欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

高中数学学习的思想和法则

时间:2022-10-01 08:56:53 其他范文 收藏本文 下载本文

下面是小编帮大家整理的高中数学学习的思想和法则,本文共9篇,希望对大家的学习与工作有所帮助。

高中数学学习的思想和法则

篇1:高中数学学习的思想和法则

高中数学常见的六大法则

1、配方法

所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

2、因式分解法

因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

3、换元法

替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

4、判别式法与韦达定理

一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

吠陀定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

5、待定系数法

在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

篇2:高中数学学习的思想和法则

数学思想方法之分类讨论

分类讨论思想具有较高的逻辑性及很强的综合性,纵观近几年的高考数学真题,不管是文科还是理科,同学们在解决最后的数学综合问题时,基本上都需要分类讨论。本节课老师给同学们深度剖析了分类讨论思想,并结合典型例题引导同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。

数学思想方法之数形结合

数形结合思想是借助于数学图形解决数学问题,它可以使复杂的问题简单化,抽象的问题直观化,是解决综合问题的得力助手。正是因为数形结合的这种优越性,它已经成为高考必考的数学思想方法。在这节课中,老师通过典例精析给同学们总结了数形结合思想在高中数学各个板块中的灵活运用,帮助你形成数形结合的思维方式,突破数学难题。

数学思想方法之函数

函数与方程思想是非常重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多;

数学思想方法之方程、转化与化归

转化与化归思想在高考中也占有十分重要的地位,数学问题的解决,总离不开转化与化归.本节课老师给大家总结并分析了函数与方程思想以及转化与化归思想的常见题型,并重点讲解了函数与方程、转化与化归在解题中的灵活运用。

相信同学们对这四大数学思想一定会有一个全新的认识,如果同学们这四种数学思想都能掌握的很好,那么你一定会成为解决数学问题的高手。想要学好数学,冲刺数学高分的同学,赶紧过来跟着老师认真学习这四大数学思想吧!

篇3:高中数学思想和数学方法

高中数学思想是高中数学教学的灵魂,是获取和吸收知识最有效的方法,具有极高的实用性和适用性,高中生在充分了解和掌握数学思想方法就能够提高处理数学问题的能力了,进而在面对数学考试的时候能够从容不迫,同时也有助于高中生综合素质的完善和提高。

因此,培养学生数学思想方法对学生数学学习具有非常重要的意义,但是将数学思想方法融入到整个高中阶段的教学中是非常不容易的,不同的数学概念不一定会蕴含着一样的数学思想方法,举例来说,牛顿从物理角度对微积分定义进行了解释,而莱布尼茨从几何角度对微积分的定义进行了另一种解释,所以为了更好的掌握微积分的内容,就一定要明确它的定义极限,而这里所蕴含的数学思想就是对数学对象进行分割定义等一系列处理。只有具备数学思想,并以此为基础,才能通过这种数学学习方法高效的解决各种类型的数学难题和数学概念和理论,进而更好的完成数学教学任务,帮助高中生尽快的提高数学成绩。

高中数学教学中强化数学思想方法渗透的实践途径

虽然数学思想方法在高中数学教学中会起到很重要的作用,但假如我们将这种思想直接的灌输和传授高中生,他们可能并不能很好的接受这种思想,脱离了实际的数学活动,数学思想方法的适用性就会大打折扣,在授课时刻意的对学生强制性的进行数学思想方法渗透,就会让学生逐渐沉溺在形式主义的环境里

所以数学思想方法的渗透一定要与具体的教学活动相结合,并通过学习和反思不断加强数学思想方法的掌握程度,进而习惯用数学思想方法解题。

数学思想方法的渗透应当与具体的数学知识和数学活动结合在一起。

高中数学教师要首先学习和掌握数学思想方法,在实践教学过程中要率先对数学思想方法进行实际应用,这也会帮助学生认识到数学思想的重要性;

