欢迎来到千学网!
您现在的位置:首页 > 汉语百科 > 成语解释

土木工程常用术语英语翻译及名词解释

时间:2022-05-24 18:32:50 成语解释 收藏本文 下载本文

【导语】下面小编为大家带来土木工程常用术语英语翻译及名词解释(共12篇),希望大家喜欢!

土木工程常用术语英语翻译及名词解释

篇1:土木工程常用术语英语翻译及名词解释(十)

第十节 材料性能、构件承载能力和材料性能代表值术语

工程结构设计的材料性能、构件承载能力和材料性能代表值术语及其涵义应符合下列规定:

1. 抗力 resistance

结构或构件及其材料承受作用效应的能力,如承载能力、刚度、抗裂度、强度等。

2. 强度 strength

材料抵抗破坏的能力。其值为在一定的受力状态或工作条件下,材料所能承受的最大应力。

3. 抗压强度 compressive strength

材料所能承受的最大压应力。

4. 抗拉强度 tensile strength

材料所能承受的最大拉应力。

5. 抗剪强度 shear strength

材料所能承受的最大剪应力。

6. 抗弯强度 flexural strength

在受弯状态下材料所能承受的最大拉应力或压应力。

7. 屈服强度 yield strength

钢材在受力过程中,荷载不增加或略有降低而变形持续增加时,所受的恒定应力。对受拉无明显屈服现象的钢材,则为标距部分残余伸长达原标距长度0.2%时的应力。

8. 疲劳强度 fatigue strength

材料在规定的作用重复次数和作用变化幅度下所能承受的最大动态应力。

9. 极限应变 ultimate strain

材料受力后相应于最大应力的应变。

10.弹性模量 modulus of elasticity 来源:

材料在单向受拉或受压且应力和应变呈线性关系时,截面上正应力与对应的正应变的比值。

11.剪变模量 shear modulus

材料在单向受剪且应力和应变呈线性关系时,截面上剪应力与对应的剪应变的比例。

12.变形模量 modulus of deformation

材料在单向受拉或受压,且应力和应变呈非线性或部分线性和部分非线性关系时,截面上正应力与对应的正应变的比值。

13.泊松比 poisson ratio

材料在单向受拉或受压时,横向正应变与轴向正应变的比值。

14.承载能力 bearing capacity

结构或构件所能承受最大内力,或达到不适于继续承载的变形时的内力。

15.受压承载能力 compressive capacity

构件所能承受的最大轴向压力,或达到不适于继续承载的变形时的轴向压力。

16.受拉承载能力 tensile capacity

构件所能承受的最大轴向拉力,或达到不适于继续承载的变形时的轴向拉力。

17.受剪承载能力 shear capacity

构件所能承受的最大剪力,或达到不适于继续承载的变形时的剪力。

18.受弯承载能力 flexural capacity

构件所能承受的最大弯矩,或达到不适于继续承载的变形时的弯矩。

19.受扭承载能力 torsional capacity

构件所能承受的最大扭矩,或达到不适于继续承载的变形时的扭矩。

20.疲劳承载能力 fatigue capacity

构件所能承受的最大动态内力。

21.刚度 stiffness; rigidity

结构或构件抵抗单位变形的能力。

22.抗裂度 crack resistance

结构或构件抵抗开裂的能力。

23.极限变形 ultimate deformation

结构或构件在极限状态下所能产生的某种变形。

24.稳定性 stability

结构或构件保持稳定状态的能力。来源:

25.空间工作性能 spatial behaviour

结构在承受作用情况下的整体工作能力。

26.脆性破坏 brittle failure

结构或构件在破坏前无明显变形或其它预兆破坏类型。

27.延性破坏 ductile failure

结构或构件在破坏前有明显变形或其它预兆的破坏类型。

28.抗力分项系数 partial safety factor for resistance

设计计算中反映抗力不定性并与结构可靠度相关联的分项系数。

29.材料性能标准值 characteristic value of a property of a material

结构或构件设计时,采用的材料性能的基本代表值。其值一般根据符合规定质量的材料性能的概率分布的某一分位数确定,亦称特征值。

30.材料性能分项系数 partial safety factor for property of material

设计计算中,反映材料性能不定性并和结构可靠度相关联的分项系数。有时用以代替抗力分项系数。

31.材料性能设计值 design value of a property of a material 来源:

材料性能标准值除以材料性能分项系数后的值。

32.几何参数标准值 nomianal value of geometric parameter

结构或构件设计时,采用的几何参数的基本代表值。其值可采用设计规定的标定值。

篇2:土木工程常用术语英语翻译及名词解释(八)

第八节 结构可靠性和设计方法术语

工程结构的可靠性和设计方法术语及其涵 义应符合下列规定:

1. 可靠性 reliability

结构在规定的时间内,在规定的条件下,完成预定功能的能力,它包括结构的安全性,适用性和耐久性,当以概率来度量时,称可靠度.

2. 安全性 safety

结构在正常施工和正常使用条件下,承受可能出现的各种作用的能力,以及在偶然事件发生时和发生后,仍保持必要的整体稳定性的能力.

3. 适用性 serviceability

结构在正常使用条件下,满足预定使用要求的能力.

4. 耐久性 durability

结构在正常维护条件下,随时间变化而仍能满足预定功能要求的能力. 来源:

5. 基本变量 basic variable

影响结构可靠度的各主要变量,它们一般是随机变量.

6. 设计基准期 design reference period

进行结构可靠性分析时,考虑各项基本变量与时间关系所取用的基准时间.

7. 可靠概率 probability of survival

结构或构件能完成预定功能的概率.

8. 失效概率 probability of failure

结构或构件不能完成预定功能的概率.

9. 可靠指标 reliability index

度量结构可靠性的一种数量指标.它是标准正态分布反函数可在可靠概率处的函数值,并与失效概率在数值上有一一对应的关系.

10. 校准法 calibration

通过对现存结构或构件安全系数的反演分析来确定设计时采用的结构或构件可靠指标的方法.

11. 定值设计法 deterministic method

基本变量作为非随机变量的设计计算方法,其中,采用以概率理论为基础所确定的失效概率来度量结构的可靠性.

12. 概率设计法 probabilistic method

基本变量作为随机变量的设计计算方法.其中,采用以概率理论为基础所确定的失效概率来度量结构的可靠性.

13. 容许应力设计法 permissible (allowable) stresses method

以结构构件截面计算应力不大于规范规定的材料容许应力的原则,进行结构构件设计计算方法.

14. 破坏强度设计法 ultimate strength method

考虑结构材料破坏阶段的工作状态进行结构构件设计计算的方法,又名极限设计法,苛载系数设计法,破损阶段设计法,极限荷载设计法.

15. 极限状态设计法 limit states method来源:

以防止结构或构件达到某种功能要求的极限状态作为依据的结构设计计算方法.

16. 极限状态 limit states

结构或构件能够满足设计规定的某一功能要求的临界状态,超过这一状态,结构或构件 便不再满足对该功能的要求.

17. 极限状态方程 limit state equation

当结构或构件处于极限状态时,各有关基本变量的关系式.

18. 承载能力极限状态 ultimate limit states

结构或构件达到最大承载能力,或达到不适于继续承载的变形的极限状态.

19. 正常使用极限状态 serviceability limit states

结构或构件达到使用功能上允许的某一限值的极限状态.

20. 分项系数 partial safety factor

用极限状态法设计时,为了保证所设计的结构或构件具有规定的可靠,而在计算模式中采用的系数,分为作用分项系数和抗力分项系数两类.

21. 设计状况 design situation

以不同的设计要求,区别对待结构在设计基准期中处于不同条件下所受到的影响,作为结构设计选定体系,,设计值,可靠性要求等的依据.

22. 持久状况 persistent situation  来源:

出现的持续时间长,几乎与结构设计基准期相同的设计状况.

23. 短暂状况 transient situation

出现的持续时间较短,而出现概率高的设计状况.

24. 偶然状况 accidental situation

偶然事件发生时或发生后,其出现的持续时间短,而出现概率低的设计状况.

篇3:土木工程常用术语英语翻译及名词解释(七)

第七节 地基和基础术语

工程结构设计的地基和基础术语及其涵义,应符合下列规定: 来源:

1. 扩展(扩大)基础 spread foundation

将块石或混凝土砌筑的截面适当扩大,以适应地基容许承载能力或变形的天然地基基础.

2. 刚性基础 rigid foundation

基础底部扩展部分不超过基础材料刚性角的天然地基基础.

3. 独立基础 single footing

用于单柱下并按材料和受力状态选定型式的基础.

4. 联合基础 combined footing

有两根或两根以上的立柱(简体)共用的基础,或两种不同型式基础共同工作的基础.

