以下是小编收集整理的六年级上册数学第二单元预习方法,本文共9篇,欢迎阅读与借鉴。

篇1:六年级上册数学第二单元预习方法
第二单元 位置与方向(二)
一、确定物体位置的方法:
1、先找观测点;
2、再定方向(看方向夹角的度数);
3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单 元分数除法
一、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
6、分数除法的意义:
乘法:因数×因数 =积
除法:积÷一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
7、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
8、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
1,解法:
(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3
2、看分率前有没有比多或比少的问题;
分率前是“多或少”的关系式:
(比少):具体量÷ (1-分率)= 单位“1”的量;
例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)
(比多):具体量 ÷ (1+分率)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了1/7,原价多少?
列式是:80÷(1+1/7)
3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3
②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)
例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?
列式:1÷(1/5+1/10+1/3)
篇2:六年级上册数学第二单元预习方法
1.任务落实预习法
即教师布置预习任务,同学带着明确的预习任务去进行预习。因为同学初学预习时不知从何下手,这时教师设计好预习任务,让同学带着任务去预习,能做到有的放矢,针对性较强。教师先要对自己提出高标准严要求,对相关学习内容要进行了认真研读,提出既有一定的价值,又有吸引力的,能促使同学产生浓厚的学习、探索兴趣的预习任务。教师布置任务时,可以采取表格的形式或者提问的形式,让同学去预习。布置预习任务时一定要注意难度适中,具有诱发性和趣味性,预习要求要明确,可操作性要强。
2.笔记预习法
开始,可以让同学在书上做简单的眉批笔记,在阅读课本后,把自己的理解、体会或独特见解写在书上的空白处;其次,可以让同学做摘录笔记,就是预习后,在笔记本上摘抄重点概念、关键语句等等,以加深对重要知识的记忆、理解,并简单地记下预习过程中的疑惑和不解之处,也可以记录自己在预习中的收获。开始时教师都要抽出一定的课内时间带着同学进行,在要求、步骤、方法、格式上均要给以细致的指导,然后再放手让同学独立预习、做笔记。对于基础比较好的同学,还要会做思维含量较高的反思型预习笔记。在研究过程中,一方面要验证这几种预习方法的适用性,另一方面要寻求其他适用的科学预习方法。
3.温故知新预习法
这是新旧知识联系的预习法。在预习过程中,一方面初步理解新知识,归纳新知识的重点,找出疑难问题,另一方面复习、巩固、补习与新知相联系的旧知识。要求预习新内容时要与学过的旧知识联系起来,做到“温故知新”,联系旧知,学习新知,使知识系统化。
4.尝试练习预习法
对于计算类新授课、练习课,预习时先进行尝试练习,遇到疑难再返回预习例题,然后再尝试练习。通过尝试练习,可以检验同学预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。同学经过自己的努力初步理解和掌握了新的数学知识,要让同学通过做练习或解决简单的问题来检验自己预习的效果。
5.动手操作预习法
对于公式的推导等操作性较强的知识,要求同学在预习过程中亲自动手去实践,通过剪、拼、折、移、摆、画、量、观察、比较等活动,体验、感悟新知识。因为课堂中有动手操作的内容,自然少不了要通过熟悉教材,了解操作过程中所需要用到的工具、材料等,在课前准备好。同学只有亲历了数学知识形成的过程,才能知其所以然。
6.合作式预习法
同学之间互相切磋、交流,可小组合作分工,从不同角度,采用不同的预习方式,结合自己的情感体验来共同完成预习任务。合作式预习培养了同学的团结合作精神,提高了同学解决问题的能力。
六年级数学预习技巧
1、通读数学内容,动手画、圈知识要点,了解主要内容。这一过程主要针对概念性的数学知识。在通读内容的过程中,从整体上了解了新的数学知识。把自己认为重要的概念、结论画一画、圈一圈,使得新课中的主要内容显现出来,为理解和掌握知识做准备。
2、细读内容,理解主要数学知识。这是预习的主要环节。在对数学知识有了一定的了解后,就要指导孩子怎样“消化”这些知识。
01列举身边熟悉的事例来理解概念。数学概念并不是无中生有,而是从具体的例子中抽象出来的。让孩子举一些具体的例子来说明概念,可以帮助其形象理解概念。
02动手实践来感受数学。《课标》指出:“要让学生亲身经历将实际问题抽象成数学模型的过程”,“动手实践、自主探索与合作交流是学生学习数学的重要方式”。在预习时,也应该指导孩子动手实践来理解数学知识。
03大胆尝试解答例题来思考问题。在小学数学课本中有相当一部分内容的设计是以解答数学问题的形式出现的。如果不指导孩子怎样预习这样的内容,就很有可能造成学生读完题后看答案的现象。孩子在似懂非懂的情况下不劳而获,不利于孩子学习能力和习惯的发展。可以先将课本上的解答方法用纸盖住,自己尝试审题、解答。解答后与课本上的方法对照,不会解答再看课本上的。这样通过了自己独立思考和自主探索的过程,就会加深对数学知识的理解。