其次,数学思想方法通常要从具体到抽象,以数学教学活动为依托,并经过一系列的渗透、理解、应用和反思阶段,并针对不同的课程安排有选择性的采取对应的教学策略。

篇4:高中数学思想和数学方法

函数与方程思想

函数与方程思想是中学数学函数的基本思想, 在中考、高考中,常常以大题的方式呈现。函数是对于客观事物在运动变化过程中,各个变量之间的相互关系,用函数的形式将这种数量关系表示出来并加以解释,从而解决问题。函数思想是指采用运动和变化的观念来建立函数关系式或构造模型,将抽象的问题运用函数的图象和性质规律去分析、转化问题,最终解决问题;

方程思想是指分析数学问题中的变量间的等量关系,建立方程或者构造方程组,运用方程的性质去分析问题,从而达到解决问题的目的。函数与方程思想在数学教学运用非常广泛, 并注重培养学生的运算能力与逻辑思维能力。

数形结合的思想方法

数形结合是数学中的一种非常重要的思想方法。它将抽象的数量关系用直观的方式在平面或空间上呈现出来,也是将抽象思维与形象思维地结合起来解决问题的一种重要的数学解题方法。华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。”

有时仅从“数量关系”中观察很难入手,但如果把数量关系转化为图形,并利用其图形的规律性质来确定,借助形的明了直观性来描述数量之间的联系,可使问题由难转易,化繁为简。故在面临一些抽象的函数题型时,老师要引导学生用数形结合的思想方法,使解题思路峰回路转。例如,求y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最值(θ, α∈R) 可利用距离函数模型来解决。

化归、类比思想

所谓化归、类比思想是把一个抽象、陌生、复杂的数学问题化比成熟知的、简单的、具体直观的数学问题,从而使问题得到解决,这就是化归与类比的数学思想。 函数中一切问题的解决都离不开化归与类比思想,常见的转化方法如:①类比法:运用类比推理,猜测问题的结论,易于确定转化的途径;②换元法,运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题;

③等价转化法:把原问题转化为一个易于解决的等价命题,达到转化目的;④坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径。高中数学老师要熟悉数学化归思想,有意识地运用化归的思想方法去灵活解决相关的数学问题,并在教学中渗透到学生的思想意识里,将有利于强化在解决数学问题巾的应变能力,提高学生数学思维能力。

分类讨论思想方法

分类讨论思想是一种“化整为零,积零为整”的思想方法。在研究和解决某些数学问题时,当所给对象无法进行统一研究时,就需要我们根据数学对象的本质属性的异同特点,将问题对象分为不同类别,然后逐类进行讨论和研究,从而达到解决整个问题的目的。

高中数学函数教学中,常用到的如由函数的性质、定理、公式的限制引起的分类讨论;问题中的变量或含有需讨论的参数的,要进行分类讨论等。在教学时,要循序渐进的对分类思想进行渗透,使学生在潜移默化中提高数学思维能力。

篇5:高中数学思想和数学方法

尊重学生的逻辑思维特点

逻辑思维是指学生对事物进行观察、分析、比较、综合、判断、推理、抽象以及概括的能力.处于高中阶段的学生,其抽象逻辑思维能力呈现为理论状态,能够用课本中的理论知识对材料进行分析和综合,并在日常的学习中不断地丰富自身的知识领域,初步了解并建立了对立统一的辩证思维.

因此,数学教师在渗透数学思想方法时,应当根据高中生的心理发展特征,在传授基础知识的同时引导学生进行实践性、探究性和创造性的讨论,缩短实践与理论之间的距离,从而有利于把具体的实物抽象化,使得思维更加开阔,在分析和思考问题时能更加全面.

