欢迎来到千学网!
您现在的位置:首页 > 实用文 > 其他范文

给学生拓展数学思维的方法

时间:2022-10-09 08:35:31 其他范文 收藏本文 下载本文

以下是小编为大家准备的给学生拓展数学思维的方法,本文共10篇,仅供参考,欢迎大家阅读。

给学生拓展数学思维的方法

篇1:如何给学生拓展数学思维

知识内化,进行探究训练

知识内化即知识、技能和技巧的运用,对学生成就的分析,对知识检查和评定、对智力发展水平的了解。运用已有信息导析出新的信息,是创造性过程,要注意知识的抽象性。学习内化环节包括教师指导学生进行思考练习、理解记忆或解题研究、探究训练。思考练习可灵活采用相互订正、小组订正、板书订正的方式,培养学生自我评价的能力。理解记忆或解题研究,教师可以适当提出一些问题,进行强化。

探究训练,教师可以采用点拨法指出解决问题的方法和关键,让学生在课后去进行思考、讨论研究。理解记忆是对学习的内容用图、表、符号或韵律化语言进行缩略、整理,要求学生理解记忆。对解题的规律、方法进行研究探索,同中求异,一题多解。探索训练在于有计划有目的地培养学生数学能力。该环节题目智力成分较多,解答较难,可让学有余力的学生去研究,注意循序渐进,把握分层教学的原则。

展开想象,锻炼数学思维

在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。

第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。著名的哥得巴赫猜想就是通过归纳提出来的,而仿生学的诞生则是类比联想的典型实例。

2怎样如何提高小学数学思维能力

组织课外实践,培养思维兴趣

数学产生于客观世界,反过来又为客观世界服务。让学生将所学到的数学理论知识用于课外活动来实践和应用,既能提高他们的学习兴趣,又能巩固所学的理论知识,提高他们的综合素养。如我在教学“相似形”时,曾组织两次课外实践活动,一是利用成比例线段,就地测量操场上的旗杆和树木的高。

二是利用相似三角形或全等三角形测量不能直接到达的两点间的距离。这些活动操作简单,学生易于接受,又极大地培养了他们的思维兴趣,巩固发展了他们的数学知识。 创设最佳的教学情境,培养学生良好的思维品质,是我们永远值得探讨的问题。只有在教学中不断总结,不断探索研究,才能取得成效。这样,我们数学教师才会在新课改中有所探索,有所发现,有所建树,有所收获。

精心设计问题,引发学生思维

古人云:“疑,思之始,学之始。”有疑才能产生认知需要,才能产生积极思维,因此在数学课堂教学中要精心设计问题,通过质疑来引发学生思维,有时也可“故设陷阱”将错误暴露给学生,让学生产生疑虑,这种“欲擒故纵”的办法不仅能激发学生思维,而且可预防以后出现类似的错误。

例如在进行“用因式分解法解一元二次方程”的教学时,我向学生展示了方程(x+2)(x-5)=1的解法:x+2=1或x-5=1,x1=-1,x2=6。大部分学生看后说解法正确,当我指出这种解法错误时,学生马上产生疑问,积极思维,探究错误的原因。然后我就引导学生找出解法错误的原因,即不符合因式分解法的依据,从而总结出“用因式分解法解一元二次方程时,一定要把方程右边化为零”这一规律。

篇2:如何给学生拓展数学思维

增强自信,鼓励创新思维

学生有了自信心,就会主动地参与学习过程,积极性高,具有自我牺牲精神,具有勇于克服困难的勇气,创新的意识不断涌现,创新的能力不断提高。在学习圆与直线的位置关系时,教师提出:先画出一个圆,把直尺的一边看作一条直线,移动直尺,从交点的情况上看,你会发现有几种情况。学生人人都会动手,就让学习困难的学生演示过程,为他们提供表现自我的机会,并给予适当的鼓励,让学生增添战胜困难的勇气。探索直线与圆的位置和直线到圆心的距离、园的半径之间有什么关系时,大部分学生通过画图、测量、比较等方法找到了答案,为基础中等的学生提供机会,调动他们的积极性,使学生学习在良好的氛围中,相互促进,共同提高。