5. 条形基础 strip founcation

水平长而狭的带状基础

6. 壳体基础 shell foundation

以壳体结构形成的空间薄壁基础.

7. 箱形基础 box foundation 来源:

由钢筋混凝土底板,顶板侧墙板和一定数量的内隔墙板组成整体的形似箱形的基础.

8. 筏形基础 raft foundation

支承整个建筑物或构筑物的大面积整体钢筋混凝土板式或梁板式基础.

9. 桩基础 pile foundation

由桩连接桩顶,桩帽和承台组成的深基础.

10. 沉井基础 open caisson foundation

上下敞口带刃脚的空心井筒状结构下沉水中到设计标高处,以井筒作为结构外壳而建筑成的基础.

11. 管柱基础 cylinder pile foundation ; cylinder caisson foundation

大直径钢筋混凝土或预应力混凝土圆管,用人工或机械清除管内土,石,下沉至地基中, 固于岩层或坚实地层的基础.

12. 沉箱基础 caisson foundation

用气压排水,开挖水下土(岩)层,把闭口箱下沉到设计标高所建成的基础.

13. 路基 subgrade of highway (railway) 来源:

道路路面或铁路轨道下面的基础结构,高于原地面的填方路基称路堤,低于原地面的挖方路基称路堑.

14. 基床 bed ; bedding

一般指天然地基上开挖(或不开挖)的基槽,基坑,经回填处理,形成可以扩散上部结构荷载传给地基的传力层,分明基床和暗基床两类.

篇4:土木工程常用术语英语翻译及名词解释(五)

第五节 水工期建筑物术语

1.坝 dam

阻拦或拦蓄水充、壅高或调节上游水位的挡水建筑物。顶部不泄水的称非溢流坝,顶部泄水的称溢流坝。

2.坝轴线 dam axis

代表坝位置的一条横贯河谷的线。

3.重力坝 gravity dam

主要依靠自身重力,抵抗壅水作用于坝体的推力以保持稳定的坝。

4.拱坝 arch dam

平面呈拱向上游的曲线形坝,主要依靠拱的作用将壅水作用于坝体的推力传至两岸,以保持稳定的坝。

5.支墩坝 buttress dam

由一系列支墩和其上游挡水结构组成的坝

6.土石坝 earth-rock dam; embankment dam

用土、砂、砂砾石、卵石、块石、风化岩等材料经碾压或填筑建成的坝。

7.混凝土坝 concrete dam

用混凝土筑成的坝。

8.橡胶坝 rubber dam; flexible dam; fabric dam

锚着于底板上,以聚酯或橡胶为基质合成纤维织物形成袋囊,经充水(气)后形成的坝。

9.丁坝 spur dike; groin

一端接河岸,一端伸向整治线,在平面上形成丁字形,坝轴线与流向交角分上挑、下挑或正挑的横向整治建筑物。

10.顺坝 training dike

一端接河岸,一端向下游延伸,坝轴线与流向平行或成一锐角,引导水流的纵向整建筑物。

11.溢洪道 spillway

从水库向下游泄放超过水库调蓄能力的洪水,以保证工程安全的泄水建筑物。

12.堰(溢流堰) weir来源:

在顶部溢流的挡水、泄水建筑物。

13.围堰 coffer dam

用于水下施工的临时性挡水设施。

14.水工隧洞 hydraulic tunnel

在山体中或地面以下开挖的,具有封闭形断面和一定长度的过水建筑物。

15.深式进水口 deep water intake

人水库水面下一定深度处引水的水工隧洞或坝下埋管的首部建筑物。

16.堤坝式水电站 dam type hydropower station

用筑坝集中河段落差,形成发电淼砂的水电站。

17.引水(引水道)式水电站 diversion conduit type hydropower staion

利用引水道集中河段落差,形成必电水头的水电站。

18.潮汐电站 tidal power station

建于港湾入口处,利用海洋潮汐的动能转烃为电能的水电站。

19.抽水蓄能电站 pumped storage power station

具有抽水蓄能及发电两种功能的水电站。

20.水电站厂房 powerhouse of hydropower station

水电站中装置水轮发电机组及其辅助设备并为其安装、检修、运行及管理服务的建筑物,分河床式、坝后式、坝内式厂房或建在地面下的地下厂房

21.前池 forebay

设置在引水渠道末端及压力管道进口前的水池

22.压力管道 pressure nconduit

承受内水压力的封闭式输水管道。

23.调压室 surge chamber

设置在水电站较长的有压水疲乏中,使水流具有自由水面以减小水锤压力的贮水调压设施。

24.尾水渠 tailrace

尾水管与下游河槽之间输送发电尾水的渠道。

25.船闸 navigation lock

供船舶在水位集中落差处通航的一种箱形建筑物。

26.升船机 shi lift; ship elevator

在通航水道上有水位集中落差的地区,用机械或水力方法驱动升隆船舶,使船舶在水位落差处通过拦河坝的一种过船建筑物。

27.水闸 sluice; barrage

利用闸门控制流量、调节水位,既可挡水,又可泄水的建筑物。

28.渠道 caual

在地面上人工建造的开敞式输水通道。

29.渡槽 aqueduct; bridged flume

跨越洼地、道路、水道等衔接渠道的桥式建筑物。

30.陡坡 chute

以大于临界坡的底坡连接高、低渠道的开敞式过水建筑物。

31.跌水 drop

以集中跌落方式连接高、低渠道的开敞式或封闭式建筑物。

32.坝内廊道系统 gallery system

设在坝体内相互连通,并有进出口通向坝外的纵向、横向及竖向通道系统,具有灌浆、排水、检查、交通等多种功用。

33.消能防冲设施 energy dissipating and anti-scour facility

位于泄水建筑物下游侧,用以消减水流动能,并保护河底免受冲刷的结构设施。

34.防渗设施 seepage control facility

为防止和减少通过建筑物或地基渗流的设施

35.排水设施 drainage facility

排邮建筑物及地基中渗流的设施。

36. 反滤设施(倒滤设施) reverse filter

为防止渗流导致土粒流失,而在渗流逸出外沿渗流方向按砂石材料颗粒粒径、土工织物纪隙尺寸,以逐渐增大的原则,分层填铺的滤水设施。

37.水轮泵站 turbine-pump station 来源:

利用水轮泵提水的泵站。

38.水锤泵站 ram station

利用水锤泵提水的泵站。

39.坝下埋管 under dam culvert

埋设在土石坝坝底,并在进口处设控制闸门的输水管道(或洞)

40.沉消池 silting basin

沉淀和清除水中部分泥沙的池。

41.堤 dike; levee

沿江、河、湖、海分洪区岸边修筑的挡水建筑物。

42.防波堤 breakwater; mole

防御风浪侵袭港口水域,保证港内水域平稳的水工建筑物。

43.码头 wharf; quay

供船舶停靠、装卸货物、上下旅客用的水工建筑物。

44.斜坡码头 sloped wharf

岩边断面呈斜坡状,设有固定坡道,并在坡道前端有趸船的徘船码头。

45.墩式码头 dolphin wharf

由靠船墩及工作平台、引桥等组成的靠船码头,主要型式有重力式墩式码头和高桩墩式码头。

46.重力式码头 gravity quay-wall

以结构本身和填料的重力保持稳定的靠船码头,主要型式有方块、沉箱及扶壁式等。

47.板桩码头 sheet-pile quay-wall

由板桩、帽梁(或胸墙)、导梁和锚碇结构等所组成的靠船码头。

48.高桩码头 open pier on piles; high-pile wharf

主要是由部分桩身露出地面的桩和桩台组成的高桩承台式靠船码头。其特点是通过桩台将施加在码头上的荷载由桩传递到地基。

49.浮(趸船)码头 floating pier; pontoon wharf

由随水位涨落而升隆的趸船、支撑设施、引桥及护岸等组成的靠船码头。

50.船坞 dock

用于建造或检修航船的水工建筑物。由坞首、坞门、坞室、灌泄系统、拖 系缆设备、动力和公用设施以及其它附属设备等组成,主要型式有干船坞和浮船坞。

51.船台 ship-building berth

在船舶上墩、下水构筑物中专门为修、造船舶有物场地。有露天船台、开敞船台和室内船台三种。

52.滑道 slipway

船舶上墩、下水用的轨道。

篇5:土木工程常用术语英语翻译及名词解释(十一)

第十一节 几何参数和常用量程术语

工程结构设计的几何参数和常用量程术语及其涵义应符合下列规定:

1. 截面高度 height of section; depth of section

一般指构件正截面在弯矩作用平面上的投影长度。

2. 截面宽度 breadth of section

一般指构件正截面在与高度相垂直方向上的某一尺寸。

3. 截面厚度 thickness of section

一般指构件薄壁部分截面边缘间的尺寸。

4. 截面直径 diameter of section

圆形截面通过圆心的弦长。

5. 截面周长 perimeter of section

截面边缘线的总长度。

6. 截面面积 area of section

截面边缘线所包络的材料平面面积。

7. 截面面积矩 first moment of area

截面各微元面积与微元至截面上某一指定 轴线距离乘积的积分。

8. 截面惯性矩 second moment of area; moment of inertia

截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。

9. 截面极惯性矩 polar second moment of area; polar moment of inertia

截面各微元面积与各微元至垂直于截面的某一指定点距离二次方乘积的积分。

10. 截面模量(抵抗矩) section modulus

截面对其形心轴的惯性矩与截面上最远点至形心轴距离比值。

11. 截面回转半径 radius of gyration

截面结其形心轴的惯性矩除以截面面积的商的正二次方根。

12. 偏心矩 eccentricity

偏心受力构件中轴向力作用点至截面形心的距离。

13. 偏心率 relative ecdentricity来源:

偏心构件的偏心距与截面高度或截面核心距的比值。

14. 长度 length

结构或构件长轴方向的尺寸。

15. 跨度 span

结构或构件两相邻支承间的距离。

16. 矢高 rise

拱轴线的顶点至拱趾连线有竖直距离,或一般壳中面的顶点至壳底面的竖直距离。

17. 长细比 slenderness ratio

构件的计算长度与其截面回转半径的比值。

18. 纵坡 longitudinal gradient

路线纵断面上同一坡段两点间高差与水平距离的比值。

19. 超高 superelevation

在曲线地段上,公路横断面的外侧高于内侧单向横坡的高差;或铁路的外侧钢轨高于内侧钢轨的高差。

20. 视距 sight distance

沿公路车道中心线上1.2m高度能看到该车道中心线上高为100m m的物体顶点的水平距离。

21. 路面宽度 width of subgrade

公路上行车道的路面的宽度。

22. 路基宽度 width of subgrade

路基横断面上两路肩外缘之间的宽度。

23. 公路建筑限界 clearance of highway

在公路路面以上的一定宽度和高度范围内,不允许有任何设施及障碍物侵入的规定最小净空尺寸。

24. 轨矩 gauge

钢轨面以下规定距离处,左右两根钢轨头部内侧之间的最短距离。

25. 铁路建筑限界 railroad clearance

铁路轨道面以上一定宽度和设计范围内,不许有任何设施和障碍物侵入的规定最小净空尺寸。

26. 桥下净空 clearance under bridge

桥跨结构底面至通航或设计水面、路面或轨面之间的空间。

27. 桥建筑高度 construction height of bridge

桥跨结构底面至顶面的竖直距离。

28. 桥建筑限界 clearance above bridge floor

桥面以上一定宽度和高度范围内,不许有任何设施和障碍物侵入的规定最小净空尺寸。

29. 隧道建筑限界 clearance of tunnel

隧道内公路路面或铁路轨面以上一定宽度和高度范围内,不许有任何设施和障碍物侵入的规定最小净空尺寸。

30. 泊位 berth

一艘设计标准船型停靠码头所占用的岩线长度或占用的趸船数目。

31. 富余水深 additional depth; residual depth

为保证码头前航道的水深,在满足设计标准船舶的水深后,需要再增加的深度。

32. 波浪要素 wave characteristics; wave parameters

表示波浪形态和运动特征的主要物理量,一般指波高、波长、波浪周期、波速等。

33. 潮位 tide level

受潮汐影响而产生周期性涨落的水位,在某一地点及某一时刻相对于基准面的高程。

34. 水位 water level

地表水水体的自由面以及地下水的表面,在某一地点及某一时刻相对于基准面的高程。

35. 设计水位 design water level

水工建筑物在正常使用条件下,根据选定的设计标准所确定的计算水位。

36. 坝高 dam height

坝基的最低点至坝顶的高度。

37. 坝长 dam length来源:

坝顶沿坝轴线两岩端点间的长度。

38. 安全超高(富余高度) free board

水工建筑物顶部超出最高静水位或最高静水位加波浪高度以上所规定的余留高度。

39. 水库死水位 dead water level

水库在正常运行情况下,允许降落的最低水位。

40. 水库设计(正常)蓄水位 normal (pool) level

水库在正常运行下,为满足兴利要求的设计最高蓄水位。

41. 水库设计洪水位 design flood level

当水库在出现大坝设计标准洪水时,所达到的最高水位。

42. 水库校长核洪水位 exceptional flood level

水库在出现大坝校核标准洪水时,允许达到的最高水位。

43. 水库死(垫底)库容 dead storage

死水位以下不起兴利利用的水库容积。

44. 水库兴利(有效、调节)库容 usable storage  来源:

正常蓄水位与死水位间,可供调节兴利水量的水库容积。

45. 水库总库容total reservoir storage

水库在校核洪水位以下的容积。

篇6:土木工程常用术语英语翻译及名词解释(二)

第二节 房屋建筑结构术语

1. 混合结构 mixed structure来源:

不同材料的构件或部件混合组成的结构。

2. 板柱结构 slab-colume system

由楼板和柱(无梁)组成承重体系的房屋结构,如升板结构、无梁楼盖结构、整体预应力板柱结构。

3. 框架结构 frame structure

由梁柱组成的能承受竖向、水平作用所产生各种效应的单层、多层或高层结构。

4. 拱结构 arch structure

由拱作为承承重体系的结构。

5. 折板结构 folded-plate structure

由多块条形或其它外形的平板组合而成,能作承重、围护用的薄壁空间结构。

6. 壳体结构 shell structure

由各种形状的曲面板与边缘构件(梁、拱、桁架)组成的大跨度覆盖或围护的空间结构。

7. 风架结构 space truss structure

由多根杆件按一定网格形式通过节点连接而成的大跨度覆盖的空间结构。

8. 悬索结构 cable-suspended structure

由柔性受拉索及其边缘构件所组成的承重结构。

9. 充气结构 pneumatic structure

在以高分子材料制成的薄膜制品中充入空气后而形成房屋的结构。分气承式和气管式两种结构形式。

10. 剪力墙(结构墙)结构 shear wall structure

在高层和多层建筑中,竖向和水平作用均由钢筋混凝土或预应力混凝土墙体承受的结构。

11. 框架—剪力墙结构 frame-shear wall structure

在高层建筑或工业厂房中,剪力墙和框架共同承受竖向和水平作用的一种组合型结构。

12. 筒体结构 tube structure

由竖向箱形截面悬臂筒体组成的结构。筒体有剪力墙围成竖向箱形截面的薄壁筒和密柱框架组成竖向箱形截面的框筒。筒体由一个或多个组成;分筒中筒、单框筒、框架—薄壁筒和成束筒等四类。 13. 悬挂结构 suspended structure

将楼(屋)面系统的荷载通过吊杆传递到悬挂的水平桁架(梁),再由悬挂的水平桁架(梁)传递到被悬挂的井筒上直至基础的结构。

14. 高耸结构 high-rise structure 来源:

高度大,水平横向向剖面相对小,并以水平荷载控制设计的结构。分自立式塔式结构和拉线式桅式结构两大类,如水塔、烟囱、电视塔、监测塔等。

篇7:土木工程常用术语英语翻译及名词解释(三)

第三节 公路路线和铁路线路术语

1. 公路路线 highway

公路中线的空间位置。

2. 公路线形 highway alignment

公路中线的立体形状,由若干直线段和曲线段连接而成。

3. 平面线形 horizontal alignment

公路中线在水平面上投影形状

4. 纵面线形 vertical alignment

公路中心在纵剖面上的投影形式。来源:

5. 公路选线 route selection

根据自然条件、公路使用性质和技术标准,结合地形、地质条件,考虑安全、环境、土地利用和施工条件以及社会经济效益等各种因素,通过比较,选择路线走向及其控制位置的全过程。

6. 公路定线 route location

根据规定的技术标准和路线方案,结合技术经济条件,从平面、纵断面、横断面综合考虑,具体定出路线中心线的工作。

7. 平面线 horizontal curve

在平面线形中,路线转向处曲线的总称,包括圆曲线和缓和曲线

8. 竖曲线 vertical curve

在公路纵坡的变坡处设置的竖向曲线。

9. 变坡点 grade change point

路线纵断面上两相邻不同坡度线的相交点。

10. 路线交叉 route intersection

两条或两条以上公路的交会。

11. 铁路线路 permanent way

包括机车和车厢组成列车行驶的通路、轨道及支承轨道的中期、桥梁、涵洞、隧道及其它建筑物的总称。

12. 铁路选线 railway location来源:

在已确定的铁路起点,经过地点和终点之间,根据国家经济发展规划、自然条件和运输任务,结合铁路动力设备,并按照列车运行规律与经济原则,选择铁路新路线和改进已有路线的最佳方案。