提高渗透的自觉性

数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的;数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次,要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章、每一节,都要考虑如何结合具体内容进行数学思想方法渗透。渗透哪些数学思想方法、怎么渗透、渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。

注重渗透的反复性

数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以后的“反思”,因为在这个过程中提炼出来的数学思想方法对学生来说才是易于体会、易于接受的。如通过分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。

把握渗透的可行性

数学思想方法的教学必须通过具体的教学过程才能实现。因此,必须把握好教学过程中进行数学思想方法教学的契机――概念形成的过程、结论推导的过程、方法思考的过程、思路探索的过程、规律揭示的过程等。同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地、潜移默化地启发学生领悟蕴含于数学知识之中的种.种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。

4数学思想方法教学的具体措施

数学思想方法教学要求层次。

从“九年义务的教学大纲”中可以明确看出,在初中数学教学阶段,思想方法教学是由一定分寸的。到了高中数学教学阶段,相应提升了思想方法教学的要求层次,比如转化思想、函数和方程思想、数形结合思想、分类讨论思想。对于这些思想方法教学形式,不仅仅要求能够理解,并且要求在理解前提下灵活掌握以及运用。随意降低或是提升要求层次,都会使高中数学的课堂教学效果受到影响。

数学思想方法的渗透方法。

在高中数学教学中主要使用的思想方法就是渗透方法,通俗的来讲渗透法就是在教与学数学知识过程中,将转化思想、函数和方程的结合思想、数形结合思想、分类讨论思想等数学思想方法反复讲解的过程。经过逐渐积累,使学生由浅入深,循序渐进地对数学思想方法产生一定的认识,以便学生能够独立、自主的使用。

转换观念,加强对思想方法的认识。

高中数学教师应从基本备课着手,用数学思想方法对教材进行深入研究,经过对定理、公式、概念的不断探讨、研究,挖掘出一些有关数学的思想方法,将数学方法的基本教学要求和相关数学技能、知识的教学要求一起提出。在高中数学的课堂教学中,注重对学生思想方法的培养。在数学每章小节中,加强对思想方法的归纳、总结。让学生经过思考独立地对本章知识点进行总结,以思想方法的角度了解数学知识点的本质。总之,就是要将思想方法在数学教学中渗透,使其贯穿整个课堂教学中。

在知识的总结中概括数学思想方法

数学思想方法贯穿于整个高中数学教材的各个章节中,甚至存在同一个知识内容蕴含了多种不同的数学思想方法,它以一种需要教师和学生深度挖掘的方式融于整个高中数学知识体系中,而高中学生要将这些思想化为自己的观点,需要数学教师及时进行总结和归纳.

因此,教师首先应当将概括数学思想方法列入教学计划中,在章节结束或者单元复习时,将本章节中所蕴含的具体数学思想方法一一列举出来,条件允许的情况下,可结合具体的数学案例并和学生一起解答.通过不断的归纳和总结,有利于增强高中生对数学思想的应用意识以及对所学知识的理解更加透彻,从而提高自身独立分析和解决数学问题的能力.

篇6:高中数学思想和数学方法

调整状态,树立信心。

学习数学状态很重要,如果状态好,在做题时就会如虎添翼,感觉没有什么问题可以难住自己,但是如果状态不好即使是最简单的问题也要思考好久,所以在学习高中数学时一定要调整好学习状态,并且有一些同学在心里就畏惧数学,还没有开始学就认为自己学不好,这是不对的。要树立学习数学的信心,可以经常给自己加油鼓劲,提高学习动力。

课后巩固

很多学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。

做练习是需要的,可是有些学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。

学会选做题

高中的相关资料比初中更多,高考是全社会都关注的问题,所以高中的练习也特别多,有些学生买的资料也多,于是如何利用题目来掌握我们学习的知识,扩展我们学习的知识就成为学习的关键。我觉得题目要多看,多想,看资料中的解题方法,想方法中的为什么,这样就可以借鉴更多的方法。

方法多了,可以也要消化。于是我们要会有选择的做题,达到事半功倍。我建议每天一小练,每周做一套完整的考题,看2~3套考题,从中去发现那些是这段时间数学学习的重点知识,那些是我们常用的解题方法以及使用什么方法能优化解题。

