欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

考研数学 矩阵计算方法技巧总结

时间:2023-05-30 07:58:30 其他范文 收藏本文 下载本文

这次小编给大家整理了考研数学 矩阵计算方法技巧总结,本文共13篇,供大家阅读参考,也相信能帮助到您。

考研数学 矩阵计算方法技巧总结

篇1:考研数学 矩阵计算方法技巧总结

考研数学 矩阵计算方法技巧总结

考研复习已经进入最后冲刺阶段,这段时间同学们应该把所复习的知识分类做以总结,进一步夯实自己的基础,以便在考试中得心应手地对付各种题型。线性代数在历年的考研数学中分值所占比例比较高,而矩阵计算问题又是线性代数的重中之重,贯穿整个线性代数考题。鉴于此,考研数学辅导老师总结了以下关于矩阵计算问题的方法技巧,供同学们分享:

一、行列式的`计算

矩阵对应的行列式计算是矩阵计算问题的基础,在这我们把行列式计算分为有限阶行列式计算和n阶行列式计算来总结。有限阶行列式计算的常用方法有:利用行列式的性质把行列式中的元素化为尽可能多的零,然后用行列式定义进行计算,有时行列式能被化为特殊行列式(如三角行列式)进行计算。n阶行列式常用计算方法有:可以先用上述有限阶行列式的方法(多化零、化三角行列式法),有时观察行列式可以发现行列式有某种特殊结构(如一高阶行列式可以表示成较低阶行列式的线性关系式),就可以根据此结构选用递推法、归纳法、拆项法、升阶法、利用范德蒙行列式法等来计算。

二、矩阵的计算

有了行列式计算的基础,下面我们就几个重要矩阵计算问题来做以总结。矩阵三则运算常用其定义和性质来计算。矩阵幂计算的常用方法有:归纳法、矩阵对角化法、利用初等矩阵的性质等。逆矩阵计算的常用方法有:定义法、初等变换法(矩阵元素为具体数字常用)、伴随矩阵法(小型矩阵常用)、分块矩阵求逆法(大型且能化成对角子块阵或三角块阵适用)、利用线性方程组求逆矩阵法等。

最后建议同学们在重温这些方法时,能配套适当做一些典型的例题,这样会得到更好的复习效果。

篇2:考研数学与The Matrix 矩阵

考研数学与The Matrix 矩阵

》,一部“The Matrix”(骇客帝国)演示了虚拟与现实、网络与生活之间的重重矛盾。剧中“Matrix”(矩阵)的强大力量令人惊叹,也让人对矩阵产生强烈的好奇,什么是矩阵?

矩阵是一个数学名词,它是指将若干个元素按一定的规律排列而成的框架,这些元素在这个框架中位置固定,不突出任何一个元素的特征,研究的是整体的性能。

考研数学中,矩阵中的元素都是实数,也称之为实矩阵。矩阵是线性代数最为重要的研究工具,它也是数学与其他学科的接合点之一。数阵在高等数学中,自成一体。在数阵的世界里,它们有自己的生存方式:运算(加、减、乘、逆等),联系(等价、相似、合同等)。在数阵中,三教九等各有特色的矩阵也各有其作用与圈子,如方阵,都有一个实数与之对应,即该矩阵的行列式;如可逆阵,其逆矩阵就如同它的影子,如影随形。

骇客帝国的矩阵具有强大能量,数阵是否也有极大潜力?是的,整个线性代数的每一个部分都离不开矩阵,这就充分显示了它的巨大作用。无论是线性方程组还是二次型,都可通过矩阵解决问题。对矩阵本身来说,高数中研究的仅是一些特殊变化,如其对角化、方阵的特征值与特征向量。

对于考生来说,矩阵是解题的工具,对其概念及特殊矩阵的性质需了解,做到:掌握矩阵的'线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法;了解分块矩阵及其运算即可。

是的,无论何时,数学需要做题(2012数学考试大纲导读有众多与考试紧密相连的题目),在了解理解的同时做题,在做题的同时更了解与理解。特别到了最后阶段,即将考试了,做模拟题更有助于考查总体学习效果,尤其是有经验的老师编写的题目,其见解及角度都有极其重要的提醒与提高作用。

就像里奥一样,也许你就是时空中矩阵的一员,而你恰恰就是那个已经注定的救世主。现在你要做的是,了解矩阵的真相,掌握它的能量来源,打败它,俘获它,使它为你所用!