13. 铁路定线 location

对选线确定的线路进行勘测后,按照规范的技术规定,在线路地形图上,进行线路的平面和纵断面设计和布置车站、桥涵等建筑物的工作。

14. 正线 main line

连接并贯穿或直股伸入铁路车站的线路。只有一条正线的线路称为单线,有二条正线的线路称为双线。

15. 站线 sidings

铁路车站管理的线路中,除正线以外各种线路的统称,如列车到发线、调车线、货物装卸线等。

16. 最小曲线半径 minimum radius of curve

在全线或某一地段内规定的圆曲线最小半径。

17. 坡段 grade section

两相邻变坡点间的长度 。

18. 最大坡度 maximum grade

一条线路上容许的最大设计坡度。

19. 平面交叉 grade crossing

铁路和铁路,铁路和公路(称道口),公路和公路在同一平面上的交叉。

20. 立体交叉 grade separation

铁路和铁路,铁路和公路,公路和公路在不同高程上的交叉。

篇8:土木工程常用术语英语翻译及名词解释(四)

第四节 桥、涵洞和隧道术语

1. 桥 bridge

为公路、铁路、城市道路、管线、行人等跨越河流、山谷、道路等天然或人工障碍而建造的架空建筑物。

2. 简支梁桥 simple supported girder bridge

以简支梁作为桥跨结构的主要承重构件的梁式桥。

3. 连续梁桥 continuous girder bridge

以成列的连续梁作为桥跨结构主要承重构件的梁式桥。

4. 悬臂梁桥 cantilever girder bridge

以悬臂作为桥跨结构主要承重构件的梁式桥。

5. 斜拉(斜张)桥 cable stayed bridge

以斜拉(斜张)索连接索塔和主梁作为桥跨结构主要承重构件的桥。

6. 悬索(吊)桥 suspension bridge

以通过两索塔悬垂并锚固于两岸(或桥两端)的缆索(或钢链)作为桥跨结构主要承重构件的桥。

7. 桁架桥 trussed bridge

以桁架作为桥跨结构主要承重构件的桥,有桁架梁桥、桁架拱桥等。来源:

8.框架桥 frame bridge

桥跨结构为整体箱形框架的桥。

9.刚构(刚架)桥 rigid frame bridge

桥跨结构与桥墩(台)刚性连接的桥,有连续、斜腿刚构桥等。

10.拱桥 arch bridge

以拱圈或拱肋作为桥跨结构主要承重构件的桥,有双曲、箱形拱桥等。

11.漫水桥 submersible bridge

容许洪水漫过桥面的桥。

12.浮桥 pontoon bridge

上部结构架高参水中浮动支承(如船、筏、浮箱等)上的桥。

13.正交桥 right bridge

桥的纵轴线与其跨越的河流流向或公路、铁路等路线轴向相垂直的桥。

14.斜交桥 skew bridge

桥的纵轴线怀其跨越的河流流向或公路、铁路等路线轴向不相垂直的桥

15.跨线(立交)桥 grade separated bridge; overpass bridge

跨越公路、铁路或城市道路等交通线路和桥。

16.高架桥 viaduct

代替高路堤跨越深谷、洼地或人工设施的桥。

17.正(主)桥 main span

跨越河道主槽部分或深谷、人工设施主要部分的桥。

18.引桥 approach span

连接路堤和正(主)桥的桥。

19.弯桥 curved bridge

桥面中心线在平面上为曲线的桥,有主梁为直线而桥面为曲线和主梁与桥面均为曲线两种情况。

20.坡桥 ramp bridge

设置在纵坡路段上的桥。

21.公路铁路两用桥 combined bridge; highway and railway transit bridge

可供汽车和火车分道(分层或并列)行驶的桥。

22.开合桥 movable bridge

桥跨结构中具有可以提升、平旋或立旋开合的桥。

23.单线桥 single-track bridge

铺设一条铁路线路的桥。

24. 双线桥 double-track bridge

铺设两条铁路线路的桥。

25. 桥跨结构(上部结构) bridge superstructure

桥的支承部分以上或拱桥起拱线以上跨越桥引的结构。

26.桥面系 bridge floor system

为提供列车、车辆、人群通过而设置桥面所需要的结构系统。

27.桥支座 bridge bearing; bridge support

支承桥跨结构,并将其荷载传给桥墩、桥台的构件。

28.桥下部结构 bridge substructure

为桥如、桥墩及桥梁基础的总称,用以支承桥梁上部结构将上部荷载传递给地基。

29.索塔(桥塔) bridge tower

支承悬索桥或斜张桥的主索并将荷载直接传给地基的塔形构筑物。

30.桥台 abutment

位于桥的两端与中基相衔接,并将桥上荷载传递到基础,又承受台后填土压力的构筑物。

31.桥墩 pier

支承两相邻桥跨结构,并将其荷载传给地基的构筑物。

32.涵洞 culvert来源:

横贯并埋设在路基或河堤中用以输水、排水或作为通道的构筑物。

33.隧道(洞) tunnel

在道路、铁路及输水、泄水线路上,遇天然障碍时,穿越地层内部的地下或水底通道。

34.隧道洞口(洞门) tunnel portal

为保持洞口上方及两侧边坡的稳定,在隧道洞口修筑的墙式建筑物。

35.隧道(洞)围岩 tunnel surrounding rock

隧道(洞)周围一定范围内,对洞身的稳定产生影响的岩(土)体。

36.隧道(洞)衬砌 tunnel lining

为保证围岩稳定,防止隧道围崦变形或坍塌,并保持隧洞断面尺寸大小或使洞口内有良好水流条件,沿隧道洞身周边修筑的永久性支护结构层。

篇9:商标术语英语翻译

世界贸易组织《wto》 world trade organization

关税及贸易总协定《gatt》 general agreement on tariffs and trade

亚太经济合作组织《apec》 asia pacific economic cooperation

与贸易有关的知识产权协议《trips》 agreement on trade related aspects of intellectual property rights

世界知识产权组织《wipo》 world intellectual property organization

保护知识产权联合国际局 international board of intellectual property right

保护工业产权巴黎公约 paris convention for the protection of industrial property

商标国际注册马德里协定 madrid agreement concerning the international registration of marks

商标注册条约《trt》 trade mark registration treaty

商标注册用商品与国际分类尼斯协定 nice agreement concerning the international classification of ggods and services for the purpose of the registration of marks

建立商标图形要素国际分类维也纳协定 vienna agreement for establishing and international classfication of the figurative elements of marks

专利合作条约《pct》 patent co-operation treaty

共同体专利公约 community产patent convention

斯特拉斯堡协定《sa》 strasbourg agreement

工业外观设计国际保存海牙协定 the hague agreement concerning the international deposit of industrial designs

工业外观设计国际分类洛迦诺协定 locarno agreement on establishing and international classification for industrial designs

商标,外观设计与地理标记法律常设委员会(sct) standing committee on the law of trademarks,industrial design and gergraphical indication