缓慢审题,快速做题。

有些同学做题速度很快但是分数却并不高,是因为这些同学只顾追求做题速度,往往没有将题看清楚,就着手解题,审题的程度在很大程度上决定了同学是否能得高分,数学题在题干中会有很多的知识点和隐藏条件,各位同学再审题时一定要认真,将题干中涉及的知识点和隐藏的知识点都挖掘出来,而且如果我们将题干读懂以后可以在一定程度上有利于我们的做题速度。

在做高中数学复习题时要学会总结做题方法,一个好的做题习惯可以帮助我们答题,每套卷子的题型都是有规律可循的,要在做题的过程中将所涉及到的知识全部掌握住,将题分成三六九等,具体规划出做题时间和做题方法。

篇7:如何学习高中数学

一、每天做几道数学题

数学是应用性很强的学科,做题是数学学习过程中必不可少的环节。

甚至有同学说,学习数学就是学习解题。

做数学题应注意以下几点:

(一)精做题

做题不是做得越多越好,而是做得越精越好。

怎样才算“精”呢?学会“解剖麻雀”。

充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法;一题多解,一题多变,多元归一。

(二)做难题

取得黑龙江省高考文史类第三名好成绩的李宏霞同学,认为坚持做难题,做大题才是制胜的法宝。

她说,数学中的基础题因然很重要,但高分的关键则是综合性强、难度大的最后两三道大题,即所谓“拉分题”。

因此,她在复习时坚持有规律地做这类题目。

由于题目难度高,所以每次做的题量不要太大,一次做四五道即可,同时,要注意选择的题目要有代表性、要全面,同一题型的题选二三道即可,要注意方法的积累和运用。

(三)天天做题

熟练解题一定要有量的积累。

天天做题就是保证做题的数量的最好方法。

同学们可以制定一个计划,每天要求自己做五道题目,或十道题目,根据自己的情况确定,如此坚持下去,做题越做越快,并且培养起相当的自信心。

二、紧紧抓住例题不放

许多考试题目都是取材于课本的例题,对例题进行简单改造而成。

比如把这个题的结论作为已知条件,把原来的已知条件作为新题目的结论;或者什么都不变,但是不直接给出已知条件,而是用委婉的方法告诉你已知条件,这样就变成了一个新题目。

即使是综合题,也是由若干个基础题整合加工而成。

因此,提高做题能力,最简单、最有效的方法,就是熟记课本中的例题。

一、背例题

不仅要看得懂例题,还要能“背例题”,而且多“背例题”。

如何“背例题”呢?我们知道,一道题的精髓不在于题面,而在于解答过程。

因此,背题不仅是熟悉题目,更是熟记解答过程。

不仅要问怎么做,而且要问怎么想,不仅要知道这样做,而且要知道为什么这样做。

具体来说,可以通过重复做例题进行针对性的训练。

二、做例题

复习时重做一遍例题,会收到意想不好的好效果。

弄清全书有几章,每章有几节,每节有几道例题,对全书的例题做到心中有数,然后在作业本上抄下每一道例题。

(每一道例题就是一种题型,可以自己算算有多少种题型。)不要先看书中的解法,合上课本,按记忆中书上的解题步骤、解题方法认真解题,不要马虎和省略。

全部解答完后再翻开书本参照例题一一对照,看自己的解题方法、步骤是否和书中一致,如果有不同的地方,要分析这样做的原因和利弊,寻找存在的知识盲点,进行订正和记忆。

篇8:如何学习高中数学

(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动我们主动学习和克服困难的内在动力,但计划一定要切实可行,既有长远打算,又有近期安排,执行过程中严格要求自己,磨炼学习意志。