/kaoyan/ 考研

篇3:考研数学复习宝典之矩阵

考研数学复习宝典之矩阵

线性代数是考研必考内容,而线性代数中的重要内容就是矩阵,几乎每章内容都和矩阵有着密切的联系。因此矩阵这部分内容一定要掌握好,才能保证复习好整个线性代数。

首先要理解矩阵的概念,明白矩阵不是数,不能全部套用数的运算法则,但在某些方面又有一定的共通性。如:(1)矩阵乘积不具有交换性,一般地,对于n阶矩阵A和B,AB≠BA;(2)不是任意两个矩阵就可进行加减乘的运算,加减运算要求矩阵行数和列数都相等,乘积运算的要求:矩阵A和B相乘,要求A是m行n列,B是n行s列,即前面的矩阵的列数必须等于后面矩阵的行数,不相等则不能相乘,乘积得到的矩阵是m行s列的。以上都是简单的两个例子,目的是让考生在复习和做题时提高警惕,不要想当然的去处理一些问题,而应该多加思考理解好每条概念、定理。

逆矩阵是矩阵中很重要的一个概念,且在线性代数中有重要应用。需要重点掌握的有:(1)矩阵可逆的充要条件,n阶矩阵A可逆的充要条件是OAO≠0;(2)逆矩阵的`求法,a.伴随矩阵法,A-1=OAO-1A*;b.初等变换法,(AE)行变换→(EA-1);(3)逆矩阵的概念和性质。

矩阵的秩是矩阵的另一个重要概念,大纲要求理解矩阵的秩的概念,掌握用初等变换求矩阵的秩的方法,另外矩阵秩的性质要熟练掌握,r(A)= r(AT)= r(AAT)= r(ATA);r(A±B)≤r(A)+ r(B);r(AB) ≤min{ r(A), r(B)};AB=O,则r(A)+ r(B) ≤n,等。

另外,考题中常会涉及的还有伴随矩阵、分块矩阵、上(下)三角矩阵等,这些矩阵的概念和性质都要熟悉。以上都是学习矩阵必须要掌握的基础知识,也是后续内容复习的准备知识,掌握起来并不难,矩阵涉及到的数比较多,做题的时候一定要认真谨慎,有一个数错误,过程写的再好也只是无用功,因此要多加练习做相关题目训练解题能力、总结解题经验。汤家凤老师的新作《无师自通考研数学复习大全》里还有更多的解题技巧详解,本文就不再赘述,希望大家复习顺利。

考研频道。

篇4:考研数学 应试技巧全面总结

考研数学 应试技巧全面总结

一、提前进入“角色”

考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区。一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入“角色”――让大脑开始简单的数学活动,进入单一的数学情境。如:

1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。

2.把一些基本数据、常用公式、重要定理在脑子里“过过电影”。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

二、精神要放松,情绪要自控

最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法②自我安慰法③抑制思维法

三、迅速摸透“题情”

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:

1.顺利解答那些一眼看得出结论的简单选择或填空题(一旦解出,情绪立即会稳定)。

2.对不能立即作答的题目,可一面通览,一面粗略分为A、B两类:A类指题型比较熟悉、估计上手比较容易的题目,B类是题型比较陌生、自我感觉比较困难的题目。

3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于高数题,哪些属于概率题。

通览全卷是避免“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

四、信心要充足,暗示靠自己

答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

五、三先三后

在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明:满分卷是极少数,绝大部分考生都只能拿下部分题目或题目的部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。

1.先易后难。就是说,先做简单题,再做复杂题;先做A类题,再做B类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。

2.先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。

3.先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶”的转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。

三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”。

六、一慢一快

就是说,审题要慢,做题要快。磨刀不误砍柴工。

题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的'信息,这一步不要怕慢。

找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,嗦重复,尤忌画蛇添足。一般来说,一个原理写一步就可以了,至于不是题目考查的过渡知识,可以直接写出结论。允许合理省略非关键步骤。