国际专利文献中心《inpadoc》 international patent documentation center

欧洲专利局《epo》 european patent office

欧洲专利公约 european patent convention

比荷卢商标局 trade mark offiice of belgium-holland-luxemburg

法语非洲知识产权组织 organization of african intellectual property

国际商标协会 the international trademark association

中华人民共和国商标法 ttrademark law of the peoples republic of china

英国商标法 trademark law of united kingdom of great britain and northern ireland

美国商标法 trademark law of the united states of america

日本商标法 japanese trademark law

商标 trade mark

商标局 trade mark officce

商标法 trademark law

文字商标 word mark

图形商标 figurative mark

组合商标 associated mark

保证商标 certification mark

集体商标 collective mark

驰名商标 well-known mark

著名商标 famouys mark

近似商标 similar mark

防御商标 defensive mark

服务标记 service mark

注册商标 registered mark

商标注册申请人 trade mark registrant

注册申请日 application date of trade mark

注册申请号 application number

商标注册证 trade mark registration certificate

商标注册号 trade mark registration number

商标注册日 trade mark registration date

商标注册簿 trade mark registered book

注册有效期 the term of validity

商标注册官 examination for trade mark registration

注册查询 trade mark enquiries

注册续展 renewal of trade mark

分别申请 separate application

重新申请 new registration

别行申请 new application

变更申请 application regarding changes

注册代理 trade mark agency

注册公告 trade mark publication

申请注册 application for registration

续展注册 renewal of registration

转让注册 registration of assignment

变更注册人名义/地址/其它注册事项 modification of name/address of registrant/other matters

补发商标证书 reissuance of registration certificate

注销注册商标 removal

证明 certification

异议 opposition

使用许可合同备案 recordal of license contract

驳回商标复审 review of refused trademark

驳回续展复审 review of refused renewal

驳回转让复审 review of refused assignment

撤销商标复审 review of adjudication on opposition

异议复审 review of adjudication on opposition

争议裁定 adjudication on disputed registered trademark

撤销注册不当裁定 adjudication on cancellation of improperly registered trademark

撤销注册不当复审 review on cancellation of improperly registered trademark

处理商标纠纷案件 dealing with infringement

优先权 priority

注册申请优先日 date of priority

注册商标使用人 user of registered trade mark

注册商标专用权 exclusive right to use registered trade mark

注册商标的转让 assignment of registered trade mark

商标的许可使用 licensing of registered trade mark

使用在先原则 principle of first to use

注册在先原则 principle of first application

商标国际分类 international classfication of goods

专利 patent

专利权 patent right

专利权人 patentee

专利代理 patent agency

产品专利 product patent

专利性 patentablity

专利申请权 right to apply for a patent

实用新颖 utility model

专有性 monopoly

专利的新颖性 novelty of patent

专利的实用性 practical applicability

专利的创造性 inventive

专利文件 patent document

专利申请文件 patent application document

专利请求书 patent request

专利说明书 patent specification

专利要求书 patent claim

专利证书 letter of patent

商标淡化法 trademark dilution act

商标权的权利穷竭 exhaustion trademark

平行进口 parallel import

灰色进口 gray import

反向假冒 reverse passing-off

显行反向假冒 express reverse passing-off

隐形反向假冒 implied reverse passing-off

附带使用 collateral use

知识产权 intellecturl property

工业产权 industrial property

外观设计 design

发明 invention

发明人 inventor

货源标记 indication of source

原产地名称 appellation of origin(aos)

地理标记 geopraphical indication(gis)

篇10:凸版印刷术语英语翻译

摆版 imposition 根据装订形式和套印方法的要求,将单块或联块印版按一定规范排列。

版塞 quoins 固紧印版的塞子。

版锁 lockup device 固紧印版的锁。

版台 plate bed平压平或圆压平型印刷机供装置印版用的平台。

版托 block base 承载平铅版、铜锌版和薄型圆铅版的底托。

报版印刷机 newspaper printing press  供报纸印刷用的卷筒纸印刷机。

薄铅版 thin stereotype 厚度在2 mm左右的铅合金复制版。

不干胶标签印刷 pressure-sensitive label printing 用选定的方法印刷标签并在其背面涂以薄层不干胶,制成具有自粘性标签的方法;或在专用设备和自粘纸上下班完成印刷标签的过程。

