以下是小编精心整理的分数知识点总结,本文共18篇,供大家阅读参考。

篇1:分数知识点总结
1.把整体“1”平均分成若干份,表示这样的一份或几份的数叫做分数.分母表示把一个物体平均分成几
份,分子是表示这样几份的数.把1平均分成分母份,表示这样的分子份.
2.分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表
示
3.分数的分子不能是小数只是除0以外的自然数;
4.分数可以表述成一个除法算式:如二分之一等于1除以2.其中,1 分子等于被除数,- 分数线等
于除号,2 分母等于除数,而0.5 分数值则等于商
5.小数化分数
小数化分数,小数部分有几位分母就有几个零.例:0.45=45/100=9/20
如是纯循环小数,循环节有几位,分母就有几个9.例:0.3(3循环)=3/9=1/3
如是混循环小数,循环节有几位,分母就有几个9;不循环的数字有几位,9后面就有几个
0,而分子是用循环节减去不循环的部分.例:0.12(2循环)=2-1/90=1/90
注意:最后一定要约分.
6.分类
分数一般分成:真分数,假分数,带分数,百分数;
或分成正分数和负分数.
介绍
正真分数的值小于1.分子比分母小,
例:1/3
假分数的值大于1,或者等于1.分子比分母大或相等(假分数包括带分数)
例:5/3、7/7、
带分数的值大于1.
注意事项
①分母不能为0,否则无意义.
②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数.
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数.(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
7.分数加减法
1、同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数.
例1:2/9+5/9=2+5/9=7/9
例2:1/8+3/8=1+3/8=4/8=1/2
例3:5/9-1/9=5-1/9=4/9
例4:3/4-1/4=3-1/4=2/4=1/2
2、异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,
改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数.
例1:3/4+5/7=21/28+20/28=21+20/28=41/28
例2:5/24+1/8=5/24+3/24=5+3/24=8/24=1/3
例3:7/8-1/4=7/8-2/8=7-2/8=5/8
例4:8/15-1/5=8/15-3/15=8-3/15=5/15=1/3
8.分数乘除法
1、分数乘整数,分母不变,分子乘整数,最后要化成最简分数.
例1:4/5×3=4×3/5=12/5
例2:3/22×2=3×2/22=6/22=3/11
2、分数乘分数,用分子乘分子,用分母乘分母,最后要化成最简分数.
例1:5/6×1/3=5×1/6×3=5/18
例2:2/5×1/4=2×1/5×4=2/20=1/10
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后要化成最
简分数.
例1:4/15÷2=4÷2/15=2/15
例2:42/30÷7=42÷7/30=6/30=1/5
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,
最后要化成最简分数.
例1:3/8÷2=3/8×1/2=3×1/8×2=3/16
例2:4/5÷6=4/5×1/6=4×1/5×6=4/30=2/15
5、分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要化成最简分数.
例1:2/3÷3/4=2/3×4/3=2×4/3×3=8/9
例2:2/15÷1/3=2/15×3=2×3/15=6/15=2/5
篇2:分数的知识点总结
关于分数的知识点总结
关于分数的知识点总结:
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴ 分母相同的分数,分子大的那个分数就大。
⑵ 分子相同的分数,分母小的那个分数就大。
⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴ 真分数:分子比分母小的'分数叫做真分数。真分数小于1。
⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
⑴ 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵ 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑶ 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
⑴ 分子、分母是互质数的分数,叫做最简分数。
⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶ 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒 数
⑴ 乘积是1的两个数互为倒数。
⑵ 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶ 1的倒数是1,0没有倒数
9、认识真分数、假分数和带分数
真分数:分数的分子小于分母。真分数都比1小
假分数:分数的分子大于或等于分母。假分数等于或大于1
带分数:由整数和真分数组成的分数。
10、假分数、带分数和整数之间的互化。
假分数——整数。假分数的分子是分母的整倍数,分子除以分母所得的商就是整数。
整数——假分数。任何整数都可以写成假分数,由要求的分母作分母,分母与整数的乘积作分子。
假分数——带分数。由分子除以分母,商是带分数的整数部分,余数是带分数的分子。
带分数——假分数。分母不变,整数部分乘分母再加上带分数的分子作为假分数的分子。
11、认识最小公倍数
几个数公有的倍数叫这几个数的公倍数,其中最小的那个公倍数叫这几个数的最小公倍数
涉及到异分母分数比较大小或计算时,需要先通分。如何找到两个异分母的最小公倍数呢?需要考虑一下几种情况:
当两个数是互质数的时候,两个数的最小公倍数就是两个数的乘积。
两个数的最大公因数就是1
当两个数有倍数关系时,比较大的数是这两个数的最小公倍数。
比较小的数是两个数的最大公因数。
其他情况可以利用短处法找到两个数的最小公倍数。
12、无论是分数之间的互化或是分数计算。最终结果都要让分数化为最简分数。
当分母分数相加减时,通分时的分母如果是最小公倍数,那么最终的结果应该是一个最简分数。所以,尽量通分时用最小公倍数作分数的分母。
篇3:6年级分数知识点总结
6年级分数知识点总结
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴ 分母相同的分数,分子大的那个分数就大。
⑵ 分子相同的分数,分母小的那个分数就大。
⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小小学数学(分数)知识点总结小学数学(分数)知识点总结。
⑷ 如果被比较的`分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。
⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
⑴ 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵ 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑶ 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
⑴ 分子、分母是互质数的分数,叫做最简分数。
⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶ 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒 数
⑴ 乘积是1的两个数互为倒数。
⑵ 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶ 1的倒数是1,0没有倒数
篇4:分数应用题知识点总结
分数应用题知识点总结
整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的6(5)。五年级有学生多少人?
