下面是小编为大家推荐的隧道的互层分布及隐患整治论文,本文共8篇,欢迎大家分享。

篇1:隧道的互层分布及隐患整治论文
隧道的互层分布及隐患整治论文
1互层分布于墙身范围
互层的软弱夹层围岩区内成孔难度较大,成孔后孔周岩体挤压形变导致孔内堵塞,二次扩孔后孔径增大扰动增强,大部分孔内坍塌,成孔失败导致系统锚杆无法施工;成孔后施工的系统锚杆紧仅与周边3~5cm范围内岩体胶结,在较小外力作用下便即整体脱离岩体,其作用不明显。施工技术方案措施围岩加固注浆处理开挖爆破前对互层围岩的软岩围岩进行针对性加固注浆处理,延开挖轮廓线开凿注浆孔压浆,其中砂、泥岩层注浆孔孔径统一为45,砂岩层注浆材料为普通水泥浆1∶1,泥砂岩交界处及破碎层注浆材料为水泥-水玻璃双液浆比例1∶1。2)系统锚杆施工由于开挖爆破前沿开挖轮廓线已对围岩进行了加固处理,因此在系统锚杆施工时成孔施工率大大增加,安设锚杆时注浆材料由原来的普通水泥浆改为水泥-水玻璃双液浆(1∶0.75),使相邻锚杆间岩体与锚杆胶结形成稳固整体结构,大大加强系统锚杆的锚固、悬吊、组合梁特性。互层分布于拱脚施工危害互层分布与拱脚时,爆破后拱脚形成较大方量超挖,造成拱架落脚虚脚或空脚,其处理过程严重损耗占用循环时间;同时由于裂隙水和施工用水对互层处软弱泥岩侵蚀,在初期支护施工过程中围岩变形沉降急剧。施工方案措施当互层分布于拱脚处时,调整开挖方法,由原来的正台阶法开挖调整为三台阶法施工,避开互层位置对拱架处施工的危害;另一方面在三台阶法施工中,加强上台阶拱脚的锁脚刚度,由原设计的25mm锁脚锚杆调整为刚度较大的42mm锁脚锚管,防止下导互层开挖时引起急剧沉降。中各种围岩岩性及互层位置和同类工程工法,调整整体爆破参数,如表2所示。爆破原则:以围岩特性为出发点,坚持动态爆破设计,遵循岩变爆破变的施工原则。
2几种突发情况下的处理和解决方案
拱部坍塌在爆破或开挖完成后发现拱部出现坍塌、围岩陆续剥离时,不要盲目处理,在其达到相对平衡稳定状态时,在进行处理,处理主要分以下步骤。封闭坍塌围岩以设计喷射混凝土对坍塌、剥离的围岩进行封闭处理,沿围岩轮廓线初喷3~5cm混凝土。立架加撑封闭后立即进行初期支护的棚架结构施工,棚架结构安装完成后,在岩面与棚架结构间架设刚度较大支承。喷射回填在围岩的初始形变约束完成后,立即进行坍塌处的喷射回填及初期支护封闭施工;由于坍塌后形成的超挖方量较大,回填后的混凝土在围岩的后期变形中起到荷载作用,因此在安装拱架连接钢筋和网片时调整其参数为一纵向连接筋由原80cm×100cm改为80cm×80cm,钢筋网片由原20cm×20cm改为15cm×15cm,从而有效提高由于围岩形变和超挖回填混凝土对于初期支护形成的应力应变的约束能力。沉降收敛急剧在观测数据分析及回归曲线出现预警值时加密监控量测频率,当出现先沉降收敛急剧时采用以下方案进行处理。支护补强处理当出现先沉降收敛急剧时在短时间内不强锁脚锚杆,在锁脚锚杆位置开凿初期支护成孔,加打刚度更大的锁脚锚管,并与拱架焊接牢固。封闭成环支护补强处理完成后,加大监控量测频率,待沉降收敛稳定后,立即跟进后续作业,及时使该处封闭成环。衬砌跟进封闭成环后观测初期支护的收敛情况,而后施作衬砌。初期支护形变开裂肉眼观测,型钢拱架两侧边缘与喷射混凝土结合处出现崩离式裂纹,意味着初期支护正在发生形变开裂,这时采取的处理措施如下。首先在型钢拱架两侧原锁脚锚杆下侧钻孔,施作刚度较大的42mm锁脚锚管,长3.5m,是做完成后与拱架焊接牢固,喷射混凝土封闭二次施工破坏面。其次钻孔压浆,浆液选择为水泥-水玻璃双液浆(水泥∶水玻璃=1∶0.75,体积比,比例经测算,终凝时间50~82s,时间较短利于扩散半径较小的'局部胶凝处理),对型钢拱架两侧边缘与喷射混凝土结合处出现崩离式裂纹进行胶凝处理。立即施作二次衬砌,二次衬砌参数做补强处理―环向钢筋间距由25cm×25cm调整为20cm×20cm纵向钢筋间距由25cm×25cm调整为20cm×20cm。3效果跟踪通过对水平互层围岩的客观科学的认识和施工中合理有效的动态技术措施控制,在施工中及时地修正了工艺,避免了不利危害,实现了工程质量的优化,改善了经营效果,各项指控指标变化显著,如:爆破后炮眼保留率≥85%,沉降收敛指标-回归曲线正常;然而互层围岩施工的成功也非一蹴而就,在解决了其超欠挖、自稳性差、自稳时间短、支护效果差等一系列问题后依然存一些问题:局部超欠挖、初期支护呈潮湿状或局部滴水等,针对这些问题也采取了有效的整治措施:改变炮眼钻孔的角度,改变局部的炮眼间距,增设排水盲管等。
篇2:公路隧道安全性及病害整治论文
