下面是小编精心整理的如何提高初中数学的运算能力,本文共7篇,仅供参考,大家一起来看看吧。

篇1:如何提高初中数学的运算能力
如何提高初中数学的运算能力
1、加强基础知识和基本技能的教学,提高运算的准确性
数学中的基础知识是算理的依据,对运算具有指导意义,基础知识混淆、模糊,基础知识不牢固,往往是引起运算错误的根本原因,所以加强和落实双基教学是提高运算能力的一个很现实的问题,具体要求学生做到:
(1)、熟记某些重要数据公式和法则,因为准确无误是运算的基本要求,正确的记忆公式和法则是运算准确的前提。数学概念、公式、法则、性质中,有的是运算的依据,说明了“为什么可以这样做”的理由,有的是运算的方法与步骤,给出了:如何做的程序,即算法,学生学习了有关的概念、性质、公式,在理解的基础上记忆、法则、步骤,然后通过一系列操作活动(即练习)逐渐形成某种运算技能。
(2)、正确理解概念、定义,并能掌握公式的推导,只有理解某些概念与公式的推导,才能做到公式的正用、反用和活用,从而提高运算能力。数学学习中运算不正确的'原因常常是概念模糊,公式、法则遗忘、混淆或运用呆板的结果。
2、加强科学系统的推理训练,提高运算的迅速性
运算能力差往往是思维能力弱造成的,教学中要在学生掌握基础知识的基础上加强推理训练,平时练习就要求做到步步有根据、有充足的理由,并注意运算的顺序性。一般应注意以下几个方面:
(1)训练必须有序。练习必须有计划、有步骤的进行。在数学教学中,可把练习分为三个阶段:
第一,模仿练习阶段。这是在新知识学习之后,在老师例题示范下进行的练习。所选习题难度不高,变化不大,要求学生按照例题的步骤和法则进行运算,以保证运算的正确性,这时不宜提出速度要求;
第二,熟练掌握阶段。这是在学生初步掌握知识和技能的基础上组织的学习,习题的难度适当提高,习题形式多有变化,不仅要求学生能正确运算,而且要求学生在求得正确答案之后,对运算的过程、依据、方法进行总结与概括,促使操作方式上升到理论水平;
第三,综合运用阶段。此时可选择具有一定难度的综合题目,训练学生确定运算方向、灵活运用法则的能力。
(2)进行变式练习。要使学生的能力达到熟练地程度,必须组织变式练习。所谓变式练习就是在其他有效学习条件不变的情况下,概念和规则的变化。对于数学运算来说,就是改变问题的非本质特征,保留其结构成分不变。其中具体的方式有数学语句的表达变化,条件与结论互换,问题与背景的变化等。
(3)及时了解练习效果,及时纠正练习错误。在能力练习中,让学生及时知道练习的效果,是提高练习效果的有效方法。心理学研究表明,如果针对正在进行能力训练的学生提供如下反馈信息:
①知道每次练习的得分;
②练习过程中不断予以鼓励、督促;
③分析练习中出现的错误,那么练习效果就会显著提高。
这是因为,学生一方面根据反馈信息获知问题之所在,从而调整学习活动,使练习更加有效;另一方面也为争取更好的成绩或避免再犯类似错误而增加了学习动机。
3、运算过程中思维灵活性的训练
由于数学运算是具有明确方向、合乎一定规则的智力操作,因此,经过一定数量的练习之后,这种操作经验便形成某种固定的反应模式,对后续学习中关于操作活动方向的选择发挥倾向性作用,这就是学习中的“定势”现象。当已形成的惯性思维与新问题的解决途径相一致时,就能迅速的作出反应,求得正确答案,运算过程出现“减缩”、“跳步”现象,这是定势的积极作用,也是学生熟练掌握知识和技能的标志。例如,通过“一元二次方程”的学习,学生掌握了运用公式法、因式分解法解一元二次方程的技能,在以后的二次函数学习中,遇到一元二次方程有关的运算,便会迅速的作出正确反应。当习惯思路与新问题的解决不完全一致或相悖时,不能用简洁、变通的方法求解,运算过程繁琐冗长从而导致问题的错误求解。这是定势的消极作用。在实际教学中,要克服、防止“定势”的消极作用,培养学生运算的灵活性。
4、注重培养学生运算合理性的能力
合理计算就是要充分运用运算律,运用积不变性质,商不变性质,改变运算的数据,运算顺序,使运算尽可能简便、快速、正确。培养学生简便运算能力不只是单一的提高运算能力,因为在培养的过程中,一定涉及观察能力、归纳能力等其它能力的培养,所以会不会简便运算,实际上是综合能力的培养。同时还要培养学生在进行数学运算时的大局观,学生在计算以前应该有大局观,整体把握运算分几步,先算什么,后算什么,题目中的数字有什么特点,有什么蕴含的信息等等。
5、教学课堂是培养学生运算能力的重要场所
运算问题一直也来都是提高数学成绩的瓶颈,近几年采用新教材后显得尤为突出!我认为教师的示范作用不容忽视,教师在板书时要指导学生如何计算,教给他们方法,有针对性地给一些训练计算能力的练习题,要求他们少心算,多笔算,即使是草稿也要整洁。要培养学生的运算能力,就要特别重视课堂训练,其次改变教学方法也是提高学生运算能力的主要手段之一:
(1)直观教学,加深理解。通过教具和现代化教学手段,直观演示内部联系,使抽象变形象、“虚无”变具体,加深了学生对知识的理解,从而发现解题方法。
(2)数形结合,化难为易。解答数学问题,若用纯代数或纯几何方法去解答,有时造成过程复杂,对运算能力较差的学生,更容易出差错,若综合一些其它知识,实施数形结合,则能起到化繁为简,化难为易之效果。
(3)学会思考,增强记忆。引导学生善于思考,找特点、找本质、找联系,方能增强记忆。
(4)培养学生养成验算的习惯,掌握验算方法,在进行题目求解的运算的过程中或结束时还须对运算的过程和结果进行检验,以便及时纠正运算过程或结果中出现的错误。
总之,培养中学生的运算能力要加强运算练习。为了有效的提高学生的运算能力就必须加强练习,特别是练习要有目的性、系统性、典型性。通过一题多变、一题多改、一题多解、一法多用,培养运算的熟练性、准确性、迅速性、灵活性、合理性。教师还应把握好数学课堂对学生运算能力培养的积极作用,课后并以题组训练的形式培养学生运算过程中思维的深刻性,并注重题目难度系数的合理安排,使学生在提高运算能力的同时又不失学习数学的兴趣。
篇2:怎样提高运算能力
怎样提高运算能力
摘要:运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。
关键词:运算能力
运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。目前,职业高中的学生运算能力是很差的,不少职高老师埋怨:“学生的计算能力太差了,连简单的运算都过不了关,甚至数学基础好的学生的运算结果也经常出错。”这种状况出现的原因是多方面的。有的学生不对简单的公式、公理、定理进行记忆、理解,不明算理,机械地照搬公式,不能进行灵活运用;有的学生不注意观察、不进行联想、不进行比较,不顾运算结果,盲目推演,缺乏合理选择简捷运算途径的意识;也有的学生对提高运算能力缺乏足够的重视,他们总是把“粗心”、“马虎”作为借口;也有相当多的老师只着重解题方法和思路的引导,而忽视对解题思路的归纳总结。这样不仅影响了学生思维能力的发展,也必然影响教学质量的提高。本文就如何提高职高学生的运算能力,从以下几个方面谈谈自己的粗浅看法。
一、灵活运用公式,举一反三,提高学生的计算能力
在职业高中阶段,许多专业的学习都经常用到简单的数值运算,但数值运算恰恰是职高学生的薄弱之处,他们的数值运算能力很差。其实,只要我们教师能进行恰当的引导,灵活运用公式,举一反三,也能提高学生的运算能力。举个例子来说:计算出现76的平方,很多同学只会用竖式相乘求出结果。其实,两位数的平方可以用完全平方公式求解。在初中,我们学过完全平方公式,许多职高学生能默出公式,但讲到灵活运用这些公式则显得很不够。我告诉他们:把7看成a,6看成b,那么76的平方可以用如下的方法求解:
上式中的4、8、3都是产生的进位,分别与其高位的数相加即可。同学们听了兴趣盎然。我又出了一个同样问题: 。很快就有不少同学用我刚才的方法计算出来了: 。显然,用完全平方公式能更快地求出结果。这个公式中并没有深奥的理论知识,关键是我们在平时是否进行了恰当的运用,是否将这个公式的实质传授给了学生,让他们理解,并能进行灵活运用而已。又如初中学习的平方差公式,在职业高中的学习阶段经常用到,但同学们就是不会用(不去用)。计算 的值,许多同学是先计算出每个数的平方,再计算出差的结果。其实,用平方差公式很快便能结果:
初、高中有许多数学公式,能够简化计算,只要我们教师恰当地引导学生,经常运用这些公式,就能提高学生的计算能力,这里我就不一一枚举了。
二、注意观察,合理联想,善用比较意识,有助于运算能力的提高
许多职业学校教师认为:职业学校的学生初中阶段的学习很不扎实,基本知识和基本方法掌握不牢固,应牢记一些固定的知识和方法,并要求他们运用这些知识或方法去解决问题。诚然,固定的思维方法在运算中有积极的一面,但也有消极的影响。当学生掌握了某一种知识(方法)后,遇到问题时往往习惯用类似的旧知识(方法)去解决问题,久而久之,必然会出现思维的惰性,缺乏多方位、多角度思考问题的意识,不利于运算速度的提高。更何况,职业学校的学生本身就思维活跃,只想寻求更简单而快速的运算方法,以便有更多的时间去做其他的事情。因此,固定的思维方法会影响学生运算的速度,使运算过程繁冗不堪,并因此而使学生厌恶对数学的学习。我在教学中就经常引导学生对问题进行多方位、多角度思考,努力培养他们的观察能力、联想能力、比较意识,寻求问题的最佳解决途径。
例如:直线斜率为1,且与圆 相交所得弦长为8,求直线方程。
大部分的学生一开始就会用弦长公式和韦达定理来解,即设所求直线方程为y=x+b,将直线方程代入圆方程得: ;利用 “弦长= ”来求。这种方法固然可以求出直线方程,但运算运算过程繁冗不堪,不利于学生运算能力的提高。
