下面小编给大家整理了一元二次方程中的陷阱的论文,本文共13篇,供大家阅读参考。

篇1:一元二次方程中的陷阱的论文
一元二次方程中的陷阱的论文
一、目前的现状和存在的问题
经济数学是财经类专业的一门重要基础课程。传统意义上的经济数学教学只是强调知识的传授和掌握。教师占据主导地位,学生完全处于一种被动接受的状态。教师注重的是把概念、结论讲清楚,学生把老师讲的记下来,通过做练习题理解、掌握、巩固,考试也是这些知识的再现。这种教学模式忽视了学生的主体地位,知识的接受过程中,学生体验不到数学的乐趣和精妙,缺乏思考的过程、研究的过程,更重要的是不能形成运用数学知识解决经济问题的能力。近年来,各种教学改革方法、模式也不断出现,如任务驱动法、项目导向法、案例教学法、问题解决式等等,各有所长。现在很多院校经济数学课时大幅压缩,有的只有几十课时,有些院校直接将数学课删除。完整、系统地传授知识已不大可能。我院在广泛调研的基础上,在部分专业试行了研究性教学模式的有益探索。
随着社会经济的迅速发展,数学在其中的作用与价值愈显突出,被越来越广泛运用于经济与管理科学,并正在显著地促进金融业、服务业、制造业、营销业和咨询业的商务运作模式的改变,显示了数学应用的魅力。“高技术的本质,是数学技术”,这是越来越多的人共识。数学教育的重点不止是教给人如何应用科学知识和技术,而是教给人以科学观点和科学方法,也就是塑造人的科学世界观,培养具有实践能力和创新精神的人。
二、研究性教学模式的含义
研究性的教学方法,是培养学生创新精神和实践能力的有效方法。研究性的教学模式,是指在课堂教学过程中,在教师的指导下,精心创设一种研究氛围,启发学生充分参与、主动探究、交流合作、感受数学发现的乐趣,再上升为科学的结论。更为重要的是让学生运用掌握的知识技能,学会动手搜集、分析、判断大量的信息材料,研究并解决经济问题。也就是研究贯穿于知识的接受过程,研究贯穿于能力的形成过程。
三、研究性教学模式的特点
(一)合作性。教师占主导地位,学生占主体地位,双方协调、互动合作。教学任务完成过程,也是师生的思想、情感得到交流和强化的过程。
(二)探究性。无论是已成型的经典的理论,还是老师提出的新的问题,对于学生来说,都具有很强的探究性。学生必须在探究的过程中掌握知识、形成能力、提高素质。
(三)开放性。要打破传统教学的单一性、封闭性和被动性。数学与其他学科的联系,特别是与现实社会经济热点问题的关系,注定它必须是开放性的。
(四)应用性。人类社会的生产实践中,数学无所不在。经济数学的价值在于应用。应用于解决经济问题,体现在培养人、塑造人的完整人格。
四、研究性教学模式实施的条件
(1)各级领导的重视和支持,在人员、资金、场地、时间等方面给予优先考虑安排。
(2)有一支肯干、能干的高素质的师资队伍。
(3)具有现代化的教学设备、网络信息资源和一些必备的材料。
(4)有良好的外部环境,与社会、企业有良好的合作关系。
五、研究性教学模式的实施办法
研究性教学模式主要解决传统意义上的教学模式只强调知识和技能的接受,强调教师的中心地位,只注重学生接受式的学习等问题。教师不能停留在一本书、一块黑板、一支粉笔的水平上,要有扎实的专业知识和先进的教育理念,适度合理使用现代化教学手段,会设计问题,引导、启发学生思考,得出科学的结论,让学生动手搜集、查阅资料,分析探究经济问题,作出预测评判,教师指导点评。师生互动双向交流,学生成为学习的主体。
教师思想上高度重视这项教学改革,精心备课,巧妙设计问题,营造一种探究的氛围,有时提出问题比解决问题更重要,对教师提出了更高的要求。要让学生充分探究,充分发表自己的见解,在教师的指导下得出科学的结论。,教师要引导学生走出课堂、走出校园,积极参与社会实践,培养创新能力和实践能力。教师之间要多交流合作,定期召开教学研讨会,观摩教学,总结经验,不断提高教学水平。