公路隧道安全性及病害整治论文
1隧道侵蚀及其危害
位于较多腐蚀性介质位置的公路隧道,它衬砌后方的腐蚀水质会顺着衬砌缝隙处流入衬砌里,与衬砌建筑材料发生物理反应与化学反应,最终侵蚀衬砌。被侵蚀后的衬砌容易发生结构松散、结构表面物质掉落、表面漏洞、内部钢筋腐蚀等问题,这样不仅会降低衬砌结构刚度,还会减小衬砌所能承担的负荷量,减少隧道建筑的使用年限,降低公路隧道的安全性。
2公路隧道结构病害整治措施
隧道病害所造成的交通影响与经济、人力资源损失不言而喻,然而我国当前大多数的公路隧道病害维护不足。公路隧道的整治关系到建筑体结构的稳定性,需要进行彻底维修。下面笔者进行隧道病害整治技术的相关论述。
1)原则。公路隧道病害整治应当尽可能在以下几个原则下展开:首先,公路隧道的病害整治工作要尽可能不影响到人们的正常交通运输,也就是尽可能在不停止公路隧道运行的原则下进行隧道病害的整治;其次,明确病害成因,按照隧道工程所处的地质状况进行专业维修;最后,考虑隧道病害维修费用,尽可能借助可用的临时设施。
2)灌浆稳固技术。灌浆时稳固围岩的一项重要方法,将其技术应用到隧道危害的整治中能够强化地层从而增大围岩所能承担的重量、补满衬砌后面空洞让衬砌表面受力相等,起到预防衬砌结构病害持续恶化的作用。不仅如此,灌浆可以填满岩体缝隙,减少地基渗水并修复衬砌材料结构开裂以致稳固衬砌。一般灌浆使用浆料为硅酸盐水泥、单液浆和化学浆液等。
3)锚杆稳固技术。锚杆能够达到整合梁、加固与等力挤压拱的作用(分别如图1a),图1b),图1c)所示),将锚杆置于隧道结构问题位置,就能够增加围岩所承受的重量值,使已经出现裂缝的衬砌混凝土同稳固厚道围岩紧固,预防衬砌结构破坏恶化。
4)加衬技术。公路隧道病害整治中类似衬砌出现开裂分布较散,不至于造成隧道结构威胁,在稳固完成后还具备很大承重性能,并出现井控断面减少的位置,进行锚杆安装于灌浆稳固完成后,可采取加衬技术。加衬技术是对锚杆与灌浆稳固技术的完善。加衬是指于衬砌里边加灌一层混凝土,让所加灌的混凝土分担原本的衬砌建筑所承受的重量。加衬能够在很大程度上预防危害衬砌的深度形变,不仅如此,加衬还能使衬砌表面防水。
5)结构换新技术。顾名思义,隧道病害整治中的结构换新技术就是讲衬砌损坏严重的结构材料进行更换,将原本已经损坏失去承重功能的衬砌结构通过爆破等方式去除,再使用新的衬砌建筑对其进行全新优化。对于隧道衬砌结构损坏严重,开裂复杂,裂缝较宽同时出现表面物质掉落,丧失衬砌性能的衬砌危害,可以采取结构换新技术进行隧道危害整治,将损坏的衬砌更新。在进行衬砌结构换新作业中,要通过以下几点操作保证维修的安全性:设立钢架撑住衬砌结构,阻止衬砌进一步变形;灌浆稳固围岩,同时借助灌浆管稳固已经损坏的衬砌;采取静态击毁和掌控爆破技术将原本的衬砌混凝土除下,同时注意合理安排开挖尺寸;尽早设立早期支护,监督施工质量。
6)排水技术。排水技术主要用于隧道水害危害整治,是将隧道渗水和漏水排出衬砌结构的`一项整治技术。因为隧道水害是隧道中一项影响作用较大的病害,水害的存在不仅会直接影响隧道建筑体衬砌结构的稳定性,还会引发其他的隧道病害,因此要加强对其的整治。一般隧道渗水与漏水位置是在衬砌正向、环向和侧面,针对这三个位置进行排水整治,能够有效解决隧道水害问题。具体技术设置如图2所示。
3结语
在大量新的公路隧道投入使用的同时,公路隧道结构病害问题日益突出,对存在病害问题的公路隧道进行维修整治是解决问题的主要手段。然而我国各地区的公路隧道所处的地质环境不同,病害形式表现不一,因此必须从公路隧道工程实际出发,进行公路隧道病害整治技术的研究,改善公路隧道不良现状,保证人们的交通出行正常。
篇3:富水砂土互层隧道真空降水设计的施工技术论文
摘要:以蒙华铁路阳城隧道施工为背景,介绍陕北地区黄土高原侵蚀性梁峁沟谷地层中富水砂土互层设计及施工技术。对于该类富水砂土互层物理特征造成隧道施工极易引发涌水、涌砂、塌方等现象,结合现场工程地质特性、水文地质,隧道内水的补给形式和涌水量和变化规律采取真空降水治水设计和技术措施,以保证隧道施工安全,确保工程顺利施工。
关键词:地质;富水砂土互层;真空降水
1工程概况