(2)课前预习是上好新课、取得较好效果的基础。

课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。

预习不是走过场,要讲究质量,力争在课前把教材弄懂,理清哪些内容有疑问或看不明白,分别标识下来,形成期待老师解析的心理定势。

这种需求的心理定势必将调动我们的学习热情和高度集中的注意力。

上课时就着重听老师所讲的自己疑问和不明白的地方以及老师的解题思路,把握重点,突破难点,尽可能把问题解决在课堂上。

篇9:如何学习高中数学

1、听课

认真听课适当做笔记,不放过任何联想小结的机会是读好书的关键。上课的内容有难有易,不能因为容易而轻视它,也不能因为困难而害怕它。容易的问题思维强度小,但所提供的思维空间却很大,可以把自己的方法与老师的方法进行整合,对相关的问题进行小结,对问题的发展进行预测,为后面更难的问题积累充足的思维惯性。这好比是骑自行车上坡,在平路上达到了一定的速度上坡也就容易了。很多同学往往没有注意到这一点,由于没有做好充分的思想准备结果到了更难的问题就听不懂了。因此,简单的问题不爱听就必然导致复杂的问题听不懂,一段时间这样就要退步,长期这样就变成了差生。

2、弄清概念、性质与基本方法

弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。正确理解概念再做习题就比较容易了,通过习题的演算反过来还可以进一步理解概念与性质。要弄清概念、性质和基本方法,就要先复习老师上课所讲的东西,要看一看课本上的相关内容。课堂弄不懂的问题课后一定要想办法弄懂,已经听得懂的东西也要想一想自己是否能够操作,若仍有问题最好动手做一遍,自己走过的路才可能成为熟路。有了准备再做作业效率会更高,解题在很多情况下就是检验你对概念、性质和基本方法掌握得如何。对学习的困难要有足够的准备,不要贪眼前的快,学的太粗,长期下去会造成以后的慢,甚至一生的慢。因此一定要注意强化自己的基本功。在系统思考还没有建立之时,千万别放弃对简单问题的思考。

3、经常复习原来学过的知识

在小学初中时复习靠老师,到了高中复习要靠自己。因为在高中的课程多,内容广,所以在课堂上不可能经常反复。一节课内容一个星期之内不复习就有可能变得陌生,最好是三天内复习一次。要把问题真正弄懂,可能要“读”或“做”五、六遍甚至十几遍,每次“读”或“做”总会有比原来更多的体会,我不相信人的头脑学一遍做很少的习题就能够把问题理解透彻。求学问从不知到知,从没有印象到有印象,而且还要“印”的正确,“印”的清晰,绝不是轻而易举的,一定要通过多次的反复钻研和练习才能达到这样的境界。复习还有一个重要的目的就是对所学的知识进行疏理和总结,使之形成系统,为解决以后的问题做好充分的准备。常常要象过电影一样把各科的常规问题过一遍,把各科的课本与笔记过一遍。

4、形成合理的操作习惯

成功的人并不一定比别人更聪明、更加能说会道、他们是常常是在最恰当的时侯用自已毅力与勤奋把该要学会操作,操作到熟练,操作到形成习惯为止。你要习惯于看课本,课前要看、课内要看、课后还要看,直到真正弄懂为止。你要习惯于及时演练,时机把握的好不好对你来说至关重要,特别要珍惜课堂练习机会,珍惜例题重做时机。

5、勤于发现问题,好于解决问

中学的课程大都是被研究得比较彻底的问题。可以这样说,一个聪明勤奋的学生能够发现多少问题,就能够学会多少知识。听课、看书、做作业,听课是发现问题的最重要的时机,大多数学生都没有注意到这一点,以为“听懂”就行,实际上,懂有真懂和假懂之分,懂有懂得深与懂得浅之分,不能够在课堂上发现问题的学生,往往在碰到新的题目和题型时就束手无策了。解题也是发现问题的重要手段,许多学生今天发现了三个问题,明天发现了三个问题,问题并没有解决,到了第三天老师问他你有什么问题,结果他一个问题也提不出来。发现问题的目的是为了解决问题,达到真懂的境界。因此建议同学们要准备一本问题簿,把你发现的问题记在本子上,把你解错的题目记在本子上。解决问题的方法有很多,可以自己独立思考刻苦钻研解决它,也可以通过与老师、同学共同探讨来解决它。发现问题比解决问题更困难,因此你要珍惜所发现问题,所发现的问题一定要尽量加以解决,并且经常复习。发现问题虽然困难,但天天都有许多的机会,如果你养成了勤于发现问题、好于解决问题的习惯,对现在的学习和将来的学习都有很大的益处。