180×6(5)=150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的5(3). 六年级参加兴趣活动小组人数共有学生多少人?
120÷5(3)=200(人)
解分数应用题注意事项:
(1)找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。 当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
“甲比乙多几分之几”表示甲比乙多的数占乙的几分之几;“甲比乙少几分之几”表示甲比乙少数占乙的几分之几。
(2)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
数量关系: 单位“1”×对应分率=对应数量;
对应量÷对应分率=单位“1”的量。
(3)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(4)单位“1”的特点:
①单位“1”为分母;
②单位“1”为不变量。
(5)“已知一个数的几分之几是多少,求这个数”的解题方法:可以用列方程的方法来解,也可以直接用除法。
①设单位“1”的量为x,列方程解答。
②对应数量÷对应分率=单位“1”的总数量。
(6)工程问题:把工作总量看作单位“1”,
工作效率=1/工作时间
注:在单位换算中,要弄清需要换算的单位之间的进率是多少。
认识比
1、比的意义:比表示两个数相除的关系。
2、比与分数、除法的关系:a:b=a÷b=a/b(b≠0)
相互关系区别
比前项比号(:)后项比值关系
分数分子分数线(-)分母分数值数
除法被除数除号(÷)除数商运算
3、比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
4、比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。
5、最简整数比:比的`前项和后项是互质数。也就是比的前项和后项除了1意外没有其它公因数。
6、化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。
注:化简比和求比值是不同的两个概念【意义不同,方法不同,结果不同】
7、按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。
解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成分数乘法来计算。
分数乘法的计算方法:
(1)分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】
(2)分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
(3)分数连乘:通过几个分数的分子与分母直接约分再进行计算。
篇5:分数除法知识点总结
分数除法知识点总结
一、分数除法的意义:
分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c当b>1时,c(a≠0)
②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a(a≠0
b≠0)
③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a
三、分数除法混合运算
运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的'基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
五、分数除法和比的应用
1、已知单位“1”的量,用乘法。
2、未知单位“1”的量,用除法或列方程解答。
3、分数应用题基本数量关系(把分数看成比)
(1)关于甲是乙的几分之几,可以用下面方法解决问题:。
甲=乙×几分之几
乙=甲÷几分之几
几分之几=甲÷乙
(2)关于甲比乙多(少)几分之几。可以用下面方法解决问题:
A 差÷乙=(“比”字后面的量是单位“1”的量)
B 多几分之几
C 少几分之几
D 甲=乙±差=乙±乙×=乙±乙×=乙(1± )
E 乙=甲÷(1±)
(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
篇6:分数乘法知识点总结
分数乘法知识点总结
一、分数乘法
(一)分数乘法的意义
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分数乘法的计算法则
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。X|k | B| 1 . c|O |m
(三)、乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)
1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的`关系:画一条线段图。
2、找单位“1”: 单位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1-分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1-1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:小红有30元钱,小明比小红多3/5,小红有多少钱?