在上题中,我除了用上述方法讲解外,还提出了问题:有没有人能用更快、更简单的方法求出解?在思索中,我提示了这样线索:圆心到弦的距离、弦长(弦长的一半)、半径三者有什么关系?进而我要求学生用这种方法进行了求解:设所求直线方程为y=x+b,则由点到直线距离公式和上面三者的关系有 ,即 ,推出 。
讲述了这种方法后,我将这种方法和前面的方法进行比较,并指出这种方法的运算速度要快很多。比较意识是解决问题的一个重要方向。解题时往往解决问题的途径很多,这就要求我们善于选优而从。有的学生缺乏比较意识,做题时往往找到一种方法就抱着死做下去,即使繁冗,也不在乎,认为做对就行了。老师在讲评试题时,往往容易忽略多种解法当中简捷方法的优先性,这就要求我们教师平时要进行知识积累和创新,并将这种创新的思想传授给学生,让学生对某个问题的多种解法进行比较,找到其最优的解法。
三、经常总结规律,提高运算能力
运算能力既不能离开具体的数学知识而孤立存在,也不能离开其他能力而独立发展,运算能力是和记忆能力、观察能力、理解能力、联想能力、表述能力等互相渗透的,它也和逻辑思维能力等数学能力相互支持着。因而提高运算能力的问题,是一个综合问题,在教学过程中,只有经常总结规律,不断引导,逐渐积累,才能提高运算能力。
例如:在圆锥曲线中,有许多需要利用定义解题的问题,我就对学生提出要求:①理解定义;②观察圆锥曲线的几何特性;③归纳这类问题的基本解题思路和方法,总结规律,提高运算能力。就此,我设计了这样一些问题,并进行了实战演习:⑴已知△ABC顶点A、B坐标分别为(0,5)、(0,-5),周长为24,求顶点C的轨迹方程;⑵动圆与两圆 和 都相切,求动圆圆心的轨迹方程;⑶若A点为(3,2),F为抛物线 的焦点,点P为抛物线上任意一点,求|PF|+|PA|的最小值及取得最小值时的P的坐标;⑷P与定点A(-1,0)、B(1,0)的'连线的斜率的积为-1,求动点P的轨迹方程;⑸点M到F(3,0)的距离比它到直线x+4=0的距离小1,求点M的轨迹方程。
同学们进行了近20分钟的演算,才有一位同学做完。又过了几分钟后,我对这些问题进行了归纳总结,指出它们的解题的根本思路:①理解圆锥曲线定义;②观察圆锥曲线的几何特性;③利用定义解题。通过归纳总结,同学们对这类问题的运算能力有了很大的提高。
逻辑运算能力也是运算能力的一部分,恰当地运用逻辑运算能力能够对是非题进行准确的判断。例如:在下列等式中
成立的共有( )
A、1个 B、2个 C、3个 D、4个
上题中⑴与⑵矛盾,而⑵与⑶属同一问题,又⑴与⑹也属同一问题,⑷与⑸矛盾,故上述问题中正确的等式只能是3或4个。而⑴正确,故⑹正确,从而有正确的命题数为3个。当然此问题也可直接由等式判断而得。 由此可知,恰当地运用逻辑运算能力能够提高学生的运算能力。
运算能力不是一朝一夕就能培养形成的,而是一个长期和连续的过程,小学、初中、高中(职业高中)三个阶段都要持续培养。同时,学生的运算能力也不仅只是数学教师的职责,同时也是各理工科教师的职责。因此,我们高中(职业高中)的各理工科教师都应重视学生运算能力的培养。运算能力的初步形成后,还必须在今后应用中得到巩固、发展和深化,才能逐步提高。
篇3:怎样提高运算能力
摘要:运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。
关键词:运算能力
运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。目前,职业高中的学生运算能力是很差的,不少职高老师埋怨:“学生的计算能力太差了,连简单的运算都过不了关,甚至数学基础好的学生的运算结果也经常出错。”这种状况出现的原因是多方面的。有的学生不对简单的公式、公理、定理进行记忆、理解,不明算理,机械地照搬公式,不能进行灵活运用;有的学生不注意观察、不进行联想、不进行比较,不顾运算结果,盲目推演,缺乏合理选择简捷运算途径的意识;也有的学生对提高运算能力缺乏足够的`重视,他们总是把“粗心”、“马虎”作为借口;也有相当多的老师只着重解题方法和思路的引导,而忽视对解题思路的归纳总结。这样不仅影响了学生思维能力的发展,也必然影响教学质量的提高。本文就如何提高职高学生的运算能力,从以下几个方面谈谈自己的粗浅看法。
一、灵活运用公式,举一反三,提高学生的计算能力
在职业高中阶段,许多专业的学习都经常用到简单的数值运算,但数值运算恰恰是职高学生的薄弱之处,他们的数值运算能力很差。其实,只要我们教师能进行恰当的引导,灵活运用公式,举一反三,也能提高学生的运算能力。举个例子来说:计算出现76的平方,很多同学只会用竖式相乘求出结果。其实,两位数的平方可以用完全平方公式求解。在初中,我们学过完全平方公式,许多职高学生能默出公式,但讲到灵活运用这些公式则显得很不够。我告诉他们:把7看成a,6看成b,那么76的平方可以用如下的方法求解:
上式中的4、8、3都是产生的进位,分别与其高位的数相加即可。同学们听了兴趣盎然。我又出了一个同样问题: 。很快就有不少同学用我刚才的方法计算出来了: 。显然,用完全平方公式能更快地求出结果。这个公式中并没有深奥的理论知识,关键是我们在平时是否进行了恰当的运用,是否将这个公式的实质传授给了学生,让他们理解,并能进行灵活运用而已。又如初中学习的平方差公式,在职业高中的学习阶段经常用到,但同学们就是不会用(不去用)。计算 的值,许多同学是先计算出每个数的平方,再计算出差的结果。其实,用平方差公式很快便能结果:
初、高中有许多数学公式,能够简化计算,只要我们教师恰当地引导学生,经常运用这些公式,就能提高学生的计算能力,这里我就不一一枚举了。
二、注意观察,合理联想,善用比较意识,有助于运算能力的提高
许多职业学校教师认为:职业学校的学生初中阶段的学习很不扎实,基本知识和基本方法掌握不牢固,应牢记一些固定的知识和方法,并要求他们运用这些知识或方法去解决问题。诚然,固定的思维方法在运算中有积极的一面,但也有消极的影响。当学生掌握了某一种知识(方法)后,遇到问题时往往习惯用类似的旧知识(方法)去解决问题,久而久之,必然会出现思维的惰性,缺乏多方位、多角度思考问题的意识,不利于运算速度的提高。更何况,职业学校的学生本身就思维活跃,只想寻求更简单而快速的运算方法,以便有更多的时间去做其他的事情。因此,固定的思维方法会影响学生运算的速度,使运算过程繁冗不堪,并因此而使学生厌恶对数学的学习。我在教学中就经常引导学生对问题进行多方位、多角度思考,努力培养他们的观察能力、联想能力、比较意识,寻求问题的最佳解决途径。
例如:直线斜率为1,且与圆 相交所得弦长为8,求直线方程。
大部分的学生一开始就会用弦长公式和韦达定理来解,即设所求直线方程为y=x+b,将直线方程代入圆方程得: ;利用 “弦长= ”来求。这种方法固然可以求出直线方程,但运算运算过程繁冗不堪,不利于学生运算能力的提高。
在上题中,我除了用上述方法讲解外,还提出了问题:有没有人能用更快、更简单的方法求出解?在思索中,我提示了这样线
[1] [2]
篇4:如何提高小学生的运算能力
如何提高小学生的运算能力
数学是一门系统性很强的学科,知识间前后连接紧密,由浅入深,循序渐进。学生只有学好前面的知识,才能进一步探求研究后面的新知识。就数的运算而言,我国数学课程一直将数的运算作为小学数学的主要内容,重视培养学生的运算能力。学生运算能力的强弱,将直接影响学生成绩的高低,所以培养学生的运算能力历来是小学数学教学的重要任务之一。计算在生活中随处可见,在小学,计算教学更是贯穿于数学教学的全过程,可见计算教学的重要性。但是小学生计算的正确率常受到学生的兴趣、态度、意志、习惯等因素的影响。在做计算题时,学生普遍有轻视的态度,一些计算题并不是不会做,而是由于注意力不够集中、抄错题、运算粗心、不进行验算造成的。在计算教学中,我比较重视培养学生良好的计算能力,我是从以下几个方面进行的,特提出来与大家分享。
一、造成学生运算错误的原因主要有三类:
1、主要是没有掌握基本的运算法则、不具备基本的笔算技能的原因。主要指不懂、不会造成的错误。这里反映在新课讲解后,个别学生由于没能完全掌握所学新知,甚至对新知一窍不通,当然会造成错误;还有的刚学完新知,虽掌握而没达到熟练程度,没有形成技能技巧,这也会出现运算错误。
例如:①、 6+7×8=6+54=60,②、4/15÷6/5÷12/5 =4/15÷(6/5÷12/5)=4/15×1/2=2/15,③、25×3/8+3/8×7=(25+7)×(3/8+3/8)=32×6/8=24。
可见第①题乘法口决不熟练出现“七八五十四”的错误,第②题没有掌握运算顺序出现了错误,第③题没掌握运算定律,没形成必需的运算技能而造成
了错误。
2、主要是不良学习态度方面的原因。学生在运算中出现错误,大量是学生学习态度不端正造成的。有的学生在做作业时很不专心,经常看错题,抄错题,看串行;还有的不看题目要求就运算,结果劳而无功;更有之学生图快,书写潦草,自己写的自己也不认识;更甚之出现漏写现象,一句“没看见”了事。
例如:①28-12+34=16+43=59,②14÷(1/5÷3/7)=14÷(1/5×7/3=14×15/7=30,③简便运算25×3.8+0.2×25=95+5=100。
出错原因:第①题错把34看作了43,第②题少了半个括号,第③题没按要求运算。
二、培养学生计算的兴趣。
“兴趣是最好的老师”,在计算教学中,首先要激发学生的计算兴趣,让学生乐于学、乐于做,教会学生用口算、笔算和计算工具进行计算,并掌握一定的计算方法,达到算得准、快的目的。