为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。

七、分段得分

对于这点,在之前所发布的文章中我们已经详细说明。即:对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少,为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”――踩上知识点就得分,踩得多就多得分。

八、以快为上

研究生考试数学试卷共有23个题,考试时间为180分钟,平均每题约为7.8分钟。为了给解答题的中高档题留下较充裕的时间,每道选择题、填空题应在一至二分钟之内解决。若这些题目用时太长,即使做对了也是“潜在丢分”,或“隐含失分”。一般,客观性试题与主观性试题的时间分配为4∶6。

九、立足中下题目,力争高水平

因为时间和个别题目的难度都不允许多数学生去做完、做对全部题目,只有个别的同学能交满分卷,所以在答卷中要立足中下题目。中下题目是试题的主要构成,是考生得分的主要来源。学生能拿下这些题目,实际上就是数学科打了个胜仗,有了胜利在握的心理,对攻克高档题会更放得开。

十、立足一次成功,重视复查环节,不争交头卷

答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错。

最后,再次检杳一下姓名与考证号是否写正确。确信万无一失后方可交卷,宁可坚持到终考一分钟,也不要做交卷第一人。

篇5:考研数学 坚持复习总结技巧

考研数学 坚持复习总结技巧

首先,同学们得先确认几个问题:

1.这个时候如果大家还对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。所以大家务必在最后完全吃透基础理论知识,深入地理解基本概念、公式、定理、图表的理解,掌握知识点。

2.这时候务必要利用最后一个月的时间来拓展解题方法,提高解题能力。把知识体系化,连贯化,并拓展做题方法及思路,熟悉考试出题方式。尤其是解综合性试题和应用题能力。大家要搞清有关知识的纵向、横向联系,形成一个有机的体系。同时,也要提高做题质量,每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。

3.此时是研究真题总结命题规律的最佳时机,所以大家要特别重视历年真题。研究真题是各科复习过程中不可或缺的一个环节,数学自然也不例外。如果历年真题利用的好,将为你节省时间、保持清晰的复习思路。对历年真题的学习、研究是应该贯穿整个复习过程的。

研究真题要注意做到:要把握复习重点――对于在真题中重复出现的知识点要重点加强、全面细致的复习;对于真题涉及到的知识点和题型要重点复习;要感受出题思路――除了作自己计划的巩固提高题目之外,还要把最近五年出现的极限真题都做一下,感受一下这几年命题中心在这个知识点上是如何出题的,并尝试一下自己在这类题型上是否胸有成竹;要发现命题规律――在规定的考试时间内,把历年的'真题分套练习。这样,可以整套把握真题的出题规律,从而让自己习惯这类题的出题方式。一般短期内,命题思路和规律不会有太大的改变,所以熟悉了之前几年的命题规律,有利于坦然面对考试。最后就是要寻找考试感觉,做题的同时感受真实考场上的氛围,熟悉考试感受。

接下来几个答题技巧给大家,希望大家认真领会其涌出,并做到活学活用。

1.最基本的技巧是踩点得分对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“踩点给分”――踩上知识点就得分,踩得多就多得分。

鉴于这一情况,考试中对于难度较大的题目采用一定的策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的――会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤――对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中得点分。有什么样的解题策略,就有什么样的得分策略。其实你要做的是认认真真把你解题的真实过程原原本本写出来,就是最好的得分技巧。

2.有时候可以大题拿小分

如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

3.卡壳处先留白,以后推前

解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

4. 以退求进是最高境界

“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

总之,在离考试还有两周的时间里,大家不仅要坚守复习的阵地,更要总结方法提高技巧,为实战做好充分准备。盲目复习可是这时期复习的大敌,清醒自己的头脑,准备迎接真正的挑战吧,祝大家成功。

篇6:考研数学 单选题复习技巧总结

考研数学 单选题复习技巧总结

同学们可不要小看了快速答题的技巧,它会在你碰到一些模棱两可的题目时,有效地帮助你确定最终的答案;或者能够大大节省你的答题时间;又或者可以使你每一科的成绩比预先估计的会高出“一些”。就凭着这“一些”,可能对某些考生最后的考研结果起到决定性的作用。