磁性版托 magnetic block base 利用本身的磁力吸附固定印版的底托。

打纸型 brush martix molding 用机械或手工方式,通过毛刷敲找从活字版或铜锌版上制取纸型的方法。

电镀铅版 electroplated stereotype 在铅版表面电镀一高耐印力金属层的凸版。

垫版 makeready 用纸张等材料在印版或版托背面进行垫贴或刮薄,在压印平板或压印滚筒上进行垫贴或挖去,使之满足印刷压力要求。

翻版印 work and turn 单张纸单面印刷机印刷完第一面后,印刷第二面时印版不需作任何变更。

分版 plate distribution 根据装订形式和套印方法的要求,按每一印刷面为一单元将印刷分成若干单元的工艺

感光性树脂凸版 photopolymer relief plare 以感光性树脂为材料,通过曝光、冲洗而制成的光聚合型凸版。分固体型和液体固化型两大类。

固体感光性树脂凸版 solid type photopolymer plate  用预先成型的感光性树脂材制成的印版。

过废页 trial run 单张纸印刷机事先用一定数量的废页进行印刷,以调整墨色或校正机器、印版。

活字版 type form 用活字排成的凸版。

机外上版 off-press mounting 为缩短停机上版时间,预先在上版台或专用上版打样机上进行摆版、固紧、调整规格尺寸和初步垫版的上版操作。

间隔式输纸 successive sheet feeding 单张纸印刷机输纸过程中每张纸之间有一定距离。

间接凸印 letterset 经中间载体将凸印版上图文部分的油墨转移到承印物表面的印刷方式

浇版 stereotyping 将字铅合金溶液浇入置有纸型的铸版机中,通过冷却固化制作铅版的工艺。

连续式输纸 stream sheet feeding 单张纸印刷机输纸过程中每张纸之间相互搭接一部分。

耐印率 press run 在规定的印刷质量范围内,印版所能达到的最大印数与规定的标准印数之比。

跑版 plate shifting 印版固定不牢或印刷过程中的条件变化,印版发生移位或脱落。

平铅版 flat stereotype 供平压平型和圆压平型印刷机使用的平面形铅版。

平压平型印刷机 platen press 压印机构和装版机构均呈平面形的印刷机。

铅版 stereotype 用纸型浇铸的铅合金复制版。

柔性版 flexographic plate 由橡胶、感光性树脂等弹性固体制成的凸版之总称。

柔性版印刷 flexography 使用柔性版,通过网纹传墨辊传递油墨的印刷方式。

柔性版印刷机 flexographic press 使用柔性版,通过网纹传墨辊传递油墨完成印刷过程的机器。

上垫 overlay 在压印滚筒或压印平板的衬垫上进行垫贴或挖刮,以调整个别部位的印刷压力。

书版印刷机 book printing press  主要供印刷图书、杂志等的机器。

塑料版 plastic duplicae plate 用塑料板压制或塑料颗粒注铸成的复制版。

套版印 sheetwise 单张纸单面印刷机印刷完第一面后,印刷第二面时需更换另一组印版。

跳胶 ink roller jerking 着墨辊不圆或弹性、粘度不适,转动中产生跳动,造成涂墨不均匀。

铜版 copper etching 以铜板为材料,用腐蚀或雕刻方法制成的凸版。

凸版 relief printing plate 图文部分明显高于空白部分的印版。

凸版印刷 relief printing 用凸版施印的一种印刷方式

凸版印刷机 letterpress machine 使用凸版完成印刷过程的机器。

凸印上版 lerrerpress makeready 将印版按一定规格、顺序装置到印刷机上,并通过垫版等操作使之达到印刷质量要求的全过程。

网点腐蚀 halfrone etching 对使用网点表现图文的凸印锌版或铜版进行腐蚀制版的方法。

网纹传墨辊 anilox roller 柔性版印刷用的传墨辊,其表面制有凹下的墨穴或网状槽线,供印刷时控制油墨传送量。

无粉腐蚀法 powderless etching 通过专用的设备和腐蚀液,使凸印锌版或铜版一次腐蚀完成的制版方法。

铣版 milling 铣削铅或塑料版背面,使之平整;铣削铅版四边,使其规格一致。

下垫 underlay 在版托背面进行垫或撤使之平整,以满足印刷压力要求。

线条腐蚀 line etching 对使用各种粗细、形状和线和实地面积表现图文的凸印锌版或铜版,进行腐蚀制版的方法。

橡皮凸版 rubber plate 经模板压制或雕刻等方法制成的合成橡胶凸版。

锌版 zinc etching  以锌板为材料,用腐蚀或雕刻方法制成的凸版。

压铁,版台滚枕 bed bearer 圆压平型印刷机装置在装版平台两侧的与压印滚筒两侧肩铁相对应的铁枕。

压印平板 platen 平压平型印刷机用以对版台施加压力的平板。

压纸型 pressure martix molding 在压型机上通过施压从活字版、铅版或铜锌版上制取纸型的方法。

液体感光性树脂凸版 liquid type photopolymer plate 以液体感光性树脂为制版材料制成的印刷。

印张 printed sheet 一本书刊年用纸张数量的计量单位。以单张对开纸印刷两面为一个印张。

预涂感光凸版 presensitized relief plate 预先在经过表面处理的金属或涤纶版基上涂布好感光液,供晒制凸版的版材。

圆铅版 curved stereotype 供圆压圆型印刷机使用的平面形铅版。

圆压平型印刷机 flat-bed cylinder press 压印机构呈圆筒形,装版机构呈平面形的印刷机。

圆压圆型印刷机 rotary letterpress 压印机构和装版机构均呈圆筒形的印刷机,按其承印材料的形式分为单张和卷筒两大类。

折标 signature mark 印刷在书帖最外层折缝上供装订配帖时检查用的标记。

纸型 paper matrix 通过将薄、厚型纸或专用纸型附着在活字版或凸图版上施回压力而制成的供浇铸铅版用的模版。

中垫 interlay 在印版背面进行垫贴或刮去使之平整,以满足印刷压力要求。

钻版 routing 用钻版机钻削铅版或铜锌版等版面较大空白处,以避免印刷时上脏。

篇11:平版印刷术语英语翻译

ps版 presensitized offset plate 预先在版基表面涂布感光涂层的胶印版材。

侧规 side guide 使纸张侧边缘准确定位的部件。

串墨辊 ink vibrator 轴向串动的匀墨辊。

串水辊 dampening vibrator 轴向串动的传水辊。

递纸 sheet transfer  将已定位的纸张等承印物,通过递纸牙传递给压印滚筒进行印刷。

递纸牙 transfer gripper 从前规接过纸张等承印物,在与压印滚筒同步时传递给滚筒的叼牙部件。

叼口 gripper edge 单张纸印刷时,在印版和纸张等承印物端留出的空白边。

叼纸牙 gripper 在印刷过程中,传递和交接纸张等承印物的部件。

掉版 image weakening平印版的图文细微调子变浅,网点和线条面积减小,甚至失去亲墨性。

堆纸 sheet stacking 单张纸印刷前将待印的纸张或承印物整齐地堆积在输纸台上。

多层金属版 multi-metal plate 用钢或铝皮作版基,以铜为亲墨层,铬或镍为亲水层的一种平印版。

规矩 guide 单张纸胶印机的纸张定位部件。

规矩线 register mark 设置在印版边缘的十字线和角线,系校版和检验套准的依据。

滚压 rolling 胶印机橡皮布滚筒和印版滚筒或压印滚筒间在压力下相对滚动。

滚枕 cylinder bearer 滚筒两端用以确定滚筒间隙的凸起钢环,亦是调节滚筒中心距和确定包衬厚度的依据。

糊版 filling in 由于印版图文部分溢墨,造成承印物上的印迹不清晰,属胶印印品故障。

即涂感光版 wipe-on plate 用手工涂布感光层,随涂随用的一种平印版。

胶印 offset lithography  印版上的图文先印在中间载体(橡皮布滚筒)上,再转印到承印物上的间接印刷方式。

胶印版材 offset plate 表面经过涂布处理,能用来制作胶印印版的平面单张版材。

胶印故障 offset printing trouble 在胶印过程中影响印刷正常进行或印品质量缺陷的总称。

胶印机 offset printing press 按照间接印刷原理,印版通过橡皮布转印滚筒将图文转达印在承印物上进行印刷的平版印刷机。

胶印印版 lffsetprinting forme 其印刷部位亲墨、非印刷部位亲水的胶印印版

酒精湿润 alcohol dampening 在胶印润湿液中添加酒精、异丙醇或其他醇类,降低水的表面张力,有利于润源印版。

珂罗版印刷 collotype printing 以玻璃板为版基,按原稿层次制成明胶硬化的图文,由明胶硬化的绉纹吸收油墨,未硬化部分通过润湿排斥油墨进行印刷。

拉毛 picking 印刷过程中,因油墨太粘或纸张表面强度差,导致纸张纤维、填料或涂料纸表面脱落或被拉掉。

晾纸 paper seasoning 印刷前对纸张进行吊晾,使纸张含水量与印刷车间的温、湿度相平衡,以保持纸张尺寸稳定。

磨版 graining 将平印金属版在晒制前研磨成砂目状,使版面粗化。

墨斗辊 ink fountain roller 从墨斗中输出油墨的辊。

平凹版 deep-etch plate 以锌或铝为版基,用阳图底片晒版,经显影和腐蚀后,图文略低于空白部分的平印版。

平版 lithographic plate 图文部分与空白部分几乎处于同平面的印版。

平版印刷 planography 用平版施印的一种印刷方式。

前规 front guide 使纸在叨口边缘准确定位的挡纸部件。

润版 dampening平印版在着墨前为了保持空白部分斥墨性能,用润湿液将版面润湿。

润湿液 fountain solution 在印刷过程中用来润湿印版的水溶液。

润湿装置 dampening unit平版印刷机组成部分,用于输送和调节润湿液的机构。

色令 color ream平版印刷计量单位。以对开纸1000张印一色为一色令。

湿压湿印刷 wet-on-wet printing 在多色印刷上,前一印色未干,下一印色即刻在其表面叠印。

石印 stone lithography 以石板为印版的平版印刷。

实地 solid 印版上未加网的、全部均匀受墨的平面。

收纸装置 delivery unit 印刷机上收集印张的机构。

输墨装置 inking unit 胶印机的组成部分,在每印刷过程之前调节和传递油墨并将油墨均匀地涂布到印版上。

输纸装置 sheet feeder 胶印机中将所要印刷的纸张从纸堆上输送到定位机构的装置。

双面印 perfecting 用两块不同的印版,在同一承印物上同时完成正面和反面印刷。

双色版胶印 duotone offset printing 通过两种互补色油墨叠印,能产生多色效果的印刷方式。

水斗辊 water fountain roller 从水斗输出润湿液的辊。

水-墨平衡 ink-water balance 在平版印刷过程中油墨和润湿液之间的相对稳定关系。

四色胶印 four-color offset printing 用黄、品红、青和黑四种分色版经油墨叠印后可得到与原稿色彩基本相同的一种胶印方式。

四色连续表格印刷 four color continuous forms printing  使用窄幅面卷筒纸的表格胶印

套色顺序 color sequence 在多色印刷中,按一定的颜色顺序将分色版依次套印在承印物上的颜色顺序。

套印 registering 两色以上印刷时,各分色版图文能达到和保持位置准确的套合。

条痕 streaks 出现在网纹平面上与滚筒轴向平行的条状印痕,属胶印印品故障。

铁皮印刷 metal decorating 以金属板为承印物的平版印刷。

涂胶 gumming 在胶印版上涂拭阿拉伯树胶或其他代用胶液。用以保护印版,改善印版空白部分亲水性。

脱墨 roller stripping 金属墨辊受润液浸蚀发生氧化而排斥油墨的现象。

网点增大 dot gain 承印物上网点面积比印版上相对应部分的网点面积增大。

无水胶印 waterless offset printing 在平版上用斥墨的硅橡胶层作为印版空白部分,不需要润版,用特制油墨印刷的一种平印方式。

相对反差值 relative contrast value 实地与网目调的积分密度之差同实地密度的比值,称k值。用以确定打样和印刷的标准给墨量。

橡皮布 balnket 胶印机上转印滚筒的包覆物;包衬的组成部分。

小胶印 small offste printing 用a2以下的纸张在小型胶印机上进行小批量施印的印刷方式。

印金 metallic ink printing 用金或银色金属粉油墨施印。

油墨叠印 trapping 在湿压湿印刷中,两种以上油墨叠合时的受墨状态。

油墨乳化 ink emulsification (1)印刷过程中油墨吸收润湿液的现象。(2)由于油墨中吸收润湿液过多而造成的印刷故障。

预涂感光平版 presensitized plate 预先涂覆感光层的、可随时进行晒版的平印版,简称ps版。

匀墨辊 ink distributing roller 传递和碾匀油墨的辊。

脏版 suumming 因印版润湿不良,造成空白部分着墨。

增墨 ink piling 油墨和其他物质沉积在墨辊或橡皮布上,形成浮雕状的沉积物,影响油墨和印迹转移。

直接平印 direct lithography 用平版经润湿后着墨,图文不经橡皮布滚筒转印而直接印在承印物上的印刷方式。

着墨 inking  通过墨辊将油墨涂布在印版图文部分。

着墨辊 form inking roller 印刷机中将油墨涂布到印版上的辊。

着水辊 form dampening roller平版印刷机中将润湿液涂布到印版上的辊。

紫外线干燥 uv curing 承印物上的紫外线油墨或亮光油通过紫外线照射,迅速聚合固化。

篇12:土木工程英语翻译2

土木工程英语翻译2

The history of civil engineering

Another advance in steel construction(结构) is the method of fastening together(连在一起) the beams. For many years the standard method was riveting. A rivet is a bolt with a head that looks like a blunt screw(圆头螺丝钉) without threads(螺纹). It is heated, placed in holes through the pieces of steel(钢构件), and a second head is formed at the other end by hammering(锤击)it to hold it in place(固定就位). Riveting has now largely been replaced by welding, the joining together of pieces of ste Fundamentally, engineering is an end-product-oriented discipline that is innovative, cost-conscious and mindful of human factors. It is concerned with the creation of new entities, devices or methods of solution: a new process, a new material, an improved power source, a more efficient arrangement of tasks to accomplish a desired goal or a new structure. Engineering is also more often than not concerned with obtaining economical solutions. And, finally, human safety is always a key consideration.Engineering is concerned with the use of abstract scientific ways of thinking and of defining real world problems. The use of idealizations and development of procedures for establishing bounds within which behavior can be ascertained are part of the process.

Many problems, by their very nature, can’t be fully described―even after the fact, much less at the outset. Yet acceptable engineering solutions to these problems must be found which satisfy the defined needs. Engineering, then, frequently concerns the determination of possible solutions within a context of limited data. Intuition or judgment is a key factor in establishing possible alternative strategies, processes, or solutions. And this, too, is all a part of engineering.