6、把握解决问题的时机

学习新的知识点,碰到问题和困难是非常正常与自然的,碰不到问题和困难才是不自然的。每个人都有解决这些问题克服这些困难的时机,不同的人可能时机是不同的,我相信不管是谁,这种时机一定存在。可惜的是在大多数的情况下我们并不能把握住解决问题的时机。为什么呢?大多数的人总是急功近利,心理承受力差,对一些问题在时机不成熟时做了一些努力收效不大时,就放弃了努力,同时也放弃了寻找突破这些困难的时机,最终让自己失去了解决问题机会,事实上每天你都可以解决许多的问题,这些问题可能是新的问题也可能是刚刚才发现的老问题。不管你学习的速度是快还是慢,你只要努力去把握,总是可以把事情做好的。人的潜能象海底里的冰山、能露出的只是很少的部分,象电脑、虽然硬盘中贮存着无数的信息,但在显示屏上显示出来的只是很少的一部分,只你肯挖掘,就能在显示屏上有更非富更生动的展示。

7、善于分门别类,善于抽出本质

学习过程中会遇到大量的概念、定理公式、典型方法,对他们进行概括小结使之系统化是非常重要的,这是老师在课堂上常常做的事情。其实每个学生也要经常做这件事情。开始时你可能做不好甚至不会做,这没有关系,只要多做几次就越来越会做,越做越好。你先去感觉老师给你的笔记,体会老师是如何对知识进行概括小结的,以后,可以在老师的基础上结合自己的实际对知识进行有个性的分门别类,每做一次这样的事情你的认识就会提高一次,多做几次你的思想就有可能升华。平常我们要研究许多题型,做大量的习题,一但抓住了一类习题的本质就要及时归纳总结,用自己的话表达对这一本质的理解。分门别类可以使学过的知识有条理,便于记忆,便于应用。抽出本质,可以极大地提高自己的认识水平。

8、积极主动、善于变通

失败者有一个共同的特点,只要遇到有不会做的就不做,遇到不会解的题就不解。当一个人不做事的时侯,这个人就无从发展,无法进步了,能力就越来越差。事实上,任何一件事都有很多的做法。说个“好”字可以有一百种说法,声音的高低可以有一百种,语气的变化也可以有一百种。跑不了5000米,先跑1000米,跑不了1000米,先跑100米,跑不了100米,先走100米,走不了,爬也行。任何一件事你无法直接做可以退一步或退几步去做,总之要去做。不会做这道题,就做与这题相关的课本的例题,千万不能什么也不做。无论如何,你要动起来,不动不行,不做不行。从简单开始,量力做事,每天坚持,你总会越来越好的。变法子做你不能直接做的事情,培养自己积极主动、善于变通的习惯,可以终身受用。形成这一种好习惯的重要原则是:起点要低,起动要慢,日积一日,终达目地。

9、要虚心、要自信、有主见、有理智

认真可以使你能够发现更细腻的东西,专心才有更高的效率,勤快可以做更多的事情,毅力能够让你克服困难,志向是你学习的动力是精神的支柱。

10、快乐地学习、充满信心地学习.,保持愉快的心情,天天高兴地生活和学习是重要的。快乐地学习可以极大地提高体力和智力,当一个人在大多数情况下能够保持良好的心境,快乐地学习时,他的学习成绩就会越来越好。充满信心地学习可以极大地提高学习效率,可以消除你的不良情绪,进而达到快乐的境界。这样你就能做到书山有路勤为径,学海无涯乐作舟。

高中数学学习方法和学习技巧

个人学习和思想总结

学习宪法和监察法党课

高中数学的复习的方法和学习的建议

如何学习好高中数学

高中数学学习个人总结

高中数学远程教育学习总结

学习思想总结

在高中数学教学中渗透数学思想

高中数学学习方法及学习技巧

《高中数学学习的思想和法则(合集9篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档