考生们可以先解答填空题,一般讲填空题是基本概念,基本运算题,得分比较容易,当然试题中计算题或者证明题以平时看书或者参加辅导班老师所讲的例题类似的也可以先做;其次做计算题;最后解单项选择题,因为有些单项选择题概念性非常强,计算技巧也比较高,求解单项选择题一般有以下几种方法:

推演法:它适用于题干中给出的条件是解析式子。

图示法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。

逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

赋值法:将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

做选择题的时候,考生可以巧妙地运用图示法和赋值法。这两种方法很有效。同学们平时用得很多,但很多人进考场一紧张就忘了,而用一些常规方法去硬算,结果既浪费了时间又容易出错。

计算题的题目结果一般不会特别复杂,一旦出现了很复杂的结果,就需要重点检查一下。如果遇到自己不会做和没有把握的题目,千万不要留空白,可以多写一些相关内容来得一些“步骤分”。

拿到试卷检查无误后先看一下有没有自己熟悉的题,先解决掉自己有把握的再说,省得最后没有时间了把自己会的忽略了。针对数学一,一般而言,考研数学第一道大题填空题基本上全是概念性的题目,计算量不大,考生只要复习过,没有遗漏知识点,基本全都可以很快做出来;第二道大题选择题,其中有三四道题是大家都会做的,还有几道偏难的选择题,一时拿不准可以先放一放,实在不会还可以猜一猜;而第三道、第四道大题,一般来说难度不大,可以先做。历年试题这两道主要是高等数学的基本问题,如极限、偏导数或定积分应用题。接下来的高等数学的.题目可能有些难度,如果考生对线性代数和概率统计比较擅长,可以先各做一个大题,这样整个卷面分数就可以达到70分左右,分数线可以通过。

数学答题注意事项概括如下:

合理地安排好答题的答题空间,答题时尽量不要跳步,因为每一步都是有步骤分的。

合理的安排好自己的答题顺序,千万不要将大把时间浪费在分值较小的题上,这样会得不偿失。

该放弃的就放弃,尽快调整好自己的心态,要相信自己做不好的题别人很可能也做不好;自己没有做出的题,别人很可能也做不出。

篇7:考研数学 在做题中总结技巧

考研数学 在做题中总结技巧

对待考研数学,在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完例题之后,切莫忘记要好好选两道习题来巩固一下。不要因一些难题贬低自己的自信心。

平时做题时要积累一些答题技巧。适当运用这些技巧,可以节约时间,提高答题速度。

比如,在做选择题的过程中就可以运用排除法,在解答考查抽象函数性质的有关题目时,可以用具体的函数形式来反证其中的三项是错误的,从而选择出正确的答案。再比如,在答题过程中合理利用函数的几何意义和物理意义也可能直接解题或成为解题的关键。但是不能过分强调并依赖这些技巧,否则就违背了数学的基本精神,也很难在考试中取得好的成绩。

做题时不要想当然。考生在考试的过程中,不可避免地会联想起自己在复习中做过的类似题目,此时就应当更加注重条件的变化。有些问题常常是条件不变,结论发生变化,或者是条件变化,结论不变。如果忽略了条件的变化,作答的过程中就很可能会犯错。对于自己会做的`题目要尽量得满分。在做解答题时不要漏步或跳步,不要因为平时复习的时候觉得做题很容易,中间的步骤就省略掉了。在阅卷的时候是有关键步骤关键分的。否则即使答案是正确的,却仅能得一半的分数,其中的原因就是跳步、漏步了。

还要注意提高自己的计算能力,保证运算的准确。比如在填空题时,就因为差一个符号,丢一个根号,这些很小的细节就导致4分就丢掉了。所以大家一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练。

最后,考生要调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪,循序渐进,将数学复习进行到底!