阳城隧道位于陕西省榆林市靖边县龙洲乡双城村附近,为单洞双线隧道,隧道总长7108.25m,隧道最大埋深约207m。阳城隧道区内地形受地台抬升及黄土高原水流向源侵蚀的影响,下切作用明显,“V”字型冲沟发育,呈树枝状分布,形成沟壑纵横、支离破碎的特点,地形较为复杂,为典型的黄土高原侵蚀性梁峁沟谷地貌类型。DK245+072~DK245+190段施工中掌子面揭示地层为砂质、黏质新黄土交错、层状结构,泥质胶结、砂质结构、厚层薄层交错层理构造,结构松散、节理裂隙发育富水饱和,呈流塑状,自稳能力极差;地质条件异常复杂,地层变化较大,古冲沟发育,古基岩面(土石分界)起伏较大,地下水受下游麦家沟水库人工蓄水的影响,地下水位抬升。古冲沟内沉积白垩系全风化砂岩,洞身处于地下水位以下。由于地下水的渗流作用,隧道开挖过程中地下水渗入隧道,软化隧道围岩,对软质围岩的影响尤为突出。在该类地层中开挖隧道极易引发涌水、涌砂、塌方现象。
2富水砂土互层特征及施工难点
①掌子面围岩为砂质、黏质新黄土交错、层状结构,含水率大,高达22%。土体松软,渗水量较大,局部呈泥浆状、流塑状,掌子面极易出现开裂、脱落现象,土体自动流淌涌出,不能自稳,无法进行开挖作业。②未成岩的全风化白垩系砂岩,呈松散状,颗粒级配不良,黏聚力c值小,塑性低。含砂率偏大,颗粒偏细。整体结构松散,触变性强,对变形非常敏感,稍有扰动即可能发生大的溜塌,轻者造成空洞,重者引起较大的塌方。③围岩自身无任何承载力,全靠初支承受荷载。开挖扰动在拱脚处易形成流砂,引起涌水涌砂,围岩呈流塑状,造成已施工段落初支沉降、变形较大,最大沉降达89cm,初支出现环向贯通裂缝,缝宽最大达9cm。基于以上特征,通过降低含水率改变泥质胶结砂岩物理状态由流塑状变为固体状提高围岩力学强度和自稳能力是解决富水砂土互层施工的关键。
篇4:富水砂土互层隧道真空降水设计的施工技术论文
井点降水适用于透水性较强的地层和透水性较差(透水系数10-5~10-2cm/s)的地层。降水方案在砂岩地段主要采用轻型井点降水为主。地层含水量大降水困难时辅以超前深孔降水,集水井积水,完善的排水系统将水分级排至洞外。通过超前降水、轻型井点降水措施,围岩含水量降低,砂岩物理状态由流塑状变为固体状提高围岩力学强度和自稳能力。3.1轻型井点真空降水轻型井点降水是竖向排水。轻型井点降水在隧道一侧或两侧埋设井点管深入含水层内,井点管上端通过连接弯管与集水总管连接,集水总管与真空泵和离心水泵相连,启动抽水设备,地下水在真空泵的吸力作用下,经滤水管进入井点管和集水总管,排出空气后,由离心水泵的排水管排出,使地下水降至基坑以下。本法机具设备简单、使用灵活、装拆方便、降水费用低降水效果好。轻型井点降水设计:①井点管设计。轻型井点降水井点管采用4m长准32mmPRV冷水管,下端接长1m同直径钻有准15mm梅花孔(孔距25mm)的滤管,滤管末头用100目纱网封堵,滤管外侧用100目纱网包裹两层作为滤网,每隔40cm缠10号铅丝。连接弯管用胶皮管连接井点管和总管。总管用准75mmPRV冷水管带接头,采用热熔法密封。②井点管降水机具。真空泵:生产率4.4m3/min;真空度100kPa,电动机功率5.5kW,转速1450r/min。离心水泵:生产率20m3/h;扬程25m;抽吸真空高度7m,吸口直径50mm;电动机功率2.8kW,转速2900r/min。③井点管布置。井点管布置依据隧道宽度、地质水文情况、工程性质、降水深度确定。埋深依据降水深度和含水层位置决定,必须埋入含水层。同一地面高度含水层滤管高程保持一致,台阶处根据渗水量大小、台阶高度调节,含水层滤管高程应高差应小于台阶高度1/2倍。轻型井点降水井点管按照双排线性布置,每排距离初支面大于1m,防止支护过程中对围岩扰动从而出现井点漏气,单排行距0.5m,防止距离太小串孔。隧道为排出衬砌背后围岩和开挖方向地下水井点管竖向设倾角,保证同一地面高度含水层滤管高程保持一致,台阶处含水层滤管高程应高差应小于台阶高度1/2倍。上中下台阶布井点管置如下:1)上台阶拱脚两侧斜向下外插打竖向降水管,降水管长3m,纵向间距为0.5m,外倾角30°,向前倾斜角30°。2)中台阶拱脚两侧斜向下外插打竖向降水管,降水管长5m,纵向间距0.5m,向外倾斜角60°,向前倾斜角30°。3)下台阶两侧拱脚斜向下外插打竖向降水管,降水管长5m,纵向间距0.5m,向外倾斜角30°,向前倾斜角60°。④井点施工工艺。施工准备→测量定点→水冲成孔→安装井管、滤水管→孔口封堵→管线连接→试抽与检查→正式抽水→排水。井点成孔采用回旋式或冲击式钻机成孔,孔径30cm,井深比井点设计深50cm;洗井用0.6m3空压机或水泵将井内泥浆抽出;井点徐徐插入井孔中央,外露出地面20cm,倒入5~30mm石子,使管底高50cm。再沿井点管四周均匀投放2~4mm粗砂,上部1m深用黏土填实防漏气。井点埋设完成连接总管。部件连接完成后与抽水设备相连,接通电源进行试抽水,检查有无漏气、淤塞情况、出水情况是否正常,如有异常检修后使用。