04巧用对比来分析关系。在数学的学习中“对比”是很重要又经常用到的学习方法,在预习时也是如此。
3、精读难点内容,思考、标注疑点,这是数学预习的重要一环。预习不等于自学,对预习中遇到的疑难之处,要鼓励孩子通过自己的思考和分析,努力去理解知识,不一定非要在预习时解决,发现问题才是预习的关键所在。“学起于思,思源于疑”,预习就是寻疑的过程。因为有了问题,孩子对新课的学习才有目标。有目标的学习,才会达到事半功倍的效果。
4、尝试练习,检验预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。孩子经过自己的努力初步理解和掌握了新的数学知识,要让他通过做练习或解决简单的问题来检验自己预习的效果。既能让孩子反思预习过程中的漏洞,又能让家长发现学生学习新知识时较集中的问题,重点标出,以便课堂上听讲有侧重点。
篇3:六年级上册数学预习方法
1.循序渐进,防止急躁。
有的同学贪多求快,囫囵吞枣。有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。同学们要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
2.注意研究学科特点,寻找最佳学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
篇4:六年级上册数学预习方法
1.上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
2.及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
3.独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
4.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
5.系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
6.课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
篇5:六年级上册数学第一单元怎么预习
六年级上册数学第一单元预习
第一单元 分数乘法
一、分数的乘法
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
二、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;
13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
三、乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
四、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a × b = b × a
乘法结合律:(a ×b)×c= a×(b ×c)
乘法分配律:(a + b)×c = a×c + b×c
五、分数乘法的解决问题
(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)
1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。
2、找单位“1”:单位“1”在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的”相当于“×”,“占”、“相当于”“是”、“比”是“ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?
列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1-分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1-1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:小红有30元钱,小明比小红多3/5,小红有多少钱?
列式是:50×(1+3/5)
5、求一个数的几倍是多少:用一个数×几倍;
6、求一个数的几分之几是多少:用一个数×几分之几。
7、求几个几分之几是多少:用几分之几×个数
8、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
小学数学的预习方法
一、读
读:就是阅读课文,学生要逐字逐句地阅读下一节课的授课内容,弄清中心问题,明确目的要求,力求了解新知识的基本结构(如定义、定理、解题方法等),从总体上作概要性把握。
二:查
数学知识连续性强,前面的概念不理解,后面的课程无法学下去。预习的时候发现学过的概念不明白,不清楚的,一定要在课前查阅有关内容搞清楚,力争经过自查不留问题。
三:思
学起于思,思源于疑,对所预习的内容要多问几个为什么?从引入方法到概念的内涵和外延,从证题的方法到证题的依据等。预习时应思考:这一节的重点和难点是什么?概念,定理,公式有什么含义?有什么条件?公式如何运用(正用,逆用,变用)。数学课本上有大量的公式,不管有无推导过程,学生预习的时候应当暂放下课本,思考如何推导对照,或在课堂上和教师推导的过程相对照,以便发现自己有无推导错的地方。对于课本的例题,也尝试先做一做,再与课本的解答对照,思考这个问题有没有其他的解法或更简捷的做法(一题多解),如此既是自己在独立地分析问题和解决问题,又是在检查自己的学习情况。一般地,公式推导不下去或推导错误,例题不会做或做错,是由于自己的知识准备不够,要么是学过的忘记了,要么是有些内容自己还没有学过,只要设法补上,自己也就进步了。总之,预习的时候要多思考,要学会质疑.