篇8:考研数学复习技巧

对很多同学来说,考研数学是一个困难,数学拉分较大,就好比一只拦路虎挡在了考研成功的道路前。在考研数学学习中,其实也有很多技巧。

一、分段得分

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”――踩上知识点就得分,踩得多就多得分。

鉴于这一情况,考试中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的――会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤――对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

二、缺步解答

如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

三、跳步答题

解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

四、退步解答

“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

五、辅助解答

一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真―学习认真―成绩优良―给分偏高。

1.2018考研数学全程复习规划

2.考研数学复习:概率复习技巧和计划的总结

3.2018考研数学复习抓关键的妙招

4.2018考研数学复习规划:概率论与数理统计

5.2018考研数学备考复习方法

6.2018考研数学临场考试答题技巧

7.2018考研数学五个高分技巧

8.2018考研数学做题得分技巧

9.2018考研备考复习的技巧

10.2018考研复习搜集资料技巧

篇9:考研数学:答题技巧

考研数学:实用答题技巧

考研复习最重要的是打好坚实的基础,只有基础扎实,才有可能拿到高分。同时,任何考试都有技巧可循,当然这是建立在具有良好的基础之上的。考试技巧往往具有画龙点睛的作用,运用得好,可以最大程度提高考试成绩。那么,考研数学到底有那些技巧呢?下面就谈谈笔者自己和一些大神牛人总结的答题技巧,希望能对同学们有所帮助。

一、踩点得分

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。也叫踩点给分,即踩上知识点就得分,踩得多就多得分。因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。因此,会做的题目要特别注意表达准确、逻辑清晰、书写规范、语言严谨,防止被“分段扣点分”。

二、大题拿小分

有的大题难度比较大,确实啃不动。一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步。尚未成功不等于失败,特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的.演算都可以得分。最后结论虽然未得出,但分数却已过半。

三、以后推前

考生在解题过程中卡在某一步是很常见,这时可以换一种思路,也许就会柳暗花明又一村。同学们可以把卡壳处空下来,先承认中间结论,再往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

四、跳步解答

由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

五、以退求进

以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

作为考研人,唯一的目的就是考出高分考进梦想中的院校。因此,学习中且不可得少为足,而是一定要积极学习借鉴他人的成功经验。这样才能多快好省的提高自己。其实,考研数学答题技巧还有很多,本文只是列出其中一少部分。同学们可以根据自己的需要灵活应用,不断优化改进自己的答题方法和技巧。

篇10:考研数学答题技巧

单选题

单选题的解题方法总结一下,也就下面这几种。

代入法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

演算法:它适用于题干中给出的条件是解析式子。

图形法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。

反推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

大题

接下来提供给大家几个大题的答题技巧,希望大家认真领会方法,并做到活学活用。

踩点得分:对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。

这种方法我们叫它“踩点给分”――踩上知识点就得分,踩得多就多得分。

鉴于这一情况,考试中对于难度较大的题目采用一定的策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的――会而不对。

有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤――对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中得点分。有什么样的解题策略,就有什么样的得分策略。其实你要做的是认认真真把你解题的真实过程原原本本写出来,就是最好的得分技巧。

大题拿小分:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。

特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

卡壳处先留白,以后推前:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

以退求进:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。

为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

1.考研数学的答题技巧

2.考研答题技巧分享

3.考研数学不同题型的答题技巧

4.考研数学答题技巧

5.2018考研数学临场考试答题技巧

6.考研数学选择题答题技巧汇总

7.2018考研数学的考场答题技巧

8.考研数学考场答题技巧

9.2018考研数学复习技巧

10.考研数学拿高分技巧

篇11:考研数学复习方法和技巧

考研数学复习方法和技巧

先来说客观题部分。客观题就分填空和选择,整个的卷子里边填空是6道题,选择是8道题,这个占了很大的比例,14道题要占到56分,三分之一多的分数,这块历届的丢分比较严重,因为6道填空题是在第一道出的,8道选择题是第二道出的,根据判卷老师的经验,发现有很多的同学在前面的56分可能才得了20多分!如果基本题丢掉30多分,这个时候总分要上去是一件非常不容易的事情。

填空题比较多的是考察基本运算和基本概念,或者说填空题比较多的是计算,同学丢分的主要原因是,运算的准确率比较差,这种填空题出的计算题题本身不难,方法我们一般同学拿到都知道,但是一算就算错了,结果算错了,填空题只要是答案填错了就只能给0分。