3.2洞内超前深孔真空降水超前深孔真空降水水平斜倾向排水。针对掌子面地下水丰富,开挖时易发生涌水、涌砂、塌方现象,采用掌子面超前深孔真空降水。3.2.1降水管设计超前深孔真空降水管采用12m长准32mm钢丝软管,管端2m及管外0.5m段不设降水钻孔,管身剩余部位钻设准8mm孔(孔间距10cm梅花形布置)。管身末头用100目纱网封堵,管身外侧用100目纱网包裹两层作为滤网,每隔20cm缠10号铅丝。深入含水层处管头密封。连接弯管用胶皮管连接降水管和总管。总管用准75mm钢丝软管带接头密封。超前深孔降水机具同井点管降水机具。3.2.2降水管布置降水管布置依据隧道宽度、地质水文情况、工程性质、出水量、出水位置确定。埋深依据掘进进尺和出水量决定,必须深入含水层。超前深孔降水沿上台阶周边按环向间距0.3m布孔,管长12m,每3m设置一环。上台阶核心及底部按横向间距0.5m布孔,管长12m,每3m设置一环。3.2.3超前深孔真空降水施工工艺超前深孔真空降水施工工艺流程同井点降水。超前深孔真空降水采用地质钻机(钻杆为准73mm套管)成孔,成孔后退出。然后开始送降水管,每下一节降水管跟进一节套管,降水管接头焊接,送管后退出套管。降水管采用特殊结构管头的降水管与套管对接(可点焊)。采用C25喷射混凝土全封闭掌子面,厚度10cm。每排降水管与准75mm主管连接。3.2.4集水井设置集水井设置在基底部位每20m左右各设置一处,主要汇集掌子面及已施做支护地段渗水,作为轻型井点降水、真空降水的辅助措施。为尽量减少掌子面渗出的`水流对边墙的影响,集水井设置在距离斜井边墙不小于1m处;集水井井深1.5m,井径100cm;集水井(自动抽水装置)集中抽到泵站集水箱再排水出洞外。在隧道设置大型集水箱,设置排水系统。掌子面及已施做支护地段的渗水通过隧道两侧排水沟汇集到集水井内,集水井(自动抽水装置)集中抽到洞内集水箱内,井点降水直接抽到集水箱。待集水箱内淤泥沉积后转抽到中心大型集水箱内,再用离心泵通过排水管路排水洞外。
4施工注意事项
①一套抽水设备的总管长度一般不大于40~50m。当主管过长时,可采用多套抽水设备;井点系统可以分段,各段长度应大致相等,宜在拐角处分段,以减少弯头数量,提高抽吸能力;分段宜设阀门,以免管内水流紊乱,影响降水效果。②集水总管标高宜尽量接近地下水位线并沿抽水水流方向有0.25%~0.5%的上仰坡度,水泵轴心与总管齐平。③降水过程中,真空负压控制在-0.06MPa以下,如果压力升高,必须对降水管进行逐根排查,看有无漏气,同时必须检查插入土层中的井点管密封是否到位,漏气部位必须采用胶布缠紧。④工地现场备足抽水泵,数量多于井数的10%。使用的潜水泵要做好日常保养工作,经常检查泵的工作状态,一旦发现不正常应及时换泵,坏泵应立即修复,无法修复的应及时更换。⑤降水工作与隧道开挖施工密切配合,确保隧道开挖安全。⑥降水设备在施工前及时做好调试工作,降水井在降水运行阶段,电源必须保证,设置双电网,确保降水井正常运行。⑦为保证降水效果,避免循环降水,务必做好排水系统。同时对于反坡隧道,除做好距离开挖工作面附近2~3m处的集水坑外,对于隧道底板已完成的部分,宜每隔4~6m设置一道截水槽,每隔20~30m设置1处集水坑,集水坑位置在截水槽的一端或两端,以避免底板已完成部分的压力水回灌到工作面处,影响正常施工。⑧施工过程中可根据现场实际情况动态调整。即在降水前或降水过程中发现问题及时处理,达到安全施工。降水系统运行3~5天后水位降到设计要求,如果排水量不变持续抽水,地下水位将持续不断的下降,也是不经济的,因此,在降水的过程中应持续观测、记录地下水位的变化,水位稳定后适当调整排水总量,以达到既经济又安全的效果。对于整个降水系统而言,如果发现降速太慢或达不到开挖深度时,应及时调节泵量,加大排水量;反之,要求减少排水量。
5结论
井点降水、超前深孔降水在富水砂土互层地质条件下施工有效降低了围岩含水率,稳固围岩,围岩由流塑状变为软塑状,开挖时不再流淌,短时间内有一定自稳能力,提供一定的施工时间。使作业区域达到无水或少量渗水的状态,满足隧道施工要求。确保了隧道开挖的质量和安全。
参考文献:
[1]宋秀清,刘杰.隧道施工[M].人民交通出版社,.
[2]谭仁辉.隧道工程[D].重庆大学,.
[3]肖广智.不良、特殊地质条件隧道施工技术及实例[M].人民交通出版社股份有限公司.
[4]铁道第三勘察设计院集团有限公司.《阳城隧道施工图》图号:蒙华浩三段施隧04-01~18.
[5]铁路隧道工程施工技术指南,.