列式是:50×(1+3/5)
3、求一个数的几倍是多少:用 一个数×几倍;
4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
篇7:分数乘除法知识点总结
分数乘除法知识点总结
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。
3、写数量关系式技巧:
(1)“的`” 相当于 “×” “占”、“是”、“比”相当于“ = ”
(2)分率前是“的”: 单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量
三、分数除法
1、分数除法的意义:
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
四、分数除法解决问题
(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”: 单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量
3、求一个数是另一个数的几分之几:就 一个数÷另一个数
4、求一个数比另一个数多(少)几分之几:
① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数
或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数
篇8:分数乘法的知识点总结
分数乘法的知识点总结
分数乘法的知识点总结
分数乘法知识点:分数乘法的意义
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
分数乘法知识点:分数乘法的`计算法则
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
分数乘法知识点:规律:(乘法中比较大小时)
1、一个数(0除外)乘大于1的数,积大于这个数。
2、一个数(0除外)乘小于1的数(0除外),积小于这个数。
3、一个数(0除外)乘1,积等于这个数。
分数乘法知识点:分数混合运算的运算顺序和整数的运算顺序相同。
先乘除,后加减,
同级运算从左到右运算,
如果有括号要先算括号
分数乘法知识点:整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
篇9: 分数教学总结
分数应用题的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程并掌握本节课的基本知识与技能。教学一开始我就结合本班学生的实际情况提出问题:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。汇报交流时让学生说出数量关系式。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。通过学生的自主探究,汇报时,有的学生通过关系式的变化得出“女生人数”除以“女生占全班人数的几分之几”等于全班人数了解决问题;还有的学生把关系式看作等量关系,列方程解决了问题。
本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。
教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
篇10:初中数学分数乘法知识点
计算方法
1.分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
2.分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
3.分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
4.分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的`倒数,最后能约分的要约分。
5.分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
分数概念
单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数分为假分数和真分数。假分数又分为带分数和整数。分子和分母互质,这个分数就称为最简分数。要把小数化分数,看看是几位小数,来确定分母,再看小数点后是几,就是分子,如有整数,就变成带分数。
篇11:五年级分数加减法知识点及练习
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。
篇12:五年级分数加减法知识点及练习
一、填空。(15分,第2小题1分,其余每题2分)
(1)910 +110 表示9个( )加上1个( ),和是10个( ),就是( )。
(2)分数加、减混合运算的运算顺序与整数加、减混合运算的运算顺序( )。
(3)把45 、12 和0.9从小到大排列是( )。
(4)异分母分数相加、减,要先( )才能相加。
(5)24分钟=( )( ) 小时 80克=( )( ) 千克
(6)0.06里面有6个( )个( )分之一,它表示( )分之( );0.027里面有27个( )分之一。它表示( )分之( )。
(7)67 米比( )米短15 米 比49 米长112 米的是( )。
(8)分数单位是16 的最简真分数有( )个,它们的和是( )。
二、判断题。正确的在题后的括号里画“√”,错的画“×”。(8分)
(1)一根电线用去56 ,还剩下16 米。 ( )
(2)分数单位相同的分数才能直接相加减。 ( )
(3)分数加减混合运算的运算顺序,和整数加减法混合运算的运算顺序相同。 ( )
(4)圆是轴对称图形,它也能密铺。 ( )
三、直接写出得数。(10分)
57 +67 = 18 +78 = 1724 -1324 = 1737 +337 =
37 +47 = 119 -19 = 14 -17 = 1110 -38 =
89 +56 +19 = 1- 36 -16 =
四、计算下面各题,能简算的要简算。(28分)
(1)8.11+37 +2.89+47 (2)1524 -(524 -548 )
(3) 119 +310 -29 +710 (4) 2215 +713 +815 -713
(5) 56 +79 +38 (6) 58 - 25 +14
(7) 1415 -(23 -15 )
五、解方程。(16分)
(1) 5x-9.12=1.12 (2) 2x+137 = 207
(3) x+ 512 =1 (4) x-56 =16
六、应用题(25分,每题5分)
(1)一批苹果,第一天卖出了总数的25 ,第二天卖出总数的14 ,两天一共卖出总数的几分之几?
(2)一个长方形长是75 米,宽是13 米。它的周长是多少米?
(3)一根铁丝,第一次用去它的14 ,第二次用去它的13 ,还剩下全长的几分之几?
(4)服装厂本月计划生产一批童装,结果上半月完成了23 ,下半月和上半月完成的同样多,超产了吗?如果超产,超产了几分之几?
(5)一个三角形三条边的长度分别是15 米,310 米和12 米,这个三角形的周长是多少米?
篇13:五年级分数加减法知识点及练习
应用题
(1)一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?
(2)一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)
(3)一个通风管的横截面是边长是5分米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?