Civil engineering is one of the most diverse branches of engineering. The civil engineer plans, designs, constructs, and maintains a large variety of structures and facilities for public, commercial and industrial use. These structures include residential, office, and factory buildings; highways, railways, airports, tunnels, bridges, harbors, channels, and pipelines. They also include many other facilities that are a part of the transportation systems of most countries, as well as sewage and waste disposal systems that add to our convenience and safeguard our health.The term “civil engineer” did not come into use until about 1750, when John Smeaton, the builder of famous Eddystone lighthouse near Plymouth, England, is said to have begun calling himself a “civil engineer” to distinguish himself from the military engineers of his time. However, the profession is as old as civilization.

In ancient Egypt the simplest mechanical principles and devices were used to construct many temples and pyramids that are still standing, including the great pyramid at Giza and the temple of Amon-Ra at Karnak. The great pyramid, 481 feet(146.6 meters)high, is made of 2.25 million stone blocks having an average weight of more than 1.5tons (1.4 metric tons). Great numbers of men were used in the construction of such monuments. The Egyptians also made obelisks by cutting huge blocks of stone, some weighing as much as 1000 tons (900 metric tons). Cutting tools of hard bronze were used.The Egyptians built causeways and roads for transporting stone from the quarries to the Nile. The large blocks of stone that

were erected by the Egyptians were moved by using levers, inclined planes, rollers, and sledges.The Egyptians were primarily interested in the know-how of construction; They had very little interest in why-for of use .In contrast, the Greeks made great strides in introducing theory into engineering problems during the 6th to 3rd centuries B.C. They developed an abstract knowledge of lines, angles, surfaces, and solids rather than referring to specific objects. The geometric base for Greek building construction included figures such as the square, rectangle, and triangle.

The Greek architekton was usually the designer, as well as the builder, of architectural and engineering masterpieces. He was an architect and engineer. Craftsmen, masons, and sculptors worked under his supervision. In the classical period of Greece all important buildings were built of limestone or marble; the Parthenon, for example, was built of marble.

The principal construction materials

The principal construction materials of earlier times were wood and masonry-brick, stone, or tile, and similar materials. The courses or layers(砖层)were bound together with mortar or bitumen, a tarlike substance, or some other binding agent. The Greeks and Romans sometimes used iron rods or clamps to strengthen their building. The columns of the Parthenon in Athens(雅典的帕台农神庙), for example, have holes drilled(钻孔) in them for iron bars that have now rusted away(锈蚀殆尽). The Romans also used a natural cement called pozzolana, made from volcanic ash, that became as hard as stone under water. Both steel and cement, the two most important construction materials of modern times, were introduced(推广) in the nineteenth century. Steel, basically an alloy of iron (铁合金)and a small amount of carbon, had been made up to that time(到那个时候) by a laborious(繁复的) process that restricted it to such special uses as sword blades(刀刃). After the invention of the Bessemer process (贝塞麦炼钢法)in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile strength; that is, it does not lose its strength when it is under a calculated degree (适当的) of tension, a force which, as we have seen, tends to (往往)pull apart many materials. New alloys have further increased the strength of steel and eliminated some of its problems, such as fatigue, which is a tendency for it to weaken as a result of continual changes in stress(连续的'应力变化).Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone(石灰石) and clay, which is heated and then ground into a powder(磨成粉末). It is mixed at or near the construction site (施工现场)with sand, aggregate (small stones, crushed rock, or gravel), and water to make concrete. Different proportions of the ingredients (配料)produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into (喷射成)all kinds of shapes. And whereas steel has great tensile strength, concrete has great strength under compression. Thus, the two substances complement each other(互补).They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where(在…情况下) both compression and tension are factors(主要因素). Steel rods(钢筋) are embedded in(埋入)concrete to make reinforced concrete in concrete beams or structures where tension will develop(出现). Concrete and steel also form such a strong bond - the force that unites(粘合) them - that the steel cannot

slip(滑移) with the concrete. Still(还有) another advantage is that steel does not rust in concrete. Acid(酸) corrodes steel, whereas concrete has an alkaline chemical reaction, the opposite of acid.

The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices(施工作业). It was no longer necessary to use thick walls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors(防火地面). Both these changes served to(有利于) reduce the cost of construction. It also became possible to erect(建造)buildings with greater heights and longer spans.Since the weight of modern structures is carried(承受) by the steel or concrete frame, the walls do not support the building. They have become curtain walls, which keep out the weather and let in light. In the earlier steel or concrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls(承重墙). Today, however, curtain walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations.

el by melting(熔化) a steel material between them under high heat.

Prestressed concrete is an improved form of reinforcement(加强方法). Steel rods are bent into the shapes to give them the necessary degree of tensile strength. They are then used to prestress (对..预加应力)concrete, usually by one of two different methods. The first is to leave channels in a concrete beam that correspond to(相应于) the shapes of the steel rods. When the rods are run through the channels, they are then bonded to the concrete by filling the channels with grout, a thin mortar or binding agent. In the other (and more common) method, the prestressed steel rods are placed in the lower part of a form(模板) that corresponds to the shape of the finished structure(成品结构), and the concrete is

poured around them. Prestressed concrete uses less steel and less concrete. Because it is so economical, it is a highly desirable(非常理想) material.Prestressed concrete has made it possible to develop(建造) buildings with unusual shapes, like some of the modern sports arenas, with large space unbroken by any obstructing supports(阻碍的支撑物). The uses for this relatively new structural method are constantly being developed(不断地扩大).The current tendency is to develop(采用) lighter materials, aluminum, for example, weighs much less than steel but has many of the same properties. Aluminum beams have already been used for bridge construction and for the framework of a few buildings.

Lightweight concretes, another example, are now rapidly developing(发展) throughout the world. They are used for their thermal insulation(绝热性). The three types are illustrated below(举例说明如下): (a) Concretes made with lightweight aggregates; (b) Aerated concretes (US gas concretes) foamed(起泡) by whisking(搅拌)or by some chemical process during casting; (c) No-fines concretes.

All three types are used for their insulating properties(绝热性), mainly in housing, where they give high(非常) comfort in cold climates and a low cost of cooling(降温成本)in hot climates. In housing, the relative weakness of lightweight concrete walls is unimportant, but it matters(有重大关系) in roof slabs, floor slabs and beams.

In some locations, some lightweight aggregates cost little more than(几乎等于) the best dense(致密) aggregates and a large number of (大量) floor slabs have therefore been built of lightweight aggregate concrete purely for its weight saving, with no thought of(没考虑) its insulation value.

The lightweight aggregate reduces the floor dead load(恒载) by about 20 per cent resulting in(导致)considerable savings in the floor(楼盖结构) steel in every floor and the roof, as well as in the column steel and (less) in the foundations. One London contractor(承包商)prefers to use lightweight aggregate because it gives him the same weight reduction in the floor slab as the use of hollow tiles, with simpler organization and therefore higher speed and profit. The insulation value of the lightweight aggregate is only important in the roof insulation, which is greatly improved(改进).

Structural Analysis

A structure consists of(由..组成)a series of connected parts used to support loads. Notable(显著的) examples include buildings, bridges, towers, tanks, and dams. The process(过程)of creating any of these structures requires planning(规划), analysis, design, and construction(施工). Structural analysis consists of (包括)a variety of mathematical procedures(数学程序)for determining such quantities as the member forces and various structural displacements(位移) as a structure responds to its loads. Estimating realistic loads for the structure considering(根据)its use and location is often a part of structural analysis. Only two assumptions are made regarding(关于)the materials used in the structures of this chapter. First, the material has a linear stress-strain relationship(线性的应力-应变关系). Second, there is no difference in the material behavior when stressed in tension vis-a-vis(与..相比)compression. The frames and trusses studied are plane structural systems(平面结构体系). It will be assumed that there is adequate bracing perpendicular to(垂直于)the plane so that no member will fail due to an elastic instability(弹性失稳). The very important consideration regarding such instability will be left for the specific(具体的)design course.

All structures are assumed to undergo only small deformations as they are loaded. As a consequence(因此)we assume no change in the position or direction of a force as a result of (由于)structural deflections(变位). Finally, since linear elastic materials and small displacement are assumed, the principle of superposition will apply in all cases. Thus the displacements or internal forces that arise from two different forces systems applied one at a time(一次一个)may be added algebraically(几何相加)to determine the structure’s response when both system(s) are applied simultaneously.In the real sense(真正意义上)an exact analysis of a structure can never be carried out since estimates always have to be made of the loadings and the strength of the materials composing(构成)the structure. Furthermore, points of application(作用点)for the loadings must also be estimated. It is important, therefore, that the structural engineers develop(形成)the ability to model(模拟)or idealize(使..理想化)a structure so that he or she can perform a practical force analysis of the members.