篇5:略论隧道的冒顶病害整治办法论文
略论隧道的冒顶病害整治办法论文
1隧道设计概况
地质岩性洞身、底板地层为石炭系中统本溪组(C2b)地层,岩性组成较为复杂,主要岩性有泥质页岩、铝质泥岩(铝土岩)、薄层灰岩(或相变为泥灰岩)、砂岩、煤线等,以中薄层状―页理状构造为主,层理十分发育,风化程度也较高,岩质普遍很软;顶板以石炭系上统太原组(C3t)地层为主,主要岩性有泥质页岩、含燧石条带(或团块)灰岩、砂岩、煤层、泥灰岩等,其中泥页岩呈薄层状或页状产出,层理十分发育,风化程度也较高,岩质较软或极软;石灰岩一般含燧石呈致密微晶质结构,以中厚层状构造为主,裂隙较为发育,岩质较坚硬,主要分布于隧道顶板附近,砂岩呈灰黄色,以细粒结构为主,中薄层状构造,裂隙发育,岩质相对较软,分布在隧道洞顶以上。水文隧址区地表水主要来自大气降水补给,本隧道洞身内有少量地下水存在,预测洞内涌水量为10~20m3/d・km。不良地质根据勘察报告,采空区分布极不规则,隧道穿越采空区以巷道为主,断面尺寸较小,左右幅洞体内各种巷道(采空区)累计分布长度分别约150m。K27+920―K28+220段也布设了3个钻孔,其中一个钻孔揭露到采空区,有掉钻现象,另外两个钻孔均揭露到煤层。
2塌方冒顶
3月26日,K28+003―K28+031段初期支护发生变形、开裂,主要为拱顶120°范围内。3月31日K28+003―K28+031发生坍塌,4月1日K28+021地表沉陷,陷坑深约11m、直径5m,塌陷坑洞侧壁倾角为-65°左右。塌陷坑洞大致呈一倒圆锥状,总塌方量约5000m3。
3原因分析
根据详细的勘察结果,(C3t)地层中发育有一层3m左右的石灰岩,其强度较高,调整线位标高,使隧道拱顶位于该石灰岩以下2~5m处。该石灰岩虽然强度较高,且该岩层中基本可以排除采用区发育的可能性,但其节理较为发育。隧址处地层以石炭系地层为主,煤及硫磺矿呈鸡窝状分布,小规模的私挖乱采形成了大小不等、分布不均的采空区。根据3月26日隧道施工现场工作人员反映,隧道拱顶曾发生了突然的震动。结合采空区及地层岩性情况分析,受隧道爆破影响,隧道拱顶采空区的突然坍塌,导致拱顶石灰岩破裂,从而冲击隧道初期支护,导致支护变形失稳。水文地质原因冰雪融水,加之降雨的影响,岩体中含水量增大。在水的软化、溶解作用下,岩土体黏聚力降低,内摩擦角值减小,强度减弱,加之本身自重增加,致使岩土体稳定性变差。施工原因由于工期原因,调整了开挖掘进方式。原设计为侧壁导坑法,临时改为上下台阶法。增大了临空断面,围岩急剧变形,上覆破碎软弱岩体应力加大,超过了初支衬砌的抗力范围,导致支护失稳。左洞掌子面超过右线掌子面约30m。虽左洞二衬已经施工完成,形成了刚性支撑,但受左线开挖影响,软弱岩体应力须重新分布,塑性变形比较缓慢,虽左洞开挖轮廓线处的变形受支护的制约不再发生,但岩体内部的变形压密作用还在继续。受此影响,扩散角辐射区域穿越右洞上覆岩层,引起右洞一定范围内的围岩松弛变形。在原设计中,该段采用的是NATM和矿山法相结合的设计理念。在开挖时充分利用围岩的临时自稳能力,以节约投资。开挖后快速封闭成环,施工完二衬后,由初支及二衬共同承担上覆荷载。为了追求进度,仰拱没有紧跟掌子面。隧道拱顶围岩塑性变形得不到有效抑制,应力不断集中,初支未能形成闭合环,支护抗力大打折扣,加之二衬跟进不及时,最终导致变形过大、塌方。监控量测重视不足该隧道的监控量测信息反映滞后,加之管理混乱,未能发挥依托监控量测信息控制施工的目的。
4冒顶处治设计
明开挖方案从K28+000―K28+220(隧道终点),隧道拱顶埋深36~2m,且隧址范围内采空区发育,围岩均为强风化泥页岩,工程地质条件极差,从施工安全、工程造价、工期等各方面考虑,首推明开挖方案。但受地形制约,该处为一越岭隧道,该区域唯一一条主干道沿山脊展布,若采用明开挖方案,当地交通将陷入瘫痪。临时措施事故发生以后,经过2d的监控观察,确认围岩达到暂时的稳定。先对上部坑口进行回填轻压(杜绝震动干扰),填料为6%的石灰土;完善地表的排水设施;洞内,采用沙袋反压溜土面,防止涌土进一步发生;在K27+995―K28+001段施工套拱,锁住大变形断面,阻止变形进一步向进口段扩展。套拱采用I20工字钢架,纵向间距25cm,钢架间纵向连接筋采用φ28,环向间距1m。喷射混凝土25cm厚,锁脚锚杆每处5根,斜向下放射状打入,径向锚杆在拱顶120°范围内加密,间距50cm,单根长2.5m。并补充必要的地质勘探工作。穿越坍塌松散体穿越坍塌松散体,基本设计思路是梁壳体跨越。先采用中管棚和小导管超前注浆,在拱顶的松散体中形成一个固结壳体。管棚具有梁和注浆导管的双重作用。为了保证管棚的刚度,同时考虑到松散体成孔困难的特点,采用φ89中管棚。节长9m,环向间距50cm,仰角10°,拱顶120°范围内布设。通过注浆后,以管棚为中心形成一排直径约40cm的固结梁。为了更好地填充管棚梁间隙的空隙,在管棚之间交错布设φ42超前小导管,环向间距50cm,仰角25°,通过小导管注浆,基本可以实现拱顶120°范围内,拱顶2.1m厚度内松散体的固结,形成一个临时的固结壳借助壳体支撑作用,实现掌子面的开挖。