下面就是小编给大家带来的数学复习之化归与整合,本文共5篇,希望大家喜欢阅读!

篇1:数学复习之化归与整合
数学复习之化归与整合
一、重视知识的化归 打个比方:新知识(新课)的学习,犹如是在给自己的-个小房间内购置各种各样的.日用品,久而久之,便摆放得比较零乱.而复习过程恰恰是像整理房间一样,把备类物品按用途或其它方式有条不紊地摆放到适当的位置,并根据需要再添置一些.到派上用处时不需东找西翻乱折腾.部分学生独立的知识点确实学得比较扎实,一到综合复习,便忽视了知识点的归类、联系、演变,导致知识点之间的联系脱节、考虑问题不周到、解题不敏捷或拿到题目一时找不到切入口.反之,教师若能在复习过程中有意识地加以引导、练习,便会促其有飞跃性的提高.
作 者:杨军昌 作者单位:江苏省建湖县海南初中 刊 名:青年与社会・中外教育研究 英文刊名:CHINESE AND FOREIGN EDUCATION RESEARCH 年,卷(期): “”(12) 分类号:G63 关键词:篇2:高三数学复习知识点整合
(一)第一数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤
(1)证明当n取第一个值时命题成立,对于一般数列取值为1,但也有特殊情况,
(2)假设当n=k(k≥[n的第一个值],k为自然数)时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法
对于某个与自然数有关的命题,
(1)验证n=n0时P(n)成立,
(2)假设no
综合(1)(2)对一切自然数n(>n0),命题P(n)都成立,
(三)螺旋式数学归纳法
P(n),Q(n)为两个与自然数有关的命题,
假如(1)P(n0)成立,
(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立,
(四)倒推数学归纳法(又名反向数学归纳法)
(1)对于无穷多个自然数命题P(n)成立,
(2)假设P(k+1)成立,并在此基础上推出P(k)成立,
综合(1)(2),对一切自然数n(>n0),命题P(n)都成立,
总而言之:归纳法是由一系列有限的特殊事例得出一般结论的推理方法。归纳法分为完全归纳法和不完全归纳法完全归纳法:数学归纳法就是一种不完全归纳法,在数学中有着重要的地位!
篇3:考研数学复习之概率论与数理统计
考研数学复习之概率论与数理统计
中国大学网概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。我们归纳各个部分考察的主要内容及对考生的要求,最后总结此门科目经常考的题型及容易犯的错误,供大家参考。随机事件和概率考查的主要内容有:
(1)事件之间的关系与运算,以及利用它们进行概率计算;
(2)概率的定义及性质,利用概率的性质计算一些事件的概率;
(3)古典概型与几何概型;
(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(5)事件独立性的概念,利用独立性计算事件的概率;
(6)独立重复试验,伯努利概型及有关事件概率的计算。
要求:考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。
随机变量及概率分布考查的主要内容有:
(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;
(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;
(3)会求随机变量的函数的分布。
(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。要求:考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。
随机变量的数字特征考查的主要内容有:
(1)数学期望、方差的定义、性质和计算;
(2)常用随机变量的数学期望和方差;
(3)计算一些随机变量函数的数学期望和方差;
(4)协方差、相关系数和矩的定义、性质和计算;
要求:考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。
大数定律和中心限定理考查的主要内容有:
(1)切比雪夫不等式;
(2)大数定律;
(3)中心极限定理。
要求:考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。
数理统计的基本概念考查的主要内容有:
(1)样本均值、样本方差和样本矩的概念、 性质及计算;
(2)χ2分布、t分布和F分布的定义、性质及分位数;
(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。
要求:考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、 t分布和F分布的定义和性质推导有关正态总体某些统计的计量的分布。
参数估计考查的主要内容有:
(1)求参数的矩估计、极大似然估计;
(2)判断估计量的无偏性、有效性、一致性;
(3)求正态总体参数的置信区间。
要求:考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。
假设检验考查的显著的主要内容有:
(1)正态总体参数的显著性检验;
(2)总体分布假设的χ2检验。
要求:考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的`独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。
这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。
在解答这部分考题时,考生易犯的错误有:
(1) 概念不清,弄不清事件之间的关系和事件的结构;
(2) 对试验分析错误,概率模型搞错;
(3) 计算概率的公式运用不当;
(4) 不能熟练地运用独立性去证明和计算;
(5) 不能熟练掌握和运用常用的概率分布及其数字特征;
(6) 不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。
综合历年考生的答题情况,得知概率论与数理统计试题的得分率在0.3左右,区分度一般在0.40以上。这表明试题既有一定的难度,又有较高的区分度。
kaoyan/篇4:信息技术与小学数学教学整合之优势
张智平
陕西省榆林市第八小学
随着新课程改革的深入,高耗低效,缺乏有效的数学课堂教学策略,成为小学数学教与学中比较突出的问题,新时期的小学数学教学发展,面临着新的机遇和挑战。运用新颖、先进的教育技术,为小学数学教学新的生长点提供广阔的展示平台。然而,目前相当多的教师在使用信息技术辅助课堂教学的过程中普遍存在误区,“以媒代书,以机代师”的现象凸现。如何利用好信息技术为教学服务,提高信息技术与学科整合的有效性,成为一大难题。
信息技术与小学数学教学的有效整合,就是教师在数学教学活动中,在把信息技术、资源、方法和数学课程内容有效结合,共同完成数学课程教学任务的一种新型的数学教学方式。两者有效整合是把信息技术作为教学辅助手段和认知工具的基础上,把信息技术看作数学学习的一个有机组成部分,就是在课程的学习活动中有效、合理地使用信息技术,努力使课堂的教学内容、教学方法和形式都发生变革,更好地完成课程目标。
信息技术与小学数学教学的有效整合,不是学科知识的简单地、孤立地拼凑和叠加,而是彼此相互联系、相互作用形成的有机整体。“整合”的主要含义是结合、融合、成为一体、一体化等。强调在使用信息技术前,要加强针对性,了解信息技术的优势和不足,以及数学学科教学的需求,将信息技术有效运用到使用其它方法无法做到或做不好的地方,使信息技术更好地服务于数学教学任务,更好地提高数学教与学的效果。
在多媒体信息技术和网络技术的优势下,如何把信息技术与小学数学课程进行有效的整合成为了大家共同研究在课题,那么到底整合后有哪些优势,结合实际教学,我觉得只要有以下两个方面:
篇5:信息技术与小学数学教学整合之优势
良好的学习兴趣是学好数学的关键,是学生渴望获得知识的情感意向,是学习积极性和自觉性的核心,是学习的强化剂。学生的学习兴趣来源于所接受的信息,信息的传递方式适合学生的口味,学生就容易接受,兴趣就浓。而现代信息技术通过声、相、动画等学生喜闻乐见的形式,不断地给学生以新的刺激,使学生的大脑始终保持兴奋状态,激发了学生强烈的学习欲望,增强了学习兴趣。因此,作为教师就要很好地把握现代信息技术教学工具和数学教学有效整合,最大限度的为学生传递更容易接受的信息,使学生在课堂教学中发挥出更多的聪明才智。
文档为doc格式