从这个意义上讲,填空题对我们同学来讲应该是非常残酷的一个事情。那么,怎么来提高运算准确率呢?这就要求我们同学平时复习的时候,这种计算题,一些基本的运算题不能光看会,就不去算,很多的同学看会在草稿纸上画两下,没有认真地算。平时没有算过一定量的题,考试的时候就容易错,这就要求我们平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。

填空题里面本身有一些特殊的方法和技巧,同学做这种题还是按照常规,有的时候方法不当,本来很简单的题做成了很复杂的题,有些题可以根据几何意义,结果一眼就看出来了,有些题是根据一些特殊的`性质,有的同学习惯做填空题还是按照常规的主观题的方法去做,对一些特殊方法和技巧不了解。

选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。

这个地方丢分的原因主要是三个方面。第一个方面我们同学学数学,一个薄弱环节就是这个地方的基本概念和基本理论比较强势的是计算题,喜欢做计算题,相对来说计算题也比较扎实,薄弱环节就是概念和理论,这个本身是我们的薄弱环节。第二个原因,选择题里面确实有些题是有相当难度的,本身有难度,不是说一个卷子里边前面的八道选择题都是很基本的题。第三个原因就是选择题,我们同学做的时候还是缺乏相应的一些方法和技巧,跟刚才填空题一样的还是用常规题的方法去做,同样一个题出成选择题的时候就有很巧妙的方法,由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题,丢分原因主要是这几个方面。

要想解决应该从三个方面去解决。第一,基本理论和基本概念是我们的薄弱环节,就必须在这下功夫,实际上它的选择题里边要考的东西往往就是我们原来的定义或者性质,或者一个定理这些内容的外延,所以我们复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了,平时在复习的时候要注意基本的概念和理论,本身有些题有难点,但是也不是说选择题有很多有难度的题,一般来说每年的卷子里边八道选择题里面一般有一两道是比较难的,剩下的相对都是比较容易的。

所以不能为了这一两道题我们花了很多的时间,这个不应该作为重点,另外客观题有一些方法和技巧,我们通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,我们考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧,我们在强化班讲课的时候也给同学做了归纳和总结,我想经过我们的讲解和同学们的努力这个地方应该可以做得很好。

篇12:考研数学 行列式、矩阵、向量考点详解

考研数学 行列式、矩阵、向量考点详解

内容:线代――行列式、矩阵、向量

(1)行列式:行列式这个章节的核心考点主要分为两大块,一是行列式的计算,二是行列式的应用。行列式计算的主要方法有:第一,利用行列式的相关性质化行列式为上三角或下三角来进行计算;第二,利用行列式的行展开或列展开定理来进行计算;第三,利用特殊行列式来进行计算,如范德蒙行列式,行(列)和相等行列式,广义对角行列式等等,第四,利用特征值来计算行列式。行列式的应用主要体现在利用克莱姆法则判断方程组解的情况以及如何求解整个方程组,在判断方程组解的情况时只要方程组满足是方形的也就是方程组的个数和未知数的个数相等时往往利用克莱姆法则来判断解的情况来的更快,更简捷。总之,行列式这个章节整体的落脚点还是在行列式的计算上,在后面章节中求解特征值时都要用到行列式的相关计算。同学们在复习这个章节的时候一定要多练习,多做习题,特别是具有特殊形式的行列式的计算常用的解题方法和技巧一定要熟记于心,比如说行(列)和相等行列式,处理方法一般都是将其他各行(或各列)都加到第一行(或第一列)上去,然后再做处理。针对于行列式这个章节,做到多练,多练!