注浆的扩散半径按40cm考虑,松散岩体的孔隙率按30%考虑,注浆的填充率按75%考虑,以此控制注浆总量,注浆压力为0.5~1.0MPa。浆液的配合比根据现场试验确定。若发现有漏浆情况应掺加水玻璃,注浆的目的性很明确,就是有效地固结拱顶2.1m厚度范围内的松散岩体。2.1m以外的松散体产生荷载并在进一步坍塌时起缓冲垫层的作用,不做加固处理。由于该隧道的.围岩条件差,设计阶段采用新奥法和矿山法相结合的思路,永久荷载由初支和二衬共同承担,塌方后上部松散堆积体荷载增加,支护方面,须加强初期支护的刚度,故初支I20a钢拱架的间距调整为50cm,二衬维持原设计。施工期间锁脚锚杆变为锁脚注浆导管,长度3m,每处4根。超前管棚和小导管组合体系的特点以往设计中,超前管棚是由若干根简支梁形成一个棚的支撑,单个梁之间彼此孤立,特别是在循环接头处,受仰角影响,管棚横向距离加大,临近管棚的末端,注浆压力损失严重,注浆效果明显减弱,注浆的固结效果难以保证,致使管棚抗劈裂作用力严重不足,施工安全得不到有效保障。此次设计的核心是将以往的“棚”变为“壳”。超前管棚和小导管组合体系,通过小导管对管棚间未能固结的部分进行二次注浆加固,增强各个梁体(管棚注浆固结体)之间的横向黏结,在拱顶形成一个具有一定强度的连续性梁壳,提高超前支护的抗劈裂能力,保证了施工的安全。
篇6:地铁区间隧道渗漏水的整治技术的论文
北京地铁四号线菜市口―宣武门区间位于宣武门外大街,南北走向,线路与宣武门大街中线近似平行,区间隧道覆土厚度为14.3m~19.8m。在隧道初期支护完成后,左线K7+420~K7+640段拱部及侧墙出现渗漏水现象,后来延伸到右线,使左右线隧道均出现大面积渗漏水,严重影响初期支护结构及地表和周围管线的安全,同时对二次衬砌防水层施工也有极大的影响。因此,需要进行治理。
1 原因分析
北京地铁四号线菜市口―宣武门区间渗漏段隧道,上方地质以粉土、粉细砂、中粗砂为主,开挖隧道拱顶位于粉质粘土和中粗砂层中。在隧道上方,与隧道走向平行的市政管线有:直径400给水管,直径800污水管,680×910污水方沟,2750×1450热力方沟等管线。区间隧道断面采用“上、下台阶法”开挖,开挖时掌子面无水,开挖后几天开始出现渗漏水现象,初期支护背后注水泥砂浆后,渗漏现象没有改变。根据地质和管线情况分析:管线位于粉细砂层中,尤其是两条污水管沟渗漏的可能非常大,雨污水管渗漏水在地层中已经饱和,隧道开挖后,隧道内形成减压空间,地层中饱和的雨污水和地质地层中的层间水透过粉细砂层、中粗砂层进入隧道初支出现渗漏水现象。
2 整治方案制定
1) 对渗漏段水质进行化验,其化验结果显示含有污水成分,说明渗漏水原因之一为地下污水管渗漏。2)漏水整治方法初定。采取排堵结合方法,根据漏水地段漏水量的大小,对局部漏水点及漏水量小的地段做导流管进行排水,引至隧道底板的集水槽中再排出隧道。对漏水量大并且面积大的地段采取分段打花导管注特殊浆液加固以形成堵水区。3)漏水整治实验段。本工程依据设计图纸、地质情况,结合隧道内渗漏水实际情况,做了两段实验段。一段为右线北面里程为K7+420~K7+430地段,在此段拱顶上方粉土层较薄,渗漏较为严重,采取的方法是:打设1.5m长度的花导管,注浆浆液采用A,C液和A,B液两种浆液进行注浆封堵。沿隧道拱顶150°范围,管呈梅花状布置,间距为1.5m,实践证明其注浆效果明显。在K7+630~K7+640段为粉土层较厚地段,且渗漏量较大,采取的方法是:打设2.0m长度的花导管,注A,B浆液进行注浆封堵。沿隧道拱顶150°范围,管呈梅花状布置,间距为1.5m,其注浆效果也可行。
3 施工方法
3.1 排堵结合刚性堵水
根据隧道实际漏水情况,右线北面里程K7+470~K7+490及K7+565~K7+612,左线北面里程K7+453~K7+481及K7+551~K7+567,共计111m地段属于轻微、间断渗漏地段。采取的方法是刚性堵水法。首先对漏水点进行封堵,采用材料为:堵漏灵加早强水泥直接处理。对堵不住的地段采用PV导流管将其渗漏水引至隧道底板的集水槽中,当施作防水前对集水槽进行回填处理,采用C30商品混凝土回填至设计标高位置,两格栅中间采用22钢筋连接加固。
3.2 注特殊浆液堵水
首先同样对漏水段的漏水点进行表面堵漏。对漏水严重地段,采取重新打管注浆加固止水处理。通过注浆填充土体空隙,疏干土体水分,使浆液与土体有机地结合在一起,形成具有一定抗压强度和支承保护能力的复合地基,提高土的抗渗能力,确保隧道施工顺利进行。
从漏水段及隧道初支对土质情况的了解,根据隧道拱顶粉土层的厚度打设导管注浆,其管的长度根据粉土层的厚度而决定,在粉土层厚度小于1.5m的地段打设1.5m的'花导管,在1.5m以上的地段打设2m的花导管。结合开挖实际分两种情况:
1)粉土层较薄需打设1.5m花导管注两种浆液的地段为:左线北里程为K7+420~K7+451和K7+516~K7+565,K7+625~K7+640三段;右线北里程为K7+420~K7+435,K7+481~K7+519和K7+603~K7+640三段。共计长度为185m。