我们组织学生用弹性理论知识研究企业如何对弹性大和弹性小的商品定价;让学生研究如何用定积分的理论知识求出某地区或某单位的基尼系数,供有关部门或单位参考,以调整经济政策;如何用定积分的理论求企业在不同的市场实行差别价格后所获利润,在保证利润最大化的前提下,确定各个市场的商品的销售量;现在企业之间相互持股,风险共担,利益共享是一种发展趋势。我们让学生深入社会和企业,用所学的线性方程组、矩阵的理论知识解决相互持股企业之间的投资收益、利润分配问题等等。学生在教师有趣的、刺激性的、挑战性的问题面前,被激起探究的欲望,学生跃跃欲试进入学习状态,在解决问题的过程中,放飞思维,发挥聪明才智,形成概念,掌握知识;由理论指导实践,兹生创新意识,锻炼实践能力;最终学生的素质得到提高。这种能力和素质将使学生受益终生。
六、研究性教学模式的原则
(一)教师主导、学生主体、师生互动原则。与传统教学模式的.一个关键区别就是研究性教学模式注重学生的主体精神,以合作探究为特点启发学生主动学习、创造新思想新方法新理论,建构新的知识体系。教师的主要责任是指导、帮助学生主动建构新知识,因此,教师的传授要少而精,不要全盘托出教学内容,而要突出重难点顺其自然地让学生融入思考研究的状态中去。在课堂教学中教师要注意巧妙地设计师生互动环节,让整个课堂充满活力和生机,营造一种良好的课堂气氛,激发学生的学习研究兴趣。
(二)独立研究和合作研究相结合的原则。研究性教学模式要求教师和学生均要以研究的心态学习理论知识。学生在高校学习中要摆脱高中依赖教师的习惯性学习方式,要学会独立自主地思考研究学习内容。这种现代教学模式的研究性不仅要求学生自己学习过程中要主动独立思考、分析问题的因果关系,探究问题的解决方法,而且涉及到小组讨论、班级讨论。各种团队讨论方式都是一种合作研究的方式,合作研究能够弥补个人知识能力不足的缺陷,集众人之所长,创造出最新的成果。研究性教学模式要将学生独立研究和师生之间、生生之间合作研究有效地结合,以实现高效研究性教学和学习的最佳状态。
(三)理论与实际相结合原则。传统教学模式不适应当代社会发展的一个重要原因就是传统教学模式单纯注重理论知识的传授,造成高校培养的人才实际应变能力差,满足不了社会对高校毕业生实践技能素质的要求。现代化的研究性教学模式要求教师不仅要发挥教学的主导作用,传授本课程的基本内容,同时要鼓励学生参加丰富多彩的第二课堂活动,深入社会、企业,广泛调查研究,教会学生有效地将理论运用到实际生活中去。
七、研究性教学模式的考核模式
考核方面要改变一张考卷几道练习题定成绩的方法。我们大胆改革,要求学生紧密结合社会经济热点问题,应用所学知识分析、解决问题,提出自己的看法,形成调查报告,占总成绩50%。期末理论考试可以开卷,占50%。此模式深受学生欢迎。
研究性教学模式在我院部分班级进行了试点和探索,取得了一些成绩,但仍有不足和值得改进的地方。我们将在总结经验的基础上,继续研究、探索,使之不断完善,努力形成一种新的教学方法和模式,达到更好的教学效果。
篇2:一元二次方程
教学目标
1. 了解整式方程和的概念;
2. 知道的一般形式,会把化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:的概念和它的一般形式。
难点:对的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。
2)重点、难点分析
理解的定义:
是 的重要组成部分。方程 ,只有当 时,才叫做。如果 且 ,它就是了。解题时遇到字母系数的方程可能出现以下情况:
(1)的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合的定义。
(2)条件是用“关于 的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是,解题时就会有不同的结果。
教学目的
1.了解整式方程和的概念;
2.知道的一般形式,会把化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.的有关概念
2.会把化成一般形式
难点: 的含义.