讲究训练形式,激发计算兴趣。为了提高学生的计算兴趣,寓教于乐,结合每天的教学内容,可以让学生练习一些口算。在强调计算的同时,讲究训练形式多样化。如:用游戏、竞赛等方式训练;用卡片、小黑板视算,听算;限时口算,自编计算题等。多种形式的训练,不仅提高学生的计算兴趣,还培养学生良好的计算习惯。
以中外数学家的典型事例或与课堂教学内容有关的小故事激发兴趣。教学中,适时地列举中外数学家的典型事例,或者是以学生喜闻乐见的小故事来增添课堂气氛,吸引学生注意力,可以激发学生对数学学习的爱好和兴趣,使学生集中精神进行计算,提高课堂上的学习效果。
三、培养坚强的意志。
培养学生坚强的意志对学生能够长期进行准确、快速的计算,会产生良好的促进作用。
每天坚持练一练。加强学生的口算练习。学生掌握正确的运算方法后,运算时不仅要求学生做对,而且要在最短的时间内做对,这就要加强口算练习。所以老师要在平时有意识地让学生熟记一些特殊的式子,为运算作准备。比如:乘法口决,11×11、12×12、13×13┅┅,1/4=0.25、3/4=0.75、1/8=0.125┅┅,、3.14×2、3.14×3、3.14×4的平方┅┅。另外,口算时注意找规律看能不能简便,比如:3.25+5.98+6.75,找出了规律就很容易口算出正确的结果,为复杂的运算打下坚实的基础。计算教学中,口算是笔算的基础,可以根据每天的教学内容适时适量地进行一些口算训练,在我们班每天20题的口算训练已成为学生的习惯。通过长期坚持的训练,既培养了学生坚强的意志,又提高了学生的计算能力。
针对小学生只喜欢做简单的计算题,不喜欢做或做不对稍复杂的计算、简算等题目的弱点,教学中要善于发现小学生的思维障碍,克服影响学生正确计算的心理因素。可以通过各种方法进行练习,如:“趣题征解”、“巧算比赛”、鼓励学生一题多解等形式培养学生的意志。
四、培养学生良好的计算习惯。
良好的计算习惯,直接影响学生计算能力的形成和提高。因此,教师要严格要求学生做到认真听课,认真思索,认真独立的完成作业,并做到先复习后练习,练习中刻苦钻研,细心推敲,不轻易问别人或急于求证得数。还要养成自觉检查、验算和有错必改的习惯。
教师还要加强书写格式的指导,规范的书写格式可以表达学生的运算思路和计算方法、步骤,防止错写漏写数字和运算符号。教师还要以身作则,作学生的表率。如:解题教学,审题在前,分析在后。思路清晰,层次分明;板书简明,重点突出。
培养学生良好计算习惯时,教师要有耐心,有恒心,要统一办法与要求,坚持不懈,一抓到底。
计算教学是一个长期复杂的教学过程,要提高学生的计算能力也不是一朝一夕的事,只有教师和学生的共同努力才有可能见到成效。这里提出我的几点方法,望同仁指正。
篇5:如何提高小学生的运算能力
如何提高小学生的运算能力
如何提高小学生的运算能力数学是一门系统性很强的学科,知识间前后连接紧密,由浅入深,循序渐进。学生只有学好前面的知识,才能进一步探求研究后面的新知识。就数的运算而言,我国数学课程一直将数的运算作为小学数学的主要内容,重视培养学生的运算能力。学生运算能力的强弱,将直接影响学生成绩的高低,所以培养学生的运算能力历来是小学数学教学的重要任务之一。计算在生活中随处可见,在小学,计算教学更是贯穿于数学教学的全过程,可见计算教学的重要性。但是小学生计算的正确率常受到学生的兴趣、态度、意志、习惯等因素的影响。在做计算题时,学生普遍有轻视的态度,一些计算题并不是不会做,而是由于注意力不够集中、抄错题、运算粗心、不进行验算造成的。在计算教学中,我比较重视培养学生良好的计算能力,我是从以下几个方面进行的,特提出来与大家分享。
一、造成学生运算错误的原因主要有三类:
1、主要是没有掌握基本的运算法则、不具备基本的笔算技能的原因。主要指不懂、不会造成的错误。这里反映在新课讲解后,个别学生由于没能完全掌握所学新知,甚至对新知一窍不通,当然会造成错误;还有的刚学完新知,虽掌握而没达到熟练程度,没有形成技能技巧,这也会出现运算错误。
例如:①、 6+7×8=6+54=60,②、4/15÷6/5÷12/5 =4/15÷(6/5÷12/5)=4/15×1/2=2/15,③、25×3/8+3/8×7=(25+7)×(3/8+3/8)=32×6/8=24.
可见第①题乘法口决不熟练出现“七八五十四”的错误,第②题没有掌握运算顺序出现了错误,第③题没掌握运算定律,没形成必需的运算技能而造成
了错误。
2、主要是不良学习态度方面的原因。学生在运算中出现错误,大量是学生学习态度不端正造成的。有的学生在做作业时很不专心,经常看错题,抄错题,看串行;还有的不看题目要求就运算,结果劳而无功;更有之学生图快,书写潦草,自己写的自己也不认识;更甚之出现漏写现象,一句“没看见”了事。
例如:①28―12+34=16+43=59,②14÷(1/5÷3/7)=14÷(1/5×7/3=14×15/7=30,③简便运算25×3.8+0.2×25=95+5=100.
