【导语】下面就是小编整理的考研高等数学 要掌握重点及方法(共5篇),希望大家喜欢。

篇1:考研高等数学备考重点 方法指导
考研高等数学备考重点 方法指导
转眼间,今年的暑假已过了将近一半,对于广大备战考研的考生来说,无疑得暑假者得天下。在考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,提醒广大考生一定要及早复习。
高等数学是考研数学内容最多的一部分,在数一和数三中,高数部分占总分的56%,在数二中,高数部分占78%,所以高等数学对总体成绩的高低也就显得尤为重要了。
网络课堂考研辅导团队下面就如何复习考研数学中的高等数学部分给广大考生以下建议:
首先,考生们要明确的是考研数学主要是考根底,包括基本概念、基本理论、基本运算等,假如概念、基本运算不太清晰,运算不太纯熟那你肯定是考不好的。
高数的根底应着重放在极限、导数、不定积分、当然还有定积分、一元微积分的应用,还有中值定理、多元函数微积分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。
高等数学在复习过程中考生们要注意以下几点:
第一:要明确考试重点,充分把握重点。
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的.可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
充分把握住这些重点,根据自己的情况有针对性的复习会达到很不错的效果。相信经过有计划有目标的复习,每个考生都可以使自己的综合解题能力有一个质的提高,从而在最后的考试中考出好的成绩。
大学网考研频道。篇2:考研数学 高数要掌握重点及方法
考研数学 高数要掌握重点及方法
》高等数学是考研数学内容最多的一部分,在数一和数三中,高数部分占总分的56%,在数二中,高数部分占78%,所以高等数学对总体成绩的高低也就显得尤为重要了。首先,考生们要明确的是考研数学主要是考根底,包括基本概念、基本理论、基本运算等,假如概念、基本运算不太清晰,运算不太纯熟那你肯定是考不好的。
高数的根底应着重放在极限、导数、不定积分、当然还有定积分、一元微积分的应用,还有中值定理、多元函数微积分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。
高等数学在复习过程中考生们要注意以下几点:
第一:要明确考试重点,充分把握重点
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的'方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
充分把握住这些重点,根据自己的情况有针对性的复习会达到很不错的效果。相信经过有计划有目标的复习,每个考生都可以使自己的综合解题能力有一个质的提高,从而在最后的考试中考出好的成绩。
/kaoyan篇3:考研数学高数 要掌握重点及方法
考研数学高数 要掌握重点及方法
》在考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,提醒广大考生一定要抓紧复习。高等数学是考研数学内容最多的一部分,在数一和数三中,高数部分占总分的56%,在数二中,高数部分占78%,所以高等数学对总体成绩的高低也就显得尤为重要了。
下面就如何复习考研数学中的高等数学部分给广大考生以下建议:
首先,考生们要明确的是考研数学主要是考根底,包括基本概念、基本理论、基本运算等,假如概念、基本运算不太清晰,运算不太纯熟那你肯定是考不好的。
高数的根底应着重放在极限、导数、不定积分、当然还有定积分、一元微积分的应用,还有中值定理、多元函数微积分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。
高等数学在复习过程中考生们要注意以下几点:
第一:要明确考试重点,充分把握重点
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的.积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
充分把握住这些重点,根据自己的情况有针对性的复习会达到很不错的效果。相信经过有计划有目标的复习,每个考生都可以使自己的综合解题能力有一个质的提高,从而在最后的考试中考出好的成绩。
/kaoyan/篇4:考研复习高等数学上册复习重点
考研复习高等数学上册复习重点
第一章 函数、极限与连续
本章函数部分主要是从构建函数关系,或确定函数表达式等方面进行考查. 而极限作为高等数学的理论基础,不仅需要准确理解它的概念、性质和存在的条件,而且要会利用各种方法求出函数(或数列)的极限,还要会根据题目所给的极限得到相应结论. 连续是可导与可积的重要条件,因此要熟练掌握判断函数连续性及间断点类型的方法,特别是分段函数在分段点处的连续性. 与此同时,还要了解闭区间上连续函数的相关性质(如有界性、介值定理、零点定理、最值定理等),这些内容往往与其他知识点结合起来考查.
本章的知识点可以以多种形式 (如选择题、填空题、解答题均可)考查,平均来看,本章内容在历年考研试卷中数学一、数学三大约占10分,数学二大约占19分.
本章重要题型主要有:1、求极限;2、已知极限反求参数;3、无穷小阶的比较;4、间断点类型的.判断。
第二章 一元函数微分学
本章按内容可以分为两部分:第一部分是导数与微分,主要涉及微分学的基本概念、可导性与可微性的讨论,以及导数和微分的计算。此部分一定要注意导数的定义,对它有一个正确的理解,包括导数概念的一些充要条件要清楚;同时要能熟练求一元复合函数、反函数、隐函数、由参数方程所确定函数的二阶导数。第二部分是微分中值定理及导数的应用,主要是利用导数研究函数的性态,以及利用中值定理证明或解决一些问题.这是一个比较大的内容,函数的单调性、凹凸性以及方程根的应用都会在这块内容当中出题,这是一个难点,还有一个难点,就是关于微分中值定理,关于这一部分的证明题,需要大家掌握常见的解题思路。
有关可导性、可微性、导数和微分的计算以及导数的应用,可以结合其他知识点以任何形式出题. 而微分中值定理常用在解答题中,特别是用于证明有关中值的等式或不等式.平均来看,本章内容在历年考研试卷中数学一大约占12分,数学二大约占36分,数学三大约占10分.