Structural members are joined together in various ways depending on the intent(意图)of the designer. The two types of joints most often specified(规定的)are the pin connection and the fixed joint(节点). A pin-connected joint allows some freedom for slight(轻微)rotation, whereas the fixed joint allows no relative rotation between the connected members. In reality, however, all connections exhibit(显现)some stiffness toward joint rotations, owing to friction(摩擦)and material behavior. When selecting a particular model for each support

(支座)or joint, the engineer must be aware of how the assumptions will affect the actual performance(运行)of the member and whether the assumptions are reasonable for the structural design. In reality, all structural supports actually exert(产生)distributed surface loads(面荷载)on their contacting members. The resultants(合力) of these load distributions are often idealized as the concentrated forces(集中力)and moments, since the surface area (表面积)over which the distributed load acts is considerably smaller than the total surface area of the connecting members. The ability to reduce an actual structure to(将..简化为)an idealized form can only be gained by experience. In engineering practice, if it becomes doubtful(不明确)as to how to model a structure or transfer the loads to the members, it is best to consider several idealized structures and loadings and then design the actual structure so that it can resist(抵抗)the loadings in all the idealized models.

Almost all truss systems are configured(装配)so that analysis using the method of joints must begin at one end and proceed(继续)joint by joint toward the other end. If it is necessary to evaluate the forces carried by a member located(位于)some distance from the ends, the method of joints requires the calculation of the forces in many members before the desired one is reached. The method of sections provides a means(方法)for a direct calculation in these cases. After the support reactions have been calculated the truss is cut through(切开)(analytically分析上) so that one part of the truss is completely severed from the rest. When this is done, no more than three unknown members should be cut. If possible(如果可能)the cut(切口)should pass through the member or members whose internal forces are to be found. A free-body diagram of the part of the truss on one side of(在..一边)this section is drawn, and the internal forces are found through the equilibrium equations. Since the system of forces(力系)on the free-body diagram is a plane non-concurrent(非共点)force system, three equilibrium equations may be written and solved for the three unknowns.

Influence lines(影响线)have important application for(应用)the design of structures that resist large live loads(活荷载). An influence line represents(代表)the variation of either the reaction, shear, moment, or deflection at a specific (特定的)point in a member as concentrated force moves over the member. Once this line is constructed(作图), one can tell at a glance(一眼便知)where a live load should be placed on the structure so that it creates(引起)the greatest influence at the specified point. Furthermore, the magnitude(大小)of the associated (相关的)reaction, shear, moment, or deflection at the point can then be calculated from the ordinates(纵坐标)of the influence-line diagram. For these reasons(因此), influence lines play an important part in the design of bridges, industrial crane rails(吊车轨道), conveyors, and other structures where loads move across their span(全长). Although the procedure(步骤)for constructing an influence line is rather basic(基本的), one should clearly be aware of the difference between constructing an influence line and constructing a shear or moment diagram. Influence lines represent the effect of a moving load only at a specified point on a member, whereas shear and moment diagrams represent the effect of fixed loads at all points along the axis of the member.

Deflections of structures can occur from various sources(原因), such as loads, temperature, fabrication errors, or settlement. In design, deflections must be limited in order to prevent cracking of attached(附属的) brittle materials such as concrete or plaster (石膏) . Furthermore, a structure must not vibrate or deflect(变位)severely in order to “appear” safe

for its occupants(居住者). More important, though(然而), deflections at specified points in a structure must be computed if one is to analyze statically indeterminate structures. We often determine the elastic deflections of a structure using both geometrical and energy methods. Also, the methods of double integration(双重积分)are used. The geometrical methods include the moment-area theorems(弯矩图面积定理)and the conjugate-beam method(共轭梁法), and the energy methods to be considered are based on virtual work(虚功)and Castigliano’s theorem(卡氏最小功定理). Each of these methods has particular advantages or disadvantages.

Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant(主要的) structural material in engineered construction(建造的建筑物). The universal(通用的)nature of reinforced concrete construction stems from(归因于)the wide availability of reinforcing bars(钢筋)and the constituents(组成部分)of concrete, gravel,sand, and cement, the relatively simple skills required in concrete construction(施工), and the economy(经济性)of reinforced concrete compared to other form of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts(各种各样), underground structures, water tanks, television towers, offshore oil exploration and production structures(近海石油开采和生产结构), dams, and even in ships.

value of Reinforced Concrete

Concrete is strong in compression but weak in tension. As a result, cracks develop(形成)whenever(每当)loads, or restrained shrinkage(收缩限制)or temperature changes, give rise to(导致)tensile stresses in excess of(超过)the tensile strength of the concrete. In the plain concrete(素混凝土)beam, the moments due to applied loads are resisted by an internal tension-compression couple(拉压力偶)involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars(钢筋)are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.

Economy Frequently, the foremost(最重要的)consideration is the overall cost(总费用)of the structure. This is, of course, a function of the costs(费用函数)of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time(总的建造时间)since the contractor and owner must allocate(分配)money(资金)to carry out the construction and will not receive a return on this investment (收回投资)until the building is ready for occupancy(居住). As a result, financial savings(财务的节约)due to rapid construction may more than offset(足以抵消)increased material costs. Any measures designer can take to standardize the design and forming(加工)will generally pay off(使人得益)in reduced overall costs.

The choice of whether a structure should be built of concrete, steel, masonry, or timber(木材)depends on the availability(可得性)of materials and on a number of(许多)value decisions(价值判断).

Economy Frequently, the foremost(最重要的)consideration is the overall cost(总费用)of the structure. This is, of course, a function of the costs(费用函数)of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time(总的建造时间)since the contractor and owner must allocate(分配)money(资金)to carry out the construction and will not receive

a return on this investment (收回投资)until the building is ready for occupancy(居住). As a result, financial savings(财务的节约)due to rapid construction may more than offset(足以抵消)increased material costs. Any measures designer can take to standardize the design and forming(加工)will generally pay off(使人得益)in reduced overall costs. In many cases the long-term economy(长期的经济性)of the structure may be more important than the first cost. As a result, maintenance(维护)and durability(耐久性)are important considerations.

Suitability of Material for Architectural and Structural Function A reinforced concrete system frequently allows the designer to combine the architectural and structural functions(功能). Concrete has the advantage that it is placed in a plastic condition(塑性状态)and is given the desired shape and texture(密度)by means of the forms and the finishing techniques(加工技术). This allows such elements(构件)as flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and ceiling surface(楼面和顶棚面). Similarly, reinforced concrete walls can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size or shape is governed(决定)by the designer and not by the availability of standard manufactured members.

Fire Resistance The structure in a building must withstand the effects of a fire and remain standing(直立)while the building is evacuated(撤空)and the fire is extinguished(熄灭). A concrete building inherently(固有地)has a 1- to 3-hour fire rating(耐火等级)without special fireproofing (防火)or other details(说明). Structural steel or timber(钢结构或木结构) buildings must be fireproofed to attain similar fire ratings.

Rigidity The occupants of a building may be disturbed (干扰)if their building oscillates(摇动)in the wind or the floors vibrate as people walk by(走过). Due to the greater stiffness and mass(刚度和质量)of a concrete structure, vibrations are seldom a problem. Low Maintenance Concrete members inherently require less maintenance than do structural steel or timber members (结构钢构件或结构木构件). This is particularly true(尤其正确)if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in the design to provide adequate drainage off and away (使水排出) from the structure.

Availability of Materials Sand, gravel, cement, and concrete mixing facilities(搅拌设施) are very widely available, and reinforcing steel(钢筋)can be transported to most job sites(施工现场)more easily than can structural steel(结构钢). As a result, reinforced concrete is frequently used in remote areas.

On the other hand, there are a number of factors that may cause one to select a material other than (..除外,不是..)reinforced concrete. These include:

Low Tensile Strength As stated(叙述)earlier, the tensile strength of concrete is much lower than its compressive strength (about 1/10), and hence concrete is subject to(易遭受)cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths(宽度)to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly(难看)or may allow(使..能)penetration(渗透)of water.

Relatively Low Strength Per Unit of Weight or Volume The compressive strength of concrete is roughly 5% to 10% that of steel, while its unit density is roughly 30%

that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable(类似的) steel structure. As a result, long-span structures(大跨结构)are often built from steel.

贸易术语名词解释

病理学名词解释及问答题

土木工程实习及总结

名词解释:五四青年节

负反馈名词解释

组织名词解释

合同法名词解释

自我介绍英语翻译

个人简历英语翻译

医学英语翻译

《土木工程常用术语英语翻译及名词解释(推荐12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档