(4)一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?
(5)做一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?
(6)一根铁丝可以围成棱长为8厘米的正方体,这根铁丝也可以围成长为10厘米,宽为8厘米的长方体,如果要在长方体外面糊纸需要多少平方厘米的纸?
(7)一个抽屉,长50厘米,宽30厘米,高10厘米,做这样的2个抽屉,至少需要木板多少平方厘米?
(8)一只鱼缸,棱长和为280cm,其中,底面周长为50cm,右面周长为40cm,前面周长为50cm,这只鱼缸的占地面积是多少平方厘米?
(9)一块长方形铁皮长60厘米,宽40厘米,如 图, 从四个角上剪去边长是10厘米的正方形,然后做成盒子,这个盒子的表面积是多少平方厘米?
(10)一张长方形纸,长96厘米 ,宽60厘米,如果把它裁成同样大小且边长为整厘米的正方形,且没有剩余,每个正方形的边长是几厘米?可以裁多少个这样的正方形?
篇14:小学数学分数乘法知识点
小学数学分数乘法知识点
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间
时间=路程÷速度
路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
小升初数学常考公式
一、体积和表面积
三角形的面积=底×高÷2。公式S=a×h÷2
正方形的面积=边长×边长公式S=a2
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6公式:S=6a2
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=a3
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
数学小数除法知识点
1、除数是整数的小数除法计算法则:
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:
除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、在小数除法中的发现:
①当除数大于1时,商小于被除数。
如:3.5÷5=0.7
②当除数小于1时,商大于被除数。
如:3.5÷0.5=7
4、小数除法的验算方法:
①商×除数=被除数(通用)
②被除数÷商=除数
5、商的近似数:
根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
6、循环小数问题:
A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。
B、小数部分的位数是无限的小数,叫做无限小数。如5.3… 7.145145…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.3… 3.12323… 5.7171…)
D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如5.333… 的循环节是3, 4.6767…的循环节是67, 6.9258258…的循环节是258)
7、用简便方法写循环小数的方法:
只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。
只有一个数字循环节的,就在这个数字上面记一个小圆点
有两位小数循环的,就在这两位数字上面,记上小圆点
有三位或以上小数循环的,在首位和末位记上小圆点
8、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。
③被除数不变,除数缩小,商扩大。
篇15:六年级数学分数乘法知识点
教学过程:
一、书上第44页上的第12题
1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。
从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。
2、书上第44页上的第13题
引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。
二、说说分数的意义,并把数量关系补充完整
(1)今年的产量比去年增产1/8。
×1/8=
(2)钢笔枝数的2/5相当于圆珠笔的枝数。
×2/5=
(3)花布的米数比白布长1/4。
×1/4=
(4)实际每月比计划节约了1/10。
×1/10=
(引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)
二、对比练习。
1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?
2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?
3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?
(1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?
(2)比较3题有何异相点?
三、综合练习。
1、一种商品原价是250元,现价是原价的4/5,现价是多少?
2、一种商品原价是250元,后来降价了1/5,降价多少?
3、修路队修一条1200米的路,第一天修了全长的1/6,第二天修了全长的1/4。
(1)两天分别修了多少米?
(2)第二天比第一天多修多少米?
(3)还剩多少米没修?
四、作业
课前思考:
潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。
第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。
课前思考:
上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。
课后反思:
由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。
第二,继续加强对数量关系的`训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。
课后反思:
通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。
课后反思:
今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,参考潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图来帮助理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。
从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。
篇16:六年级数学分数乘法知识点
1.直接写出得数。
13+34= 257×19= 413×34=
5×5110=2.8×57=5×1425=
14-12×14= 12+12×12=
2.填空。
(1)30个56是( ),45千克的89是( )千克。
(2)35时=( )分 58千克=( )克
(3)一堆土重1516吨,用去25,用去( )吨,还剩总数的 。
(4)一根长12米的钢管,先截去13,再截去13米,两次共截去( )米。
(5)一本书128页,小兰4天读了全书的58,平均每天读( )页。
3.判断。
(1)一个数乘以分数的积,一定比这个数小。( )
(2)1千克的58和5千克的18是相等的。( )
(3)25×8-3=25×5=2( )
(4)计算19×1718=(18+1)×1718=17+1718=171718,这里运用乘法分配律计算较简便。( )
综合提升重点难点,一网打尽。
4.选择。
(1)一个非零自然数除以13,这个数就( )。
A.扩大为原来的3倍 B.缩小为原来的13
C.减少原来的3倍D.增加原来的`3倍
(2)一根绳长5米,用去34,用去多少米?列式正确的是( )。
A.5×34B.5-34x
C.5-5×34D.5×14
(3)求57吨的25是多少吨,算式是( )。
A.57×25B.57÷25
C.57+25D.57-25
(4)425+325×25=425×25+325×25,这里运用了( )。
A.乘法交换律B.乘法结合律
C.乘法分配律D.加法结合律
(5)当( )时,57×m>57。
A.m>1B.m<1
C.m=1D.m>0
5.脱式计算。(能简算的要简算。)
57×413+57×913 12+13+16×12
6.打印一份书稿。
他们各打了3天,共打了这份稿件的几分之几?