本章重要题型有:1、导数定义和几何意义;2、复合函数、反函数、隐函数和参数方程所确定的函数的求导;3、含中值等式或不等式的证明;4、利用导数研究函数的形态(判断单调、求极值与最值、求凹凸区间与拐点);5、方程的根的个数的讨论;6、渐近线;7、求边际和弹性(数三)。
第三章 一元函数积分学
本章内容中,不定积分和定积分是积分学的基本概念,不定积分和定积分的计算是积分学的基本计算,利用定积分表示并计算一些几何、物理、经济量是积分学的基本应用。这一部分要特别注意变限积分,它的各种性质都是我们考查的重点。变上限积分函数跟微分方程结合的一个点也可以出题的。还有定积分的应用,求平面图形面积,求旋转体的体积,一定要熟悉,要掌握好微元法。
本章对概念部分的考查主要是出现在选择题中,对运算部分的考查通常出现在填空题和解答题中,而定积分的应用和有关定积分的证明题大多出现在解答题中.平均来看,本章内容在历年考研试卷中,数学一大约占15分,数学二大约占33分,数学三大约占20分。
本章重要题型有:1、不定积分、定积分和反常积分的基本运算;2、定积分等式或不等式的证明;3、变上限积分的相关问题;4、利用定积分求平面图形的面积和旋转体的体积。
第四章 向量代数与空间解析几何(数一)
本章内容不是考研重点,很少直接命题。直线与平面方程是多元函数微分学的几何应用的基础,常见二次曲面的图形被应用到三重积分、曲面积分的计算中,用于确定积分区域。
以上是我们对于高数部分上册重点考点的一些总结,希望能助大家一臂之力。最后祝广大考生复习顺利,考研成功!
篇5:考研高等数学 复习重点串讲
2015考研高等数学 复习重点串讲
函数极限与连续部分:求极限是一个基本题型,也是一个基本的运算能力。广大考生一定要对它的基本方法和运算思路理解到位。第一章当中除了求极限之外,还有无穷小的比较,等价无穷小这样一个概念,以及无穷小的阶的比较都是往年考查的重点,我们希望大家在拖暗敝杏枰怨刈。另外,关于间断点类型的判断,这块出题也是比较频繁的,大家在拖暗敝幸引起重视。
一元函数的微分学:这部分一定要注意导数的定义,对它有一个正确的理解,包括导数概念的一些充要条件要清楚。在一元函数微分学当中还有导数的应用,这是一个比较大的内容,函数的单调性、凹凸性以及方程根的应用都会在这块内容当中出题,这是一个难点。这一部分还有一个难点,就是关于微分中值定理,关于这一部分的^明题,需要大家掌握常见的解题思路。
一元函数的积分学:这一部分要特别注意变限积分,它的各种性质都是我们考查的重点。变上限积分函数跟微分方程结合的一个点也可以出题的。还有定积分的应用,平面当中求面积,求旋转体的体积,一定要熟悉。
多元函数的微积分学:微分学要重点掌握多元函数连续,多元函数偏导数存在以及偏导数存在以及可微这叁者之间的关系。另外,计算一定要掌握多元秃虾数求导和多元隐函数求导。
积分学当中数二和数叁的同学,重点非常单一了,我们要掌握二重积分的计算,包括二重积分的基本计算,选择合适的坐标系,选择合适的积分次序,以及进行必要的简化计算等等,这些都是我们的基本运算。老师要求考生这一部分一定要非常熟练。对于数一的`同学,还多了一块叁重积分和曲线积分、曲面积分,我们数一的同学一定要更多关注二型曲线积分和二型曲面积分的计算,它跟格林公式结合都是可以出大题的。另外曲线积分与路径无关的条件,也是考查的一个重点。这是多元函数微积分学的重点。
微分方程:除了要求大家掌握大纲上关于常见的几类微分方程的求解方法之外,提醒大家还要注意微分方程的一些综合题。比如前面提到的微分方程和变限积分函数相结合,和多元函数的微积分学以及实际应用问题都可以结合,对这块大家要格外注意一下。
微分方程数叁多了一个差分方程,数一多了一个欧拉方程。它不是我们的考查重点,大家b需要了解它的一般解法就可以了。
无穷级数:数一和数叁的还有无穷级数,我们建议考生把主要把精力放在两方面:一是常数项级数敛散性的判定,要知道一般的解题思路。二是对于幂级数的收敛域、幂级数的收敛区间、幂级数求和与展开。
文档为doc格式