2)粉土层较厚需打设2m花导管注一种浆液的地段为:左线北里程为K7+451~K7+470,K7+490~K7+516和K7+612~K7+625三段;右线北里程为K7+435~K7+453,K7+519~K7+551和K7+567~K7+603三段,共计长度为144m。
3.3 注浆方法
注浆材料的特性对地下水而言,属不易溶解材料;对不同地层,凝结时间可调节,强度高、能及时止水。注浆材料配比见表1。
悬浊液由A液,C液组成,主要加固较大空隙的地层,达到填充效果。溶液由A液,B液组成,主要用于微小裂隙渗透性较好,与土体结合性较好,与土体结合形成固结体起到止水效果(B液由Gs剂,P剂,H剂,C剂和水组成,主要作用是固化、止水,通过配合比的调整,可以控制固化时间。C液由水泥,H剂,C剂和水组成,主要作用是早强、微膨胀,通过配合比的调整,可以控制其强度和浓度)。注浆顺序是:在隧道内从漏水段的两端开始,向漏水段的中间注浆,其中粉土层薄的地段先注A液,C液组成的悬浊液,等悬浊液固化后,再注A液,B液组成的溶液。两次注浆后,如果还有个别地方渗水,可采用防水砂浆堵水。其中粉土层厚的地段注A液,B液组成的溶液。注浆后,如果还有个别地方渗水,可采用防水砂浆堵水。注浆时,根据现场实际情况选择不同的浆液浓度,适当调整配合比,并适当加入特种材料以增加可灌性和堵水性,提高止水效果及浆液耐久性。
3.4 注浆范围
根据该地段的地质条件,结合开挖后隧道渗漏水严重程度及注浆工艺特点,参考类似工程的技术参数,设计范围为拱顶150°范围,注浆加固厚度1.5m和2.0m,加固长度根据现场情况确定。在实践中可根据止水效果做适当的调整,以满足施工的工艺要求。
3.5 注浆孔布置及注入顺序
根据注浆扩散半径计算,孔距一般为0.8m~1.5m,本工程拟采用间距1.5m,排距为1.5m,平面布孔采用梅花形布置(在施工中可根据开挖情况做适当调整)。注入顺序是在隧道加固区域范围内从外至内隔孔跳步注浆。
3.6 主要注浆参数
注浆深度1.5m~2.0m;注浆孔直径46mm;浆液扩散半径0.8m;浆液凝结时间20s~30min;注浆压力0.2MPa~0.5MPa。
4 结语
本整治渗漏方法的特点是不占用地表空间且不影响交通及地面设施的正常进行。但在隧道内部操作难度较大。
在确定方案前,先要对周围管线进行详细调查,以确定是否为管线渗漏水。在施工作业前,还要对隧道内的漏水处进行详细的调查,主要针对拱顶漏水较严重的病害,观察漏水集中部位以确定钻孔位置,确定施工封锁线路。
对于地铁隧道渗漏水现象,要根据不同的水文地质情况和病害特点,采用不同的方法进行综合整治。这次在北京地铁区间隧道初期支护大面积渗漏水整治试验中取得了初步的成功,经过二次衬砌前三个月的考验,除个别地方有些潮湿外,其他绝大多数初期支护的表面都能保持干燥。对于隧道漏水的整治,只是进行了初步的探讨,今后还需不断努力来完善该项技术。
篇7:隧道管片衬砌裂纹病害整治技术的论文
隧道管片衬砌裂纹病害整治技术的论文
摘要:根据广州地铁三号线某盾构隧道区间管片衬砌裂纹病害整治施工实例,对盾构隧道在运营过程中管片出现裂纹的原因进行了分析,提出了病害整治原则,并进行了管片裂纹处理和管片加固处理方案比选,确定了采用粘贴碳纤维布进行管片加固的方法。
关键词:盾构隧道,管片裂纹,地质,粘贴碳纤维布
1隧道概况及工程条件
开工于6月30日的'广州地铁三号线某盾构隧道区间全长4。77km,区间隧道于6月6日全线贯通,12月31日全线通车运营。采用德国海瑞克6。28土压平衡盾构机掘进,装配式管片衬砌。管片外径为6m,内径为5。4m,管片厚为0。3m,环宽为1。5m,采用5+1块错缝拼装形成管环衬砌。
1。1地面环境
该区间左线管片(1662环~1724环)受损隧道段的里程为ZDK27+294~ZDK27+387,隧道上方地面为9层建筑物,建筑物的基础为15m~20m深的锤击贯入桩,地面环境复杂。
1。2地质情况
管片受损隧道段隧道覆土约29m~30m,洞身范围为5H―2花岗岩硬塑状或稍密状残积土,风化剧烈,遇水易软化崩解,洞底围岩为6H花岗岩全风化带。通道上方分布有5H―1,4―1,3―2,2―2等砂质黏土,地层比较软弱。
2管片裂纹病害情况
隧道投入运营快1年后,在11月2日发现了左线1662环~1724环隧道段环号为偶数的管环管片11点位的管片内表面出现了不同程度的纵向裂纹,该受损隧道段施工时间为12月17日~12月28日。具体裂纹情况如表1所示。
3管片裂纹出现原因
1)列车长期振动造成隧道周边土体软化,侧向抗力降低,顶部弯矩增大。
2)隧道埋深较大,达到29m~30m,且地质极为软弱,隧道覆土荷载造成了作用于隧道顶部的荷载较大。
4病害整治方案比选
4。1病害整治原则
1)需要继续长期监测以判断围岩是否已经收敛稳定,病害整治应不影响对隧道收敛的长期监测;
2)目前隧道已投入运营,病害整治措施应尽量减少对行车的不利影响;
3)隧道内设备、管线较多,病害整治措施应考虑设备、管线的影响;