第 1 2 页
篇3:一元二次方程
教学目标
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
篇4:一元二次方程
是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。
(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
篇5:一元二次方程
教学目标
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。
(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点 和难点:
重点:
篇6:一元二次方程
教学过程 设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是―元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x―3: (2)x2=4
(2)(x十3)(3x・4)=(x十2)2; (4)(x―1)(x―2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的'一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2―3x十4=0; (3)3x2-5=0
(4)4x2十3x―2=0; (5)3x2―5=0; (6)6x2―x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)―4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程―一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
课外作业 :略
篇7:§12.1 一元二次方程
§12.1 一元二次方程
通过本节课的学习,大部分学生已掌握了什么是整式方程,什么是一元二次方程的概念,对今后学习一元二次方程的解法打下了良好的基础。 [课后记]课题: 例题: 辅助板书:
篇8:一元二次方程教案
一元二次方程教案
学习目标:
1、使学生会用列一元二次方程的方法解决有关增长率的应用题;
2、进一步培养学生分析问题、解决问题的能力。
学习重点:
会列一元二次方程解关于增长率问题的应用题。
学习难点:
如何分析题意,找出等量关系,列方程。
学习过程:
一、 复习提问:
列一元二次方程解应用题的一般步骤是什么?
二、探索新知
1、情境导入
问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范、将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,村长完成了36、3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?
2、合作探究、师生互动
教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20实际完成的亩数是30(1+x),第二次增长后,即20实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36、3亩、
教师引导学生运用方程解决问题:
①30(1+x)2=36、3;(1+x)2=1、21;1+x=±1、1;x1=0、1=10%,x2=―2、1(舍去),所以增长的百分率为10%、
②全村坡耕地还林还草为50×36、3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90、75(万斤)、
三、例题学习
说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?
(小组合作交流教师点拨)
时间 基数 降价 降价后价钱
第一次 600 600x 600(1―x)
第二次 600(1―x) 600(1―x)x 600(1―x)2
(由学生写出解答过程)
四、巩固练习
一商店1月份的利润是2500元,3月份的`利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0、1%)?
五、课堂总结:
1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。
2、注意解方程中的巧算和方程两个根的取舍问题。
六、反馈练习:
1、某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为
A、x+(1+x)x=20% B、(1+x)2=20%
C、(1+x)2=1、2 D、(1+x%)2=1+20%
2、某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()
3、某种药剂原售价为4元,经过两次降价,现在每瓶售价为2、56元,问平均每次降低百分之几?
篇9:一元二次方程教案
科目
数学
年级
九年级
教学时间
一课时
学习者分析
本班有学生53人,数学课还比较喜欢,学习热情也较高,课堂气氛比较活跃。学生在学过一元一次方程的基础上学习,还是对方程有一定的认识。所以老师放手让学生自学、合作的探究方式来学习此课。但有极少部分学生较懒,学习习惯差,不愿思考问题。总体来说学生喜欢动手操作,喜欢小组合作的学习方式。
教学目标
一、情感态度与价值观
1. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
2. 感受数学的严谨性以及数学结论的确定性。
二、过程与方法
1. 通过观察,归纳一元二次方程概念的教学
2. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式。
三、知识与技能
1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义。
2. 一元二次方程的一般形式及其有关概念
教学重点、难点
1.一元二次方程的概念及其一般形式和用一元二次方程有关概念解决问题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
教学资源
⑴每位学生制作一个无盖方盒
⑵每人一份印刷练习题
⑶教师自制的多媒体课件
⑷上课环境为多媒体大屏幕环境
教学活动
教学活动1
㈠师生互动,激趣导入
情境创设(大屏幕投影教材24页):要设计一座2米高的人体雕塑,使雕塑的上部(腰上部)与下部(腰下部)的高度比,等于下部与全部(全身)的高度比,雕塑的下部应设计为多高?
学生根据等量关系:设雕塑下部高xm,于是得方程
X2=2(2-x)整理得X2+2x-4=0,这是什么方程,与以前学过的一元一次方程有什么不同,这节课我们就来学习它---------一元二次方程
教学活动2
㈡问题启发,合作探究
1.问题1(多媒体课件)有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?
学生结合手中学具思考怎么列方程
如果假设切去的正方形边长为x,那么盒底的长是________,宽是_____,根据方盒的底面积为3600cm2,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
2.(出示排球邀请赛图片)
问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
单循环比赛是指就表示每个队要和其他所有的队都赛到了,如果有4个队总共赛_______场,5个队呢?8个队呢?n个队呢?