应用直线与圆的位置关系的知识解决实际问题时,如台风是一种自然灾害,据气象观察,在距离城市A的正南方180千米海面B处有一台风中心,其中心最大的风力为12级,每远离20千米风力就减弱一级,该台风中心现在以15千米/小时的速度沿北偏东30度方向移动,且台风中心风力不变,若城市所受到风力达到或超过四级,则称为受到台风的影响。问该城市是否受到这次台风的影响?说明理由。一般学生感觉有一定的困难,让出色的学生叙述思路:把台风的中心看作圆心,受到台风的影响的半径为160千米,实际上就是看运动的圆的圆心移动到过A 点的垂线与直线AB的交点时,和直线AB的位置关系。教师重在点评独到之处,使出色的学生获得心理上满足。学生在不同的层次上得以展示自我,满足了学生的心理需要,有信心去克服困难,更加努力地去投入到创造性地学习中。

强化训练,教会思维方法

在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;

在例题课中要把解题思路的发现过程作为重要的教学环节,不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在练习中,要引导学生认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解题过程中尽量要学会用数学语言、数学符号进行表达。

4数学方面如何培养孩子的思维

深钻教材,拓展课程资源

我们常常谈教学基本功,也往往提到处理教材的能力、语言表达的能力、课堂调控的能力,以及板书、情感、教态等等。其实,最关键的是教师对教材的理解准确不准确、深刻不深刻。不准确会产生误导,不深刻必然流于浅薄。没有对数学内容的准确把握、深刻理解,即使有华丽的教学形式,也不会有高水平的教学效果,“教什么”比“怎样教”更为重要。

所以,教学中教师要实现由“教教材”向“利用教材来教”的观念和行为转变,努力做好“两个还原”“三项促进”。即:联系实际,还原教材的生活本色;似真发现,还原知识的生长过程;民主教学,促进教材动态生成;改编习题,促进学生发散思维能力的发展;开展学科实践活动,促进课程资源有效开发。

渗透数学的哲学观点及审美观念。

直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。例如(a+b)2=a2+2ab-b2,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。

美感和美的意识是数学直觉的本质,提高审美能力有利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则数学直觉能力也越强。狄拉克于1931年从数学对称的角度考虑,大胆的提出了反物质的假说,他认为真空中的反电子就是正电子。他还对麦克斯韦方程组提出质疑,他曾经说,如果一个物理方程在数学上看上去不美,那么这个方程的正确性是可疑的。

篇3:给学生拓展数学思维的方法

1如何给学生拓展数学思维

知识内化,进行探究训练

知识内化即知识、技能和技巧的运用,对学生成就的分析,对知识检查和评定、对智力发展水平的了解。运用已有信息导析出新的信息,是创造性过程,要注意知识的抽象性。学习内化环节包括教师指导学生进行思考练习、理解记忆或解题研究、探究训练。思考练习可灵活采用相互订正、小组订正、板书订正的方式,培养学生自我评价的能力。理解记忆或解题研究,教师可以适当提出一些问题,进行强化。

探究训练,教师可以采用点拨法指出解决问题的方法和关键,让学生在课后去进行思考、讨论研究。理解记忆是对学习的内容用图、表、符号或韵律化语言进行缩略、整理,要求学生理解记忆。对解题的规律、方法进行研究探索,同中求异,一题多解。探索训练在于有计划有目的地培养学生数学能力。该环节题目智力成分较多,解答较难,可让学有余力的学生去研究,注意循序渐进,把握分层教学的原则。

展开想象,锻炼数学思维

在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。

第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。著名的哥得巴赫猜想就是通过归纳提出来的,而仿生学的诞生则是类比联想的典型实例。

2怎样如何提高小学数学思维能力

组织课外实践,培养思维兴趣

数学产生于客观世界,反过来又为客观世界服务。让学生将所学到的数学理论知识用于课外活动来实践和应用,既能提高他们的学习兴趣,又能巩固所学的理论知识,提高他们的综合素养。如我在教学“相似形”时,曾组织两次课外实践活动,一是利用成比例线段,就地测量操场上的旗杆和树木的高。

