的知识灌输,而是注重培养学生应用所学知识解决实际问题的能力,结合教学特点,充分发挥学生的动手能力,积极调动学生的学习兴趣[4],使传统经典教学理论与最优化教学理论统一服务于教学实践,这是教学改革的方向.尤其是现代教育技术发达,使得课堂的容量增大,课堂上借助多媒体可以减少理论方法讲解的时间,适当运用规划软件可以大幅度降低运算所耗费的时间,这样节省下来的时间就可以更多地用来培养学生应用理论知识解决实际问题的的能力.因此,要在运筹学课程的教学中对运筹学教学内容进行精心处理,不能只偏重理论和解题方法的讲解,要积极地渗透数学建模的思想,从而在课堂上着重引导学生应用理论方法去解决实际问题,培养学生的建模意识.运筹学中数学规划、网络、图论和排队论等内容是数学建模一部分思想方法的汇集,在运筹学教学中渗透数学建模的思想,既能让学生对运筹学中枯燥的理论和方法有了深刻的理解,又能对后续数学建模课程的学习起到促进作用.
2数学建模思想融入运筹学的教学改革
国内外大量教师学者都通过实践对运筹学教学中数学建模思想的渗透进行了深入研究.如王定江[5]根据教学实践,阐述了运筹学教学中如何突出数学建模教育的思想;杨冬英[6]根据运筹学课程的特点,结合教学实践经验,提出了实行运筹学教学改革的一些建议和措施,指出数学建模活动是培养学生应用数学能力的重要手段,在运筹学教学中融入数学建模思想可以培养学生的创新能力和综合应用能力.山东大学数学系在打造运筹学国家精品课时将二者有机地结合起来,收到了很好的教学效果[7].2.1教学大纲的改革.在运筹学大纲的修订中,着重从2个方面来突出建模思想的融入.2.1.1设置课后上机实验.运筹学的学习,一方面让学生运用运筹学的理论和方法对实际问题进行抽象概括,找出其内在规律,构造出相应的数学模型;另一方面能通过逻辑推理或分析和计算,求解所建立起来的数学模型.而运筹学研究的优化算法能用来通过手工计算解决问题的规模是很小的,绝大多数根据实际问题建立起来的数学模型,约束和变量都很多,在求解过程中,如果不借助计算机,很难求得问题的解[8].计算机能为数学模型的求解提供可靠的平台,因此,设置课后上机训练.在上机内容的安排上,特别注意将纯粹的数学问题尽可能地转换成学生感兴趣的.实际问题,通过搜集大量优化模型的实例,选取与大纲内容相关的实际问题,供学生在课后上机实验中进行训练.学生在动手实践中既加强了对优化算法的理解,也锻炼了应用建模思想解决问题的能力.2.1.2改革考核方法.在成绩的考核上,传统的大纲中,从平时、期中和期末3个方面来考核,比重分别是20%,20%和60%.而期中和期末都是以试题的形式对学生进行考查,考查的内容以学生对基础知识、基本理论和方法的掌握程度为主,而对学生的知识应用方面考核的强度不大.因此,在考核方式上进行了调整,成绩考核分为2个部分——平时和期末,各占50%.在平时考核中,除了考查学生出勤、作业、课下上机实践的完成情况外,还特别选取一些往届数学建模竞赛中典型的优化模型试题给学生作训练,分组实践,完成课程论文,而且加大对学生创新和动手实践方面的考核力度,激发学生应用数学知识解决实际问题的热情.2.2教学环节的改革.2.2.1将数学建模的优化思想渗透到运筹学相关环节的教学中.把数学建模的优化思想渗透到运筹学相关环节的教学中,在实际教学中,尽量多地采用案例教学,从实际问题出发,精选具有充分的代表性且源于实际问题的建模案例.在讲解线性规划问题解法时,以奶制品的生产与销售[9]为例,通过分析问题,选取适当的方法建立最优的数学模型,然后分析线性规划的特点,引入求解线性规划问题行之有效的方法——单纯形法.