出错原因:第①题错把34看作了43,第②题少了半个括号,第③题没按要求运算。
二、培养学生计算的兴趣。
“兴趣是最好的老师”,在计算教学中,首先要激发学生的计算兴趣,让学生乐于学、乐于做,教会学生用口算、笔算和计算工具进行计算,并掌握一定的计算方法,达到算得准、快的目的。
讲究训练形式,激发计算兴趣。为了提高学生的计算兴趣,寓教于乐,结合每天的教学内容,可以让学生练习一些口算。在强调计算的同时,讲究训练形式多样化。如:用游戏、竞赛等方式训练;用卡片、小黑板视算,听算;限时口算,自编计算题等。多种形式的训练,不仅提高学生的计算兴趣,还培养学生良好的计算习惯。
以中外数学家的典型事例或与课堂教学内容有关的小故事激发兴趣。教学中,适时地列举中外数学家的典型事例,或者是以学生喜闻乐见的小故事来增添课堂气氛,吸引学生注意力,可以激发学生对数学学习的爱好和兴趣,使学生集中精神进行计算,提高课堂上的学习效果。
三、培养坚强的意志。
培养学生坚强的意志对学生能够长期进行准确、快速的计算,会产生良好的促进作用。
每天坚持练一练。加强学生的口算练习。学生掌握正确的运算方法后,运算时不仅要求学生做对,而且要在最短的时间内做对,这就要加强口算练习。所以老师要在平时有意识地让学生熟记一些特殊的式子,为运算作准备。比如:乘法口决,11×11、12×12、13×13┅┅,1/4=0.25、3/4=0.75、1/8=0.125┅┅,、3.14×2、3.14×3、3.14×4的平方┅┅。另外,口算时注意找规律看能不能简便,比如:3.25+5.98+6.75,找出了规律就很容易口算出正确的结果,为复杂的运算打下坚实的基础。计算教学中,口算是笔算的基础,可以根据每天的教学内容适时适量地进行一些口算训练,在我们班每天20题的口算训练已成为学生的'习惯。通过长期坚持的训练,既培养了学生坚强的意志,又提高了学生的计算能力。
针对小学生只喜欢做简单的计算题,不喜欢做或做不对稍复杂的计算、简算等题目的弱点,教学中要善于发现小学生的思维障碍,克服影响学生正确计算的心理因素。可以通过各种方法进行练习,如:“趣题征解”、“巧算比赛”、鼓励学生一题多解等形式培养学生的意志。
四、培养学生良好的计算习惯。
良好的计算习惯,直接影响学生计算能力的形成和提高。因此,教师要严格要求学生做到认真听课,认真思索,认真独立的完成作业,并做到先复习后练习,练习中刻苦钻研,细心推敲,不轻易问别人或急于求证得数。还要养成自觉检查、验算和有错必改的习惯。
教师还要加强书写格式的指导,规范的书写格式可以表达学生的运算思路和计算方法、步骤,防止错写漏写数字和运算符号。教师还要以身作则,作学生的表率。如:解题教学,审题在前,分析在后。思路清晰,层次分明;板书简明,重点突出。
培养学生良好计算习惯时,教师要有耐心,有恒心,要统一办法与要求,坚持不懈,一抓到底。
计算教学是一个长期复杂的教学过程,要提高学生的计算能力也不是一朝一夕的事,只有教师和学生的共同努力才有可能见到成效。这里提出我的几点方法,望同仁指正。
篇6:如何提高初中数学的反思能力
1如何提高初中数学的反思能力
传统数学教学中我们更注重结论的得出与运用,因为这样的教学更适合考试评价. 而根据数学课程专家及教育心理学家的研究成果,知识的发生过程如果更为充实与科学,则学生获得的知识将具有扎实的根基,因此在学生的思维中保留的时间也更长. 而纵观初中数学教学,无论是基本数学概念如有理数、方程的建立,还是公式、定理如一元二次方程的求根公式、勾股定理等的得出,我们会发现都应当存在丰富的思维过程,因此在这些知识的学习过程中,如果我们能够依靠学生原有的知识基础,多创设良好的学习情境,让学生处于一种主动的、积极的学习状态当中,学生就可生成良好的学习能力并进而获得良好的数学素养.
如在“完全平方公式”知识的教学中,我们可以先向学生提出这样的问题:(a+b)2=?根据我们的教学经验,学生在第一时间往往都会想到“是不是就等于a2+b2?”事实上,在调整教学思路后这一环节的教学中,我们并不注重学生的答案对与不对,而是重在将学生的思维引向深入. 例如看学生是否想到用具体的数据代进去计算,而不只是纠缠于答案的等或不等. 如果是前者,我们就认为学生具有一定的思维深度;如果是后者,我们则认为学生的思维还比较肤浅. 这还不是最终目标,因为初中学习习惯于数值的具体运算,而不习惯于用符号来运算,因此此处我们要在结论得出的过程中,让学生形成符号运算意识,形成逻辑推理能力. 要能迅速地反应出(a+b)2=(a+b)(a+b),并能准确迅速地将此式展开,得到(a+b)2=a2+2ab+b2的最终结果.