四:比
比的含义,是对照阅读,把该知识与有关知识的相同点,类似和差别找出,并纳入相应的知识链中。如学生在学了等差数列的定义,通项公式和前几项求和公式等,在预习等比数列这块内容时,可类别学习。从两种数列定义可看出,等差数列与等比数列的区别是差(和)转化为比(积),两种数列,可用表格方式对比。在比较中熟悉两种数列的特点,加强结构的记忆。
五:记
记指做好预习笔记,做预习笔记有助于提高预习的效果。简短的可以直接在书上圈画,批注,难点、疑点及复杂的内容则要写在笔记本上。对于在预习中,遇到不懂的地方,要结合新旧知识进行纵横分析,思考,若寻求出答案的,可把答案记下来,上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。若想不出答案的,也要把问题记下来,待老师讲课时,再听其所以然。
六:练
在预习过程中,动手写一写,做一做,概念是否明白,方法是否掌握,可通过练习进行自我检测。数学课本上的练习题都是为巩固所学的知识而出的。预习中可以试做那些习题,之所以说试做,是因为并不强调定要做对,而是用来检验自己预习的效果。预习效果好,一般书后所附的练习是可以做出来的。
小学数学的学习技巧
1.上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
2.及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
3.独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
4.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
5.系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
6.课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
篇6:数学六年级上册第二单元知识点
数学六年级上册第二单元知识点
位置与方向
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东--西;南--北;南偏东--北偏西。
小学数学小数乘小数知识点
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的`位置交换相乘
2、用计算器来验算
小学数学0的相关知识点
数学0的含义
1、没有任何东西
2、数轴的前点(原点)
3、可以表示分界
4、可以表示起点
5、可以起到占位作用
0是奇数还是偶数
0是一个特殊的偶数(国际数学协会规定零为偶数;我国也规偶数定零为偶数)。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。
小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。
哥德巴赫猜想说明任何大于二的偶数都可以写为两个质数之和,但尚未有人能证明这个猜想。
0的相关知识点
0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0。0不能作为除数。
篇7:六年级数学上册第二单元测试卷
北师大版六年级数学上册第二单元测试卷
一、填空。(20分)
1、“在空气中,氧气占15 。”,表示( )是( )的15 。
2、比80米多 12 是( )米;300吨比( )吨少 16 。
3、小时=( )分 千米=( )米
4、实际比计划增产 ,实际是计划的( );今年比去年节约 ,今年是去年的( )。
5、“红花朵数的 23 等于黄花的朵数”是把( )的朵数看作单位“1”,关系式是( )。
6、正方形的边长是25 米,周长是( )米,面积是( )平方米。
7、把8米长的绳子平均分成5段,每段是这根绳子的( )( ) ,每段绳子长( )米。
8、一根电话线用去58 后,还剩6米,这根电话线原来有( )米。
9、20千克奶糖,卖出它的 后又卖出 千克。共卖出( )千克。
10、五(1)班男生是女生的56 ,女生占全班的( ),男生占全班的( )。
二、判断。(对的'打“√”,错的打“×”。)(5分)
1、“甲比乙多18 ”,也可以说是“乙比甲少18 ”。 ( )
2、1米增加它的18 就是118 米,3千克增加它的16 ,是316 千克。 ( )
3、一堆煤运走了34 ,还剩下14 吨。 ( )
4、20千克减少110 后再增加 110 ,结果还是20千克。 ( )
5、一桶油用去它的 15 后,剩下的比用去的多。 ( )
三、选择题。(把正确的序号填入括号内)(10分)
1、18米的13 与( )米的15 一样长。
A、6 B、30 C、15 D、20
2、两袋奶糖,第一袋吃了16 ,第二代吃了16 千克,两袋奶糖吃掉的( )。
A、一样多 B、第一袋多 C、第二袋多 D、无法比较
3、把10克糖完全溶解在100克水中,糖占水的( )。
A、111 B、110 C、19 D、18
4、电视机原价1000元,先提价10%,再降价10%,这时与原价( )。
A、一样多 B、比原价高 C、比原价低 D、无法确定
5、如果X÷ = ,那么 X=( )
A B C D
四、计算。(35分)
1、直接写出得数。(4分)
4-715 = 35 ÷745 = 29 ×12= 0× 712 + 18 =
14 +15 = 23 ÷32 = 551 ×17= 34 ×56 ÷56 ×34 =
2、能简算的要简算。(18分)
( + - )×12 23- 89 × 34 ÷127 ÷7+ ×
( 23 + 15 )× 113 ] 425 ×23+ 425 ×67 ( - )× ÷
3、解方程。(9分)
X-27 X=1516 1-29 X=35 916 ÷X=38
4、列式计算。(4分)
(1)
五、解决问题。(30)分
1、实验学校有男生900名,女生人数是男生人数的79 ,实验小学一共有几人?