4)病害整治方案应考虑对隧道监测的影响;
5)病害整治方案应能满足管片加固的要求,加固后管片裂纹不扩大、不增加。
篇8:浅谈七台河车间油库消防隐患整治工程的研究论文
浅谈七台河车间油库消防隐患整治工程的研究论文
黑龙江省七台河市铁路交通十分方便快捷,牡佳、七勃铁路在境内形成“T”字形网络,通过铁路经绥芬河至俄罗斯海参崴港、经哈尔滨市至大连港都十分快捷和方便。牡丹江机务段七台河运用车间位于七台河市新兴区境内,在铁路运营线上位于支线勃七线36Km终点,路网位置十分重要。
一、研究工程概况
1.现行机车交路概况
牡丹江机务段七台河运用车间现承担七台河~牡丹江间14对直达货物列车,七台河~牡丹江间2对摘挂货物列车,七台河~佳木斯间4对货物列车;七台河~哈尔滨间1对客运列车,七台河~牡丹江间1对客运列车,七台河~佳木斯间1对客运列车,七台河~佛岭间10台补机的运输任务,机车牵引任务在东部线有着重要的作用。
2.现行机务设备概况
牡丹江机务段七台河运用车间始建于1982年,承担着七台河~勃利间的补机任务,按蒸汽机车折返段配置机车整备检查能力。1993年铁路机车动力由蒸汽机车转型为内燃机车,但未进行整备设施改建。直至1999年原牡丹江分局投资建造简易内燃机车上油设备,当时车间配属机车仅为5台,最高出入库42台次/昼夜,3个蒸汽机车整备检查台位,上砂采用人工上砂方式。
牡丹江机务段七台河运用车间现有整备能力65台次/日。三角线1处;转车盘1座;储油400m3,以车代罐;储砂场1个,储砂300m3;储水罐1个,储水4吨;机油储油罐1个容量50m3;段管线1、2、3、4道有检查坑,共计5座检查坑,以及相关的生产生活辅助设施。
二、现有简易油库存在的安全隐患
牡丹江机务段七台河车间简易油库为400m3油库,现有8个50m3卧式罐储存燃油,燃油储备量最大300吨左右,只能满足4-5天的燃油储备,不符合铁路总公司要求确保15-20天周转的燃油库存要求。同时为保证燃油储备周转量需长期占用油罐车(12辆/天)以车代库,不但加大了成本支出(罐车占用费约120万元/年),而且油罐车库内调车、停放给机务车间的安全、防火等工作带来了极大隐患。现有油库内油罐间间距1.2米,油罐距防火堤最小距离1米,防火堤距油库围墙距离1~1.5米,均不满足石油库安全的要求。
目前较为突出影响安全的`问题有:
1、卸油线与油库间距不满足《石油库设计规范》要求。
2、油罐距防火堤、防火堤距油库围墙距离,均不满足《石油库设计规范》要求。
3、油库内没有环形消防车道,总体布局不符合《石油库设计规范》要求。
4、油库内受面积限制无法配置必备消防设施。
5、油库内无防静电接地设施。
三、消防安全整治方案
目前,七台河~牡丹江间上行货物列车采用双DF8型或HXN5型机车牵引,牵引定数5000~5500吨,双机耗油量共计在4400L左右,牡丹江~七台河间下行采用DF8机车单机牵引空车时燃油消耗量为2000L,七台河整备点燃油日支出量约60吨。结合本车间用油现状并考虑哈牡电气化,研究方案考虑到拆除既有8个简易落地罐,增加新落地罐需占用征地面积较大,较新罐购置成本高,故采用新建300m3立式油罐两座,两鹤位卸油栈桥一座,卸发油设备利旧。新建值班室及油泵房115m3。充分发挥既有卸发油设备能力,节省投资及对周边环境影响,具体方案内容如下:
1、研究位于牡丹江机务段七台河车间院内,油库容量为600m3油罐,油罐做防静电接地设施,两个油罐间距10米,油罐外壁至防火堤内侧间距4米。依据《石油库设计规范》GB50074-2002,该油库的等级为五级,油品的火灾危险性为丙类。
2、油库设计内容
(1)油库做2.5米高围墙,围墙至卸油线间距14米,满足《石油库设计规范》GB50074-2002的要求。
(2)油库内设有4米宽环形消防道路,满足《石油库设计规范》GB50074-2002的要求。
(3)油库设置有2个安全疏散出口。
(4)消防冷却水的供给:根据《石油库设计规范》(GB50 074-2002),该油库消防冷却水的设计流量为25L/s,消防冷却水供给时间为4小时,消防冷却水量为360立方米。新建V=400立方米地下消防水池1座,水源接自车间内既有给水管道,管径DN100;新设消防泵房一座,内设消防泵2台(一用一备);在油库区内新设环状消防管道一条,管径DN150;地下防冻式消火栓及井6座。
(5)烟雾灭火设备:新设ZWW-10型烟雾灭火设备2套,每个油罐安装1套。
(6)灭火器材的配备:油库区内配备35Kg手提式干粉灭火器2具;灭火毯4块;灭火砂2.5立方米。
四、研究结论
通过对既有简易油库设备及设施的优化,结合近远期机务车间燃油整备设备发展,本次研究解决了长期存在的燃油库安全隐患问题,为铁路安全生产做出了重要的保障。
结束语
现代化高速铁路的兴起和发展是社会经济发展的必然结果,也是不断采用现代科技成果并从低水平逐渐向高级阶段发展的必然产物。铁路机务设备安全高效是高速铁路装备安全运行的有力保障,内燃机车燃油库的安全对铁路运输事关重大,排除隐患,科学高效持续的安全生产对铁路快速安全发展有着重要的意义。
文档为doc格式