在学生理解了这一结果并能熟记之后,我们应当继续带领学生进行学习反思,将正确结果与原来猜想的错误结果进行比较,看自己原来的思考错在哪里. 事实证明,这一过程是不可或缺的,因为通过这样的反思,相当一部分学生会意识到有时凭直觉是会犯错误的. 记得有一位学生在反思时说出“数学关系靠的还是一步步的算,而不是猜”时,笔者感到十分高兴,并向全班学生进行引申:“刚刚这位学生所说的‘算’,其实就是我们数学上强调的逻辑推理,而‘猜’往往只能作为推理前的猜想,不能当成最终的结果. ”笔者认为,只有在这样充实的学习过程中,只有经历这样的课堂反思,学生的学习能力才能真正形成.
2解题反思利于教学拓展
数学解题过程可以被称之为采蘑菇现象. 当人找到了第一个蘑菇之后一定会环顾四周是否有其他蘑菇. 解题过程也是这样,不仅能帮助学生形成一定的认知结构,也能激发学生的发散性思维,提高自主学习能力. 教师在教学过程中积极引导学生反思,通过单一的问题能针对性地纵向、横向拓展,学生的知识面和认知结构也会随之改变. 只有学生在反思过程中,不断以自身拓展能力来联系问题,主动寻求问题与问题之间的联系,才能对解题形成系统性的认知.
如例题:五角星形图ABCDE,求证:∠A + ∠B + ∠C + ∠D + ∠E = 180°.
设计此问题的主要原因在于唤醒学生对解决问题常用方法的回顾,其次让学生灵活转换三角形内角和定理,最后培养学生解题能力和反思能力,让学生在解题过程中获得“采蘑菇意识”. 学生在充分思考后,对解题思路进行归纳. 首先,考虑角和是180°,可以尝试同旁内角互补或内角和定理. 其次,证明角和是180°,应考虑将五角星内角问题转化成三角形内角问题,通过观察联想到外角定理,运用三角形外角及内角和定理可以达到解题目的. 同时,还可以根据多边形外角和定理及多边形内角和定理来解答此例题.
在解题之后,进行启发性提问:同学们有几种解题方法?哪种方法更简便快捷呢?这样从解题结果出发,让学生反思如何在解题过程中优化解题方式,能培养学生由图形的对称解决问题的能力,提升学生直觉思维能力. 学生也能通过解题后反思,将数学思想和数学方法结合到一起,不断丰富自身知识体系,在实践中获得创造的乐趣.
3提高初中数学教学中学生反思能力的有效措施
(一)学生养成课前预习的习惯
在教师讲课前对要学的知识进行预习是学生自己主动掌握知识最有效的方法,学生可以在课前就掌握本节课要讲的内容,重点难点有哪些,对要学的内容有一个大致的了解,这样可以为学生进行反思做好铺垫。
例如,教师在教学初中数学“正数和负数”这一部分知识点之前,就可以让学生提前进行学习,学生通过自己的预习掌握正数和负数的概念,并学会区分正数和负数,以及了解正数和负数的特点。
(二)提供问题情境,强化学生的反思意识
初中生在学习的过程中,注意力并不会长时间的集中,尤其是如果教师一直在讲解比较枯燥的数学公式时,学生更没有办法集中思路。在这种情况下,教师就可以为学生提供问题的情境,激发学生的学习兴趣,让学生可以主动参与到教师的教学过程中。为学生提供问题情境,可以让学生主动进行思考和反思,这样可以强化学生的反思意识。
例如,教师在教学“相交线和平行线”这部分内容时,就可以为学生设立一个问题情境:让学生自己画出正确的相交和平行线,学生很快就可以根据自己的理解画出各种平行和相交的例子。然后教师再让学生看下面的图示,让学生分辨出哪个线段长一些?