(2)矩阵:矩阵可以说是贯穿整个线代部分的一条基线,矩阵有对应的方阵行列式,矩阵有对应线性方程组的系数矩阵,矩阵有对应的行向量、列向量形式,矩阵有对应的二次型矩阵等等。矩阵这个章节是学好整个线代部分的基础,同样也是后面章节所常用的一种工具,当然也是整个线代部分的重点所在。矩阵这个章节的核心考点主要有:第一,矩阵的运算,包括线性运算(矩阵加法,数乘)、矩阵乘法;第二,矩阵的求逆,求逆的方法主要包括:定义法、伴随矩阵法、初等变换法、分块矩阵法;第三,分块矩阵,其中分块矩阵所对应的分块行列式的计算是分块矩阵的重点所在,拉普拉斯展开定理的几个常用的分块行列式的计算公式一定得掌握;第四,矩阵的秩,矩阵秩的求解方法以及秩的.相关不等式性质,这个是考研的常考点,也是必考点!这个章节复习的时候,需要注意的就是在进行矩阵的运算时一定要非常小心、细心,特别是在对矩阵作初等变换时一步错就步步错,总之这个章节同学们在做题时一定要做到细心,细心!

(3)向量:向量其实它的本质也就是特殊的矩阵,这个章节的核心考点主要包括:线性相关性的判定、极大无关组的求法、向量组秩的相关性质、施密特正交法。相关性的判定要掌握定义法、以及线性相关的几个充要条件,掌握利用化行阶梯型求解极大无关组,掌握向量组秩的求法,要会利用施密特正交法把已知的向量组标准正交化。

这三个章节从整体上来说它们是学习整个线代部分的基础,基础打好了,才会更有效的把握整体!总之,复习还是要从基础抓起,夯实基础,稳扎稳打,好的基础,好的分数一切源于平时多做题多练习,切记多练,自练!

篇13:考研数学冲刺 矩阵对角化讲解

考研数学冲刺 矩阵对角化讲解

2013考研数学复习已进入冲刺阶段,考研数学专家针对有些同学在矩阵对角化这块内容上仍存在一些困惑,特撰此文讲解矩阵对角化相关的知识、注意要点及解题技巧,助力2013考研数学冲刺复习(考|研教育网整理)。

首先是矩阵对角化的概念:对于n阶矩阵A,若存在一个n阶可逆矩阵P,使P-1AP=Λ(Λ为对角矩阵)成立,则称A可相似对角化,否则就称A不可对角化。概念是要牢记于心的。

重要定理:若n阶矩阵A可以对角化,则对角矩阵Λ的n个主对角线元素必是A的n个特征值λ1,λ2,…,λn(包括重根),其相似变换矩阵P的n个列向量X1,X2,…,Xn是A的分别属于λ1,λ2,…,λn的特征向量,且X1,X2,…,Xn线性无关,即有:P-1AP=Λ,其中Λ=diag(λ1,λ2,…,λn),P=(X1,X2,…,Xn)为可逆阵,且AXj=λXj(j=1,2,…,n).

并非所有的.n阶矩阵都可对角化,只有满足一定条件的矩阵才可对角化,下面是几个相关结论:

结论1:n阶矩阵A可以对角化的充分必要条件是A有n个线性无关的特征向量。

结论2:若n阶矩阵A有n个两两不同的特征值,则A必可对角化。

结论3:设λi是矩阵A的任一个特征值,其代数重数为ni(即λi是ni重特征值),其几何重数为mi(即属于λi的线性无关的特征向量的最大个数,也是齐次线性方程组(λiE-A)X=0的基础解系中的向量个数,mi=n-r(λiE-A)),则恒有mi≤ni。

结论4:设n阶矩阵A的两两不等的特征值为λ1,λ2,…,λs(1≤s≤n),则矩阵A可对角化的充分必要条件是,对A的每一个特征值λi,都有mi=ni(i=1,2,…,s)。

将n阶矩阵A通过相似变换化成对角阵的计算步骤也是需要牢牢掌握的,由于此部分内容较简单,各位考生可自行翻阅《汤家凤考研数学复习大全》这部分内容来学习掌握,并结合书内典型例题加强理解。

(中国大学网考研 )

考研数学 坚持复习总结技巧

考研数学 在做题中总结技巧

五年级数学简便计算方法

定积分计算方法总结

不定积分的计算方法总结

考研数学 高数总结

考研答题技巧

答题技巧 为考研数学高分锦上添花

高考数学应试技巧总结

高考数学学习技巧总结

《考研数学 矩阵计算方法技巧总结(共13篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档