二是利用相似三角形或全等三角形测量不能直接到达的两点间的距离。这些活动操作简单,学生易于接受,又极大地培养了他们的思维兴趣,巩固发展了他们的数学知识。 创设最佳的教学情境,培养学生良好的思维品质,是我们永远值得探讨的问题。只有在教学中不断总结,不断探索研究,才能取得成效。这样,我们数学教师才会在新课改中有所探索,有所发现,有所建树,有所收获。

精心设计问题,引发学生思维

古人云:“疑,思之始,学之始。”有疑才能产生认知需要,才能产生积极思维,因此在数学课堂教学中要精心设计问题,通过质疑来引发学生思维,有时也可“故设陷阱”将错误暴露给学生,让学生产生疑虑,这种“欲擒故纵”的办法不仅能激发学生思维,而且可预防以后出现类似的错误。

例如在进行“用因式分解法解一元二次方程”的教学时,我向学生展示了方程(x+2)(x-5)=1的解法:x+2=1或x-5=1,x1=-1,x2=6。大部分学生看后说解法正确,当我指出这种解法错误时,学生马上产生疑问,积极思维,探究错误的原因。然后我就引导学生找出解法错误的原因,即不符合因式分解法的依据,从而总结出“用因式分解法解一元二次方程时,一定要把方程右边化为零”这一规律。

3如何提高学生的数学思维

增强自信,鼓励创新思维

学生有了自信心,就会主动地参与学习过程,积极性高,具有自我牺牲精神,具有勇于克服困难的勇气,创新的意识不断涌现,创新的能力不断提高。在学习圆与直线的位置关系时,教师提出:先画出一个圆,把直尺的一边看作一条直线,移动直尺,从交点的情况上看,你会发现有几种情况。学生人人都会动手,就让学习困难的学生演示过程,为他们提供表现自我的机会,并给予适当的鼓励,让学生增添战胜困难的勇气。探索直线与圆的位置和直线到圆心的距离、园的半径之间有什么关系时,大部分学生通过画图、测量、比较等方法找到了答案,为基础中等的学生提供机会,调动他们的积极性,使学生学习在良好的氛围中,相互促进,共同提高。

应用直线与圆的位置关系的知识解决实际问题时,如台风是一种自然灾害,据气象观察,在距离城市A的正南方180千米海面B处有一台风中心,其中心最大的风力为12级,每远离20千米风力就减弱一级,该台风中心现在以15千米/小时的速度沿北偏东30度方向移动,且台风中心风力不变,若城市所受到风力达到或超过四级,则称为受到台风的影响。问该城市是否受到这次台风的影响?说明理由。一般学生感觉有一定的困难,让出色的学生叙述思路:把台风的中心看作圆心,受到台风的影响的半径为160千米,实际上就是看运动的圆的圆心移动到过A 点的垂线与直线AB的交点时,和直线AB的位置关系。教师重在点评独到之处,使出色的学生获得心理上满足。学生在不同的层次上得以展示自我,满足了学生的心理需要,有信心去克服困难,更加努力地去投入到创造性地学习中。

强化训练,教会思维方法

在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;

在例题课中要把解题思路的发现过程作为重要的教学环节,不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在练习中,要引导学生认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解题过程中尽量要学会用数学语言、数学符号进行表达。

4数学方面如何培养孩子的思维

深钻教材,拓展课程资源

我们常常谈教学基本功,也往往提到处理教材的能力、语言表达的能力、课堂调控的能力,以及板书、情感、教态等等。其实,最关键的是教师对教材的理解准确不准确、深刻不深刻。不准确会产生误导,不深刻必然流于浅薄。没有对数学内容的准确把握、深刻理解,即使有华丽的教学形式,也不会有高水平的教学效果,“教什么”比“怎样教”更为重要。

所以,教学中教师要实现由“教教材”向“利用教材来教”的观念和行为转变,努力做好“两个还原”“三项促进”。即:联系实际,还原教材的生活本色;似真发现,还原知识的生长过程;民主教学,促进教材动态生成;改编习题,促进学生发散思维能力的发展;开展学科实践活动,促进课程资源有效开发。