学生根据视觉效果可以很快做出判断,然后教师指出其实线段a和b都是一样长的,这是一种视觉上的错觉,再让学生重新回到自己画的相交线和平行线,是否也存在着视觉上的错觉。这样学生就可以进行很好的反思,反思自己所画的内容是否正确,这样可以让学生进行主动思考,强化学生的反思意识。
(三)注重对习题的分析,提高学生的反思能力
在题目中检验学生对知识的把握能力是最好的一种方式。学生在做题的过程中要反思所学的知识内容,还要注意答题的全面性、准确性和完整性。
教师在教学的过程中,可以让学生有步骤地进行反思:首先要反思,自己所得出的结论是正确的吗?其次,考虑这是不是解题的最好方法,引导学生可以找到最好的解题方法,最后,通过反思看是否可以得出新的结论。
例如,有两种学生用本,一种单价是0.25元,另一种单价是0.28元,买这两种本的数分别是m和n。问(1)共需要多少元?(2)如果单价是0.25元的本和单价是0.28元的本分别买了20和25本,问共花了多少钱?教师可以引导学生进行思考:已知单价和商品数量,求商品的总价,就是用单价乘以商品数量。(1)共需要0.25m+0.28n(元);(2)把m=20,n=25代入上面的式子中,得:0.25m+0.28n=0.25_20+
0.28_25=12(元),所以,共花了12元。在解题的过程中,学生就可以不断反思这是不是最好的解体方法,还有没有更好、更方便的解体方法。每一次反思都可以让学生的逻辑思维更加的活跃。
篇7:如何提高数学解题能力
一、解题思路的理解和来源
平时大家评论一个孩子“聪明”或者“不聪明”的依据是看这个孩子对某件事或很多事得反应以及有没有他自己的看法。如一个“聪明”的孩子,往往反应快、思路清楚,有自己的主见。那么我们认为“反应快、思路清楚、有主见”是聪明的前提。学习成绩好的同学,反应快、思路清楚、有主见就是他们的必备条件。
那么解题也如此,必须反应快、思路清楚、有主见。同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。
那么,如果能教会给学生,在处理数学问题上,第一时间最短的思考路径,并且清晰无比,这样,每个学生都是“聪明的孩子”,在做题上就能攻无不克战无不胜。
解题思路的来源就是对题的看法,也就是第一出发点在哪。
二、如何在短期内训练解题能力
数学解题思想其实只要掌握一种即可,即必要性思维。这是解答数学试题的万用法门,也是最直接、最快捷的答题思想。什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行。
纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。最主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了。如何解决这两大障碍呢?本章将介绍行之有效的方法,使考生获得有益的启示。
三.寻找解题途径的基本方法——从求解(证)入手
遇到有一定难度的考题我们会发现出题者设置了种.种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——目标前提性思维。
四.完成解题过程的关键——数学式子变形
解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。
五.夯实基础----回归课本
1.揭示规律----掌握解题方法
高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。
例如:课本在讲绝对值和不等式时,根据|a-b|≤|a|+|b|推出|a-b|≤|a-c|+|b-c|,这里运用了插值法|a-b|=|(a-c)-(b-c)|≤|a-c|+|b-c|这一思维方法,我们要弄清之所以这样想,之所以得到这个解法的全部酝酿过程。
2.融会贯通---构建网络
在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。
例如:若f(x+a)=f(b-x),则f(x)关于(a+b)/2对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,只要x1+x2=a+b=常数;f(x1)=f(x2),它可以写成许多形式:如f(x)=f(a+b-x)。同样关于点对称,则f(x1)+f(x2)=b,x1+x2=a(中点坐标横纵坐标都为定值),关于(a/2,b/2)对称。再如,若f(x)=f(2a-x),f(x)=(2b-x),则f(x)的周期为T=2|a-b|。如何理解记忆这个结论,我们类比三角函数f(x)=sinx,从正弦函数图形中我们可知x=π/2,x=π3/2为两个对称轴,2|3/2π-π/2|=2π,而得周期为2π,这样我们就很容易记住这一结论,即使在考场上,思维断路,只要把图一画,就可写出这一结论。这就是抽象到具体与数形结合的思想的体现。
思想提炼总结在复习过程中起着关键作用。类似的结论f(x)关于点A(a,0)及B(b,0)对称,则f(x)周期T=2|b-a|,若f(x)关于点A(a,0)及x=b对称,则f(x)周期T=4|b-a|,
这样我们就在函数这章做到由厚到薄,无需死记什么内容了,同时我们还要学会这些结论的逆用。例:两对称轴x=a,x=b当b=2a(b>a)则为偶函数.同样以对称点B(b,0),对称轴x=a,b=2a是为奇函数.
3.加强理解----提升能力
复习要真正的回到重视基础的轨道上来。没有基础谈不到不到能力。这里的基础不是指机械重复的训练,而是指要搞清基本原理,基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。只有深刻理解概念,才能抓住问题本质,构建知识网络。
4.思维模式化----解题步骤固定化
解答数学试题有一定的规律可循,解题操作要有明确的思路和目标,要做到思维模式化。所谓模式化也就是解题步骤固定化,一般思维过程分为以下步骤:
(一)审题
审题的关键是,首先弄清要求(证)的是什么?已知条件是什么?结论是什么?条件的表达方式是否能转换(数形转换,符号与图形的转换,文字表达转为数学表达等),所给图形和式子有什么特点?能否用一个图形(几何的、函数的或示意的)或数学式子(对文字题)将问题表达出来?有什么隐含条件?由已知条件能推得哪些可知事项和条件?要求未知结论,必须做什么?需要知道哪些条件(需知)?
(二)明确解题目标
关注已知与所求的差距,进行数学式子变形(转化),在需知与可知间架桥(缺什么补什么)
1.能否将题中复杂的式子化简?
2.能否对条件进行划分,将大问题化为几个小问题?
3.能否进行变量替换(换元)、恒等变换,将问题的形式变得较为明显一些?
4.能否代数式子几何变换(数形结合)?利用几何方法来解代数问题?或利用代数(解析)方法来解几何问题?数学语言能否转换?(向量表达转为坐标表达等)
5.最终目的:将未知转化为已知。
(三)求解
要求解答清楚,简洁,正确,推理严密,运算准确,不跳步骤;表达规范,步骤完整
以上步骤可归纳总结为:目标分析,条件分析,差异分析,结构分析,逆向思维,减元,直观,特殊转化,主元转化,换元转化。
文档为doc格式