同学们用基本线段法和定点发射法总结规律:
场数=队数×(队数-1)÷2
场数=(队数-1)+(队数-2)+(队数-3)+。。。。。。+1
列方程得x(x-1)÷2=28 整理得X2-x=56解方程可以得出参赛队数。
3.学生活动,叙述概念
请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
4.追问条件,由一般式得出特殊式
(1)为什么a≠0?b和c能等于0吗?(2)特殊式:ax2+bx=0,ax2+c=0
教学活动3
㈢ 例题示范,巩固提高
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项、合并同类项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
巩固练习
教材P27 练习1、2(每组出三名同学在四周黑板写出,分六组)
教学活动4
㈣自我检查,信息反馈
自我测试设计
一、选择题(5×4=20分)
1.在下列方程中,一元二次方程的个数是( ).
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2- =0
A.1个 B.2个 C.3个 D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ).
A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则( ).
A.p=1 B.p>0 C.p≠0 D.p为任意实数
4.关于x的方程(m2-4)x2+mx-m=0是一元二次方程的条件是()
A.m≠0 B.m≠2 C.m= -2 D.m≠±2
二、填空题(4×5=20分)
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_________
3.关于x的方程(m+1)xm-1+mx-1=0是一元一次方程,则m=________
三.应用题(20分)
《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
程序 :1.学生自己独立完成2.老师给组长副组长打分3.组长给组员打分4.学生交流疑难杂症5.学生总结易错点和方法6.老师作最后强调。
教学活动5
㈤归纳总结,畅谈收获
本节课要掌握:
(1) 一元二次方程的概念;
(2) 一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
(3) 定义要条件化:二次项系数不等于0的条件
(4) 利用一元二次方程解决实际生活问题。
教学活动6
㈥拓展迁移,提升能力
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
篇10:一元二次方程复习提纲
一元二次方程复习提纲
一、目标与要求
1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。
二、重点
1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。
5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
三、难点
1.一元二次方程配方法解题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
3.用公式法解一元二次方程时的讨论。
4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区别。
6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
7.知识框架
四、知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
数学学习技巧
1.求教与自学相结合
在学习过程中,即要争取教师的指导和帮助,但是又不能过分依赖教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2.学习与思考相结合
在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4.博观约取,由博返约
课本是获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。
5.既有模仿,又有创新
模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习增强记忆
课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果
学习中的总结和评价有利于知识体系的建立、解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
提高数学成绩诀窍方法
1.要重视计算
做数学题就是要注重计算,很多孩子成绩丢分在计算上,解题步骤没有错,但是计算的过程中出现失误,导致丢分,影响整体成绩,所以要重视计算的作用,初一阶段刚开学就会学到有理数,绝对值,倒数,相反数,一元一次方程,单项式和多项式等基本的计算问题,每一个知识点都脱离不了计算的考察。整式,方程,不等式等后续重要知识点都基于有理数的计算。后续的分式计算更凸显了孩子的计算问题。所以要想提高数学成绩,一定要重视计算。
2.细节决定成败
我们在考试以后会发现有很多不应该做错的题,因为大意失了分数,所以要想提高数学成绩,一定要注意细节,在考试的过程中不该丢的不能丢,分分计较,做到颗粒归仓。解题时即使思路正确,不注意细节也能丢分。考试分分比较,每一分都代表了一个人的素质和水平。这就是细节决定成败。
3.善于发现数学规律
要想提高数学成绩,在做数学题的过程中要善于发现规律。不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,就比如语文一样的话,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个,不过你可以用其他的方法进行解答,所以善于发现数学的解题规律,转变思路也是提高数学成绩的一条有效途径。
4.高水平复习很重要
要想提高数学成绩,在考试前一定要有高水平高效率的复习。一道题,刚开始你不熟悉,那么,你需要做十遍甚至更多遍,把整个题目做到滚瓜烂熟。这个时候,如果你还在不断地重复做这道题,那么就是低水平重复,高手们会当这道题熟悉了,他就开始放弃了,把大把时间拿来,去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。他们也在重复,但是,是高水平重复。
篇11:数学《一元二次方程》教案设计
教学目标
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1.教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
篇12:数学《一元二次方程》教案设计
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
篇13:数学《一元二次方程》教案设计
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的长方形长为9acm,宽为7acm,依题意得
9a·7a=(可让上层学生在自学时,先上来板演)
2.P48-49第8、9题中下层学生在自学完之后先板演
效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
注意点:要善于利用图形的平移把问题简单化!
三、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?
文档为doc格式