渗透数学的哲学观点及审美观念。

直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。例如(a+b)2=a2+2ab-b2,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。

美感和美的意识是数学直觉的本质,提高审美能力有利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则数学直觉能力也越强。狄拉克于1931年从数学对称的角度考虑,大胆的提出了反物质的假说,他认为真空中的反电子就是正电子。他还对麦克斯韦方程组提出质疑,他曾经说,如果一个物理方程在数学上看上去不美,那么这个方程的正确性是可疑的。

篇4:数学教学如何拓展学生思维

运用新课标理念培养学生的学习兴趣

教师要运用新课标理念探索出高效的教学方法,让学生在学习中发现数学美,提高学生对数学学习的兴趣。在教学中通过观察数学表达式、几何图形的结构,引导学生发现对称美与和谐美,结构对称的物体很容易给人一种均衡的感觉,容易使人产生美感。在画几何图形和函数图象时,引导学生发现图形的对称美。例如,在绘制圆、椭圆、双曲线等图形时提醒学生注意它们的对称性,使学生感受到图形的对称、流畅和洒脱之美。

再比如,讲二项式定理时,教材介绍了“杨辉三角”,通过学生阅读与探究,使他们发现一个三角形中竟蕴藏着如此多的奥妙。再经过教师的巧妙引导,让学生真正感受到了这个特殊三角形所蕴含的对称美与和谐美。另外,美育对使高中学生树立正确的审美观,进一步提高高中学生的审美能力以及美的创造力,健全学生人格,促使学生全面发展,都具有重要的意义和作用。在高中数学活动中运用几何画板揭示高中数学中蕴含的数学之美,通过美的熏陶来激发学生学习数学的兴趣,提高数学方面的审美能力,从而促进学生全面和谐发展。

要有层次地实施数学教学

数学教师在具体实施高中数学教学时,要做到稳扎稳打、井然有序,让学生有层次地学习。在课前预习中寻找问题,通过创设情境提出问题。在针对所学知识进行预习的过程中,学生往往自身就会发现很多问题。这种在课前自学过程中发现的问题,也应该属于探究过程中的一个内容。学生在这个过程中可以自己提出相关的疑问,同时教师可以在学生预习之前针对本章所学的内容进行相关的引导性质的安排和布置。

通过深入课堂展开讨论、探索质疑问题。探索疑问是这一教学模式的中心环节,就是由疑难或不确定的情境到确定的情境两端之间的全过程。在这个阶段,学生经历了主动探究和自我发现的过程。在这一过程中不仅使其掌握了陈述性知识,而且使其掌握了过程性知识,产生了深层次的疑问。在学生自行探索的基础上,教师可组织引导学生合作与讨论。在学生质疑的基础上,教师根据问题的性质、难易程度适当给以启发性地点拨,使其开窍,引导他们学会如何思考,使他们从各个角度进一步探索分析。教师再引导学生说说自己探索的过程和得出的结论,共同来分析讨论思维的正误,最后教师通过解惑答疑、归纳总结来进一步调动学生探索的欲望。

2拓展学生数学思维

培养学生思维能力,鼓励学生创造

了解数学史的人都知道数学对人类社会的贡献巨大,在数学教学实践中,教师要通过数学史来培养学生的思维能力,激励学生创造。一般来说,历史不仅可以给出一种确定的数学知识,还可以使学生感到相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对失去了生气与天然的、已经被标本化了的数学。

从这个意义上讲,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。可以想象,善于思考和学习的希尔伯特肯定会从中领悟到一个数学家是如何思考问题的,这种包括几经碰壁终于找到解法的探索过程在教学书上无论如何是看不到的。把思考问题的实际过程展现给学生看,这样实际上是非常富于启发性的。