2、玩具厂原计划生产电动玩具6000件,实际比计划多生产15 。实际生产电动玩具多少件?
3、某商场一件上衣90元,是裤子价钱的 ,一套衣服多少元?
4、果园里有桃树300棵,是苹果的树的34 ,梨树是苹果树的35 。梨树有多少棵?
5、明星小学新建教学大楼,实际造价45万元,比原计划节约了110 。原计划造价多少万元?
6、一件商品原价240元,现商场搞促销活动打八折出售,现价多少钱?
只要大家脚踏实地的复习、一定能够提高数学应用能力!希望提供的北师大版六年级数学上册第二单元测试卷,能帮助大家迅速提高数学成绩!
篇8:六年级上册数学第二单元知识点
一、确定物体位置的条件
在平面上确定物体的位置,首先要确定观测点,然后要找准方向和角度(方位角),最后要确定距离。
二、在平面图上标出物体位置的方法:
1、观测点和方位角;
2、从观测点沿着所确定的方向画一条射线;
3、根据单位长度的线段所表示的地面相对距离把实际距离换算为图上长度;
4、用直尺画出图上长度,并标出被观测点的位置及名称。
确定物体位置的条件:方向和距离,两个条件缺一不可。
三、位置关系的相对性。
描述两个物体或地点位置关系的时候会有两种方式,如“上海在北京的南偏东约30°的方向上”“北京在上海的北偏西约30°的方向上”。角度不变,方向正好相反。南偏东对应北偏西(不能说成西偏北)
因为东西、南北正好相对,所以东偏南的相对位置是西偏北。
四、描述路线图的方法
先按行走路线确定观测点,再确定行走的方向和路程.即每走一步,都要说清从哪里出发,向什么方向走多远的距离。每走一步,都换一个新的观测点。
五、绘制路线图的方法
1、确定方向标和单位长度
2、确定起点的位置
3、根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为观测点)外,其余每段都要以前一段的终点为观测点。
4、以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一点的方向和距离。
每画一段路都要重新确定观测点、方向和距离。
篇9:六年级上册数学第二单元知识点
分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算。
③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题
(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:
第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”
第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:
①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:
①对应数量÷对应分率=单位“1” 的量
②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:
加数+加数=和
加数=和-另一个加数
被减数-减数=差
被减数=差+减数
减数=被减数-差
因数×因数=积
因数=积÷另一个因数
被除数÷除数=商
被除数=商×除数
除数=被除数÷商
4、绘制简单线段图的方法
分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。
绘制步骤:
①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。
③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。
④问题所求要标出“?”号和单位。
5、补充知识点
分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘整数:数形结合、转化化归
倒数:乘积是1的两个数叫做互为倒数。
分数的倒数
找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。
小数的倒数
普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
分数除法:分数除法是分数乘法的逆运算。
分数除法计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
数学的六大方法技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。,这可是大考复习时最有用的资料,千万不可疏忽。
文档为doc格式