进而再以此为例,加入整数约束,引出整数规划问题,讨论其与线性规划求解的区别,加深学生对知识的理解.通过逐步地掌握用运筹学算法去求解模型,让学生看到完整的过程,而不是仅仅了解枯燥的算法流程和优化理论,以此激发学生的学习兴趣.2.2.2将动式教学法引入课堂教学.要摒弃一堂灌的讲授式教学,将动式教学法引入课堂教学,适当安排教学计划,预留出一些学时,将课堂时间进行划分.针对运筹学模型的特点,选取学生易于接受的模型,课前给学生分配任务,课上给学生讨论分析的时间,发挥课堂上学生的主体作用,让学生积极主动地参与教学中来.在学习运输问题[10]时,课前先布置任务,给几个实例,让学生查阅资料,尝试建立相应的数学模型并进行求解.课上讨论和分析这些实例的特点,引入运输问题,进而让学生讨论问题求解所采用的方法,分析优缺点,结合运输表的特点引出表上作业法,并将其与单纯形法对比,发现方法的实质.这样通过不断的启发,充分调动学生的学习积极性,使学生不再被动地接收知识,达到培养学生分析问题和解决实际问题能力的目的.
3运筹学教学中融入数学建模思想的教学改革成效
信息与计算科学专业有2个方向,一个是软件与科学计算,一个是统计与优化,这2个方向都开设运筹学,在课程内容上都会着重学习优化算法,针对实际问题建立相应模型,设计相应算法.毕业生在就业面试和考核中,用人单位往往会提出一些实际问题,让学生分析,给出优化方案,以此考核学生解决实际问题的能力.以往很多学生对此手足无措,如今遇到类似问题,学生能参考平时训练的思路,能够动手实践,不再无从下手.因此,通过将数学建模与运筹学2门课程融合训练,学生的综合素质有了显著提高.从参加每年全国大学生数学建模竞赛和东三省数学建模竞赛的获奖情况来看,成果显著.2016—2017年,在“高教社杯”全国大学生数学建模竞赛中共获黑龙江赛区的一等奖6组,二等奖12组,三等奖14组;东北三省数学建模联赛中共获得黑龙江赛区的一等奖2组,二等奖5组,三等奖4组.通过教学实践,让学生在解决实际问题中不仅提高了动手实践的能力,而且培养了其综合素质.
4结束语
运筹学教学改革实践说明,运筹学教学以数学建模的实际案例为背景,建模与优化算法二者并重,既可以培养学生运用所学知识解决实际问题的能力,又保证了学生具备扎实的理论基础,符合新时期人才培养的要求.运筹学教学与数学建模相结合的教学改革不但丰富了运筹学课程的教学内容,改变了课程的教学形式,也提高了学生的学习兴趣,取得了显著的教学效果.
参考文献:
[1]刘仁云.数学建模方法与数学实验[M].北京:中国水利水电出版社,2011
[2]周喜华.运筹学教学中融入数学建模实验的研究和实践[J].高教学刊,2017(11):89-90
[3]邓廷勇,张姮妤.运筹学教学与数学建模思想的融合[J].宜春学院学报,2014(9):129-131
[4]姚香娟,段滋明,王萃琦.如何提高学生学习运筹学课程的兴趣[J].学园,2014(12):59
[5]王定江.运筹学教学与数学建模[J].大学数学,2013(12):19-23
[6]杨冬英.从数学建模谈山西大学商务学院运筹学教学改革[J].科技情报开发与经济,2010(4):181-182
[7]胡发胜.国家精品课程运筹学的教学改革与实践[J].大学教学,2006(7):9-10
[8]宇世航,张水胜,张良勇.数学建模思想在运筹学教学中的运用[J].高师理科学刊,2009,29(11):89-91
[9]姜启源,谢金星,叶俊.数学模型[M].4版.北京:高等教育出版社,2011
[10]胡运权.运筹学基础及应用[M].6版.北京:高等教育出版社,2014
文档为doc格式