欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

一元二次方程实数根练习题

时间:2022-05-29 01:12:47 其他范文 收藏本文 下载本文

下面是小编为大家整理的一元二次方程实数根练习题,本文共6篇,仅供参考,喜欢可以收藏与分享哟!

一元二次方程实数根练习题

篇1:一元二次方程实数根练习题

一元二次方程实数根练习题

【教学目的】精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的.批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1 下列方程中两实数根之和为2的方程是

(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

错答: B

正解: C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

(A) k-1 (B) k0 (c) -10 (D) -1≤k0

错解 :B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

篇2:数学教案-一元二次方程实数根错例剖析课

【教学目的】  精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的'原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1   下列方程中两实数根之和为2的方程是

(A)   x2+2x+3=0     (B) x2-2x+3=0    (c)  x2-2x-3=0      (D)  x2+2x+3=0

错答: B

正解: C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2   若关于x的方程x2+2(k+2)x+k2=0  两个实数根之和大于-4,则k的取值范围是(     )

(A)   k>-1     (B)  k<0    (c) -1< k<0    (D) -1≤k<0

错解 :B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2

篇3:一元二次方程根的判别式

一、教材分析

1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

4、教学目标:

(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的.情况;根据根的情况,探求所需的条件。

(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

5、数学思想:由感性认识到理性认识。

6、教学重点:

(1)发现根的判别式。

(2)用根的判别式解决实际问题。

7、教学难点:

根的判别式的发现

8、教法:启导、探究

9、学法:合作学习与探究学习

10、教学模式:引导――发现式

二、教学过程

(一)自习回顾,引入新课

1、师生共同回顾:一元二次方程的解法

2、解下列一元二次方程。

(1)x2 -1=0           (2)x2  -2x = -1

(3)(x+1)2- 4=0    (4)x2  +2x+2=0

3、为什么会出现无解?

(二)探索

1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

ax2+bx+c=  -c

x2+    x = -

x2+    x+(       )2=(       )2 ―

2

(x+      ) 2=           2

2

2、观察(x+      ) 2=           2     在什么情况下成立?

3、学生分组讨论。

4、猜测?

5、发现了什么?

6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时,                 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,_________________________

8、总结:

(1)比较分析学生的讨论分析结果。

(2)由学生总结。

(3)教师根据学生总结情况补充完整。

篇4:一元二次方程根的判别式

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,________________________

(三)应用新知:

1、不解方程判定下列一元二次方程根的情况。

(1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

(2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

(3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

2、根据根的情况,求字母系数的取值范围。

例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

(1)读题分析:

A、二次项系数是什么?                     a=_______

B、一次项系数是什么?                     b=_______

C、常数项是什么?                            c=_______

(2)建立等式,根据有个常数根   b2-4ac=0

(3)由学生完成解题过程后教师评价

3、证明

例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

(四)练习

已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

三、作业

1、把例1、例2整理在作业本上。

2、有余力的同学把练习题整理在作业本。

四、教学后记:

篇5:一元二次方程根教学设计

教学目标

掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用。

通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目。

重难点关键

1。重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac<0 一元二次方程没有实根。

2。难点与关键

从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。

教具、学具准备

小黑板

教学过程

一、复习引入

(学生活动)用公式法解下列方程。

(1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0

老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=<0,方程没有实根。

二、探索新知

方程b2—4ac的值b2—4ac的符号x1、x2的关系

(填相等、不等或不存在)

2x2—3x=0

3x2—2 x+1=0

4x2+x+1=0

请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。

从前面的具体问题,我们已经知道b2—4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:

求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解。

因此,(结论)

(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。

(2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。

(3)当b2—4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根。

例1。不解方程,判定方程根的情况

(1)16x2+8x=—3

(2)9x2+6x+1=0

(3)2x2—9x+8=0

(4)x2—7x—18=0

分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。

解:(1)化为16x2+8x+3=0

这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128<0

所以,方程没有实数根。

三、巩固练习

不解方程判定下列方程根的情况:

(1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0

(5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x

四、应用拓展

例2。若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。

分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)<0就可求出a的取值范围。

解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。

∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8<0

a<—2

∵ax+3>0即ax&

gt;—3

∴x<—

∴所求不等式的解集为x<—

五、归纳小结

本节课应掌握:

b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac<0 一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用。

六、布置作业

1。教材P46 复习巩固6 综合运用9 拓广探索1、2。

2。选用课时作业设计。

第7课时作业设计

一、选择题

1。以下是方程3x2—2x=—1的解的情况,其中正确的有( )。

A。∵b2—4ac=—8,∴方程有解

B。∵b2—4ac=—8,∴方程无解

C。∵b2—4ac=8,∴方程有解

D。∵b2—4ac=8,∴方程无解

2。一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。

A。a=0 B。a=2或a=—2

C。a=2 D。a=2或a=0

3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的'取值范围是( )。

A。k≠2 B。k>2 C。k<2且k≠1 D。k为一切实数

二、填空题

1。已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。

2。不解方程,判定2x2—3=4x的根的情况是______(填“二个不等实根”或“二个相等实根或没有实根”)。

3。已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。

三、综合提高题

1。不解方程,试判定下列方程根的情况。

(1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0

2。当c<0时,判别方程x2+bx+c=0的根的情况。

3。不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。

4。某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团投入新产品开发研究资金为4000万元,销售总额为7。2亿元,求该集团20到20的年销售总额的平均增长率。

篇6:一元二次方程根教学设计

一、复习引入

1、已知方程 x2—ax—3a=0的一个根是6,则求a及另一个根的值。

2、有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?

3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 、观察两式左边,分母相同,分子是—b+√b 2—4ac与—b—√b 2—4ac。两根之间通过什么计算才能得到更简洁的关系?

二、探索新知

解下列方程,并填写表格:

方 程x1x2x1+x2x1、 x2

x2—2x=0

x2+3x—4=0

x2—5x+6=0

观察上面的表格,你能得到什么结论?

(1)关于x的方程 x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?

(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

解下列方程,并填写表格:

方 程x1x2x1+x2x1、 x2

2x2—7x—4=0

3x2+2x—5=0

5x2—17x+6=0

小结:1、根与系数关系:

(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p, x1、 x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)

(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。

即: 对于方程 ax2+bx+c=0(a≠0)

(可以利用求根公式给出证明)

例1:不解方程,写出下列方程的两根和与两根积:

例2:不解方程,检验下列方程的解是否正确?

例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)

例4:已知方程 的一个根是 ,求另一根及k的值、

变式一:已知方程 的两根互为相反数,求k;

变式二:已知方程 的两根互为倒数,求k;

三、巩固练习

1、已知方程 的一个根是1,求另一根及m的值、

2、已知方程 的一个根为 ,求另一根及c的值、

四、应用拓展

1、已知关于x的方程 的一个根是另一个根的2倍,求m的值、

2、已知两数和为8,积为9,求这两个数、

3、 x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?

五、归纳小结

1、根与系数的关系:

2、根与系数关系使用的前提是:

(1)是一元二次方程;

(2)判别式大于等于零、

六、布置作业

1、不解方程,写出下列方程的两根和与两根积。

(1)x2—5x—3=0

(2)9x+2= x2

(3) 6 x2—3x+2=0 (4)3x2+x+1=0

2、 已知方程x2—3x+m=0的一个根为1,求另一根及m的值、

3、 已知方程x2+bx+6=0的一个根为—2求另一根及b的值、

一元二次方程根教学设计

一元二次方程教案

一元二次方程说课稿

《一元二次方程》数学教案

一元二次方程概念说课稿

《一元二次方程》教学反思

一元二次方程应用教学反思

数学《一元二次方程》教案案例

一元二次方程的解法教案

《一元二次方程》的教学反思

《一元二次方程实数根练习题(精选6篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档