以下是小编整理的二年级下册第三单元数学知识点,本文共4篇,希望能够帮助到大家。

篇1:二年级下册第三单元数学知识点
二年级下册数学知识点
时间的初步认识
认识钟面
钟面上有12个大格,每个大格里有5个小格,钟面上一共有60小格。
走一大格是1小时,也就是60分钟
时针走一圈是12小时
走一小格是1分钟
分针走一大格是5分钟
走一圈是60分钟,也就是1小时
走一小格是1秒钟
秒针走一大格是5秒钟
走一圈是60秒种,也就是1分钟 能正确读写钟面上所表示的时刻
会用“几时几分”以及“24时计时法”表示钟面上所指的时刻。
能根据所给时间在钟面上正确画出分针。
初步建立时间概念,能正确填写合适的时间单位(可运用对比法和排除法)
建立时间点、时间段的概念,能通过一个已知时间点和时间段(时间点)求一个未知时间点(时间段)。并能正确填写单位名称。
比和比例
1、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
2、比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
3、单位换算。大单
基数和序数的区别
一、意思不同
基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。
二、用处不同
基数可以比较大小,可以进行运算。
例如:
设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A_B为A与B的笛卡儿积。
序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。
三、写法
基数:1、2、3
序数:第1、第2、第3
篇2:四年级数学下册第三单元知识点
数与代数
一 .小数的认识
小数的意义:
①能用小数表示图中的阴影,或根据小数在图中图色。
②能正确读、写小数。
③能知道分母是10、100、1000的分数分别能用一位、两位、三位小数表示。并能让这些分数与小数互换。
④能用小数表示日常的生活中的实物。
⑤能在数轴上表示某个小数。
⑥数位顺序及小数的组成。
⑦能把十进、百进、千进的计量单位用小数表示。
⑧小数的大小比较。(先比较整数部分,再比较十分位...)
二.小数的运算
1.小数的加减法
①不进位、不退位。 1.2+3.4 6.6-1.3
②进一位、退一位。 20.6+3.7 19.1-2.7
③连续进位,连续退位。 12.75+2.25 71.13-16.55
④位数不同。 16.3+2.75 60-2.88
2.小数的乘法
①一般情况。 2.8×1.1
②乘数中间有“0”。 1.06×3.3
③乘数末尾有“0”。 1.06×470
④积末尾有“0”。 8.5×0.88
⑤积与因数之间的关系。 0.49×0.9○0.49
⑥小数点的移动引起小数大小的变化。
⑦小数的性质。(在不改变1.3的大小的情况下,把它改写成两位小数)
3.小数的除法
①除数是整数。
②除数是小数。
③商中间有“0”。
④商末尾有“0”。
⑥商与被除数之间的关系。0.49÷0.9○0.49
⑦循环小数。
会判断循环小数、商用循环小数表示。
⑧余数问题。(把一段长3.6米的绳剪成长为0.6米的小段,最多可以剪几段,还剩几米?)
⑨近似数。四舍五入或者根据实际情况求近似数,如去尾、收尾法(进一法)。
4.混合运算。
要求:能简算要简算。
先判断运算顺序,再观察数据特点,看能否简算。
1.会用字母或者含有字母的式子表示数量关系。
2.会用字母表示所学过的公式及运算律。
3.知道什么是方程,会判断方程。
4.会解以下形式的方程:(a、b、c表示常数)
x+a=b x-a=b ax=b x÷a=b
ax+b=c ax-b=c ax+bx=c ax-bx=c
5. 列方程解决问题。(要注意方程的格式)
会找等量关系,利用等量关系准确设未知数,列出方程。
篇3:四年级数学下册第三单元知识点
近似数知识点
1、 精确数与近似数的特点。
精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。
2、 用四舍五入法保留近似数的方法。
根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。
典型练习题
一、填空
1、一个数是由7个千、3个百和5个十组成的,这个数是( )。
2、一个数从右边起,百位是第( )位,第五位是( )位。
3、3465的位是( )位,是( )位数。“6”在( )位上,表示( )。“3”在( )位上,表示( )。
4、100里面有( )十,一千里面有( )百,10个一是( )。
5、的四位数是( ),的三位数是( ),它们的和( ),差是( )。由( )个千、( )个百、( )个一组成3207。
6、万以内数的读法是从( )位起,按照数位顺序读;( )位上是几就读( )千;百位上是几就读( )……;中间有一个或两个0,只读( )个零;末尾不管有几个零都( )。
二、写出下面各数的近似数。
698的近似数是: 2956的近似数是:
3120的近似数是: 2802的近似数是:
四年级数学学习方法技巧
一、创设探索性情境,激发学习兴趣
理论曾提出过“三主”的观点:即课堂教学应以学生的发展为主线,以学生探索性的学为主体,以教师创造性的教为主导。所以,在课堂教学中,教师应创设一个探索性的学习情境,引导学生从多种角度,各个侧面不同方向去思考问题,以激发学生的学习兴趣,变“要我学”为“我要学”。
二、创设竞争性情境,引发学习兴趣
教育家夸美纽斯曾说“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。我们既然处在一个大的竞争环境中,不妨也在我们的小课堂中设置一个竞争的情境,教师在课堂上引入竞争机制,教学中做到“低起点,突重点,散难点,重过程,慢半拍,多鼓励。”为学生创造展示自我,表现自我的机会,促进所有学生比、学、赶、超。例如,在一次数学教研活动中,一位教师就根据教学内容并针对小学生心理特点设计了这样一种情境。讲授“8的认识”,在做课堂练习时,教师拿出两组0至8的数字卡片,指定一名男生和一名女生各代表男队,女队进行比赛。虽然此刻教师还没宣布比赛的规则和要求,可是全体同学已进入了教师所设置的情境之中,暗中为自己的队加油,全体学生的学习兴趣一下子被引发出来了。
三、创设游戏性情境,提高学习兴趣
根据数学学科特点和小学生好动、好新、好奇、好胜的思维特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红旗,多得为优胜。学生在游戏中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。
四、创设故事性情境,唤起学习兴趣
“教学的艺术不在于传授本领而在于激励、唤醒和鼓舞”。我们认为这正是教学的本质所在。我们在数学教学中适当地给学生营造一个故事情境,不仅可以吸引学生的注意力,并会使学生在不知不觉中获得知识。例如,在教学“比的应用”一节内容时,在练习当中我为同学们讲了一个故事:中秋节,江西巡抚派人向乾隆皇帝送来贡品——芋头,共3筐,每筐都装大小均匀的芋头180个,乾隆皇帝很高兴,决定把其中的一筐赏赐给文武大臣和后宫主管,并要求按人均分配。军机大臣和珅了马上讨好,忙出班跪倒“启奏陛下,臣认为此一筐芋头共180个,先分别赐予文武大臣90个,后宫主管90个,然后再自行分配”。还没等和珅说完宰相刘墉出班跪倒“启奏万岁,刚才和大人所说不妥。这在朝的文官武将现有56位,分90个芋头,每人不足两个,而后宫主管34人,分90个芋头,每人不足三个,这怎么能符合皇上的人均数一样多”。皇上听后点点头“刘爱卿说的有理,那依卿之见如何分好?”此时,学生都被故事内容所吸引,然后让学生替刘墉说出方法,这个故事把数学知识寓于故事情节之中,从而唤起学生学习兴趣。
五、创设操作性情境,调动学习兴趣
根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创造精神。例如,在讲“轴对称图形”内容时,教师提前让学生准备长方形、正方形、圆、平行四边形和几种三角形的纸片。让学生试做每个图形的对折,使图形对折后能完全重合。学生通过操作后发现有些图形能完全重合有些图形不能完全重合。学生通过亲自动手操作,自己发现问题、解决问题,而且有力地调动了学生的学习兴趣。
篇4:二年级上册数学第三单元知识点
二年级上册数学第三单元知识点
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。
2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
分数乘分数计算
分数的分子与分子相乘,分母与分母相乘,能约分的要先约分,分子不能和分母乘。做第一步时,就要想一个数的分子和另一个数的分母能不能约分,0除外。运算法则:分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变。能约分的要先约分。分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。这就是分数乘分数的计算方法。
自然数知识点
1最大自然数
9不是最大的自然数,没有最大的自然数。最小的自然数是0。
自然数指用以计量事物的件数或表示事物件数的数。即用数码0,1,2,3,4,……所表示的数。自然数由0开始,一个接一个,组成一个无穷集体。
2自然数分类
可分为质数、合数、1和0。
1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1:只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
3自然数在生活中的应用
自然数在日常生活中起了很大的作用,人们广泛使用自然数 。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用 。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线、门牌号码、邮政编码等。
文档为doc格式