7.面对水资源缺乏的局面,
某小区300户居民开展集体节水活动。若平均每户每月节约水56吨,这个小区一年可节约水多少吨?
8.有两袋大米,
总重59千克,如果从甲袋取出12千克放入乙袋,两袋同样多,两袋各重多少千克?(用不同的方法解。)
答案:
1.略
2.(1)25 40 (2)36 625 (3)38 35 (4)413
(5)20
3.(1)? (2)? (3)? (4)
4.(1)A (2)A (3)A (4)C (5)A
5.57 12 6.512ht
7.3000吨
8.甲:30千克 乙:29千克
篇17:知识点总结
知识点一:设计分析
合理的设计分析是成功地进行技术设计的关键一步,分析得当可以指引以后的技术上可以少走或不走弯路。
产品本身是一个整体,包括功能、造型、材料等,但任何产品都不是孤立存在的,一方面,它是为人服务的,人的需求在很大程度上决定着产品的设计;另一方面,它是在一定的环境中使用的,必然受到环境的制约,并对环境产生影响。因此,设计任何产品都应综合考虑物、人、环境三个方面。详见书本P95台灯分析的例子。
知识点二:方案的构思方法
方案的构思是指人们在一定的调查研究和设计分析的基础上,通过思考将客观存在的各要素按照一定的规律架构起来,形成一个完成的抽象物,并采用图、模型、语言、文字等方式呈现思维过程。
方案的构思过程中,考虑到的许多问题是模糊的、零散的、不系统的,而且也是不具体的,怎样把这些模糊的、零散的、不系统的设计想法变成我们能看到的、比较完整的具体方案呢这就需要一定的方法
(1)草图法
设计时,我们可以运用草图法进行构思。草图不仅能将一些想法明确地表达出来,而且可以随意修改。在运用草图法进行构思的过程中,学生可以捕捉灵感、自由发挥、不受约束。
(2)模仿法
模仿现实生活中存在的一些事物进行方案的构思。如仿生技术
(3)联想法
要用联想的方法进行方案的构思,人们就必须具备丰富的实践经验、较广的见识、较好的知识基础及丰富的想象力。
利用联想法进行方案的构思,不一定能使技术设计一次性成功,但它有可能为构思找到一种方法或一条形成方案的路径。运用联想法进行构思后,我们不能盲目地实践,而应该首先对方案进行科学论证,而后再进行制作和实施。
(4)奇特性构思法
奇特性构思法所形成的方案一般具有原创性。这些构思在历史上很少发生,或从来没有发生过,甚至有些构思在当前的科学、技术、经济条件下无法实现。
知识点三:方案的比较和权衡
在多个方案经构思形成后,我们往往要对这些方案进行评判和比较,同时要从设计的目的出发,针对一些相互制约的问题进行权衡和决策,最后选出较为满意的方案或集中各方案的优点进行改进。
对方案进行比较和权衡的过程是一个综合考虑的过程,各个指标并不是独立的,它们相互关联、相互制约。抓住设计的核心与关键是权衡设计方案的必要条件。
考虑的方面:实用、美观、创新、稳定性、安全性、环保性、加工难易程度、经济成本。
篇18:知识点总结
01质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.中间时刻速度Vt/2=V平=(Vt+Vo)/2
3.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
4.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
02质点的运动:
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角:tg=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角:tg=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2r/T 2.角速度=/t=2/T=2f
3.向心加速度a=V2/r=2r=(2/T)2r
4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=r
7.角速度与转速的关系=2n(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。
3)万有引力
1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}
03力:
1.重力G=mg (方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=FN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}
4.静摩擦力0f静fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsin (为B与L的夹角,当LB时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsin (为B与V的夹角,当VB时:f=qVB,V//B时:f=0)
文档为doc格式