创造机会,开启学生的创造力。

思维是从动作开始的,切断了动作与思维的联系,思维就不能得到发展。因此,教师要根据小学生的年龄特征和认识规律,根据具体的教学内容,积极创造条件,让学生通过动手操作,在活动中感知、发现、创造,张开想象的翅膀。在我们看来,孩子的想象也许有些可笑和不切实际,但一旦他们可以“异想天开”,不按部就班地人云亦云,可贵的创造性思维就开始形成。新眼光看平常事,如果说4是8的一半,通常人们会回答:“是。”如果接着问:“0是8的一半,对吗?”经过一段思考的时间后,大多数人才同意这一说法(8是由两个0上下相叠而成的)。

这时如果再问:“3是8的一半,是吗?”人们很快就会看到将8竖着分为两半,则是两个3。摆脱固有的思维模式是创造性思维的起点。当我们学会转换思维的角度,就会更好地看到问题情境之间的关系,才能更有效地发现富有创造性的问题解决方法。让学生用新的眼光来重新认识身边一些习以为常的事物,是培养创造性思维的基础。学生一旦习惯于这种思维过程,当再次遇到不熟悉的问题时,就会想到用不同的思维方式来为自己遇到的新挑战或新问题找到解决方案。

篇5:数学教学如何拓展学生思维

提高教师自身素质,是联想思维培养的需要

思维的广阔性是联想教育的前提,在实施联想教育的过程中,除了数学学科之外,还涉及科学,语文,甚至绘画,童话教育等,这种跨学科的教育方法,对教师的要求更加突出,教师必须先有一桶水,才能在学生提出疑问,想法的时候,不至于不知所措。现在的学生由于家庭条件的不同,涉及的生活方式也不尽相同,而联想往往与生活密切相关,例如有些同学在计算平均数时,使用计算器,而有些同学则选择计算机,教师需要了解的内容更多。一个出色的教师,不仅需要丰富的知识,而且要有幽默的个性和亲和力,能够最大限度激发学生联想能力。

专业素质、非专业素质,都对教师提出了更高的考验,只有提高自身素质,才能给学生带去更多的灵感。教师需要有提出问题的能力,同时也要有解决问题,更深的挖掘问题,并对学生问题能够有正确的判断能力和正确的评价方式。如果缺少了其中的任何一项,操作过程中,就会存在缺憾,甚至收不到任何的效果。就如我前面教学黄金分割的一样,如果能够抓住问题,并适当表扬,学生的信心会大增,学习会更加主动。一旦错过,结果就完全不一样,学生掌握的知识没有主动的应用与实际,而且,学生的思维受到压制。因此,提高教师的素质也至关重要。

不时地进行直觉思维训练以培养学生的创新意识

数学直觉思维是建立在对客观数学知识掌握及熟悉的基础上发生的,是平时数学知识的积累与沉淀的一种良好反应,表现在数学问题上就是没有严格的逻辑推理、没有进行理论推导时就能够感觉到问题的结论。直觉思维越过中间环节,不像逻辑思维要经过严格的论证与推理等中间环节,就像英语学习中所谓的“语感”。

在数学考试中,需要强烈的这种直觉思维,因为有着良好的直觉思维能够形成良好的解题思路,不但准确率高,而且节约考试宝贵的时间,体现解题的高效率。因此在教学中,首先,教师就应该不时地对学生进行示范,让学生体会到直觉思维的魅力;其次,教师在教学中多设置直觉思维的题目,在学生毫无准备下突问学生用直觉思维解决问题;最后,要充分运用启发式教学,有效地发展学生直觉思维。

4如何培养初中生的数学思维能力

引导“一题多解”,培养学生思维的灵活性、深刻性

在数学教学中,很多数学问题从不同的角度,利用不同的知识可以得到不同的解法,而答案却相同。把学生从固定或单一的思维模式中解放出来,让学生养成灵活运用知识、拓展思维的解题思路,加深学生对所学知识的深刻理解,从而活跃了学生思维、沟通知识和方法间的联系。例如,在教学中就遇到这样的一道题:如图1,在△ABC中,AB=AC=5,BC=6,DB=2AD,过点D作DE⊥AC于点E,求DE的长。方法一:先作AF垂直于BC于F,利用等腰三角形的“三线合一”与勾股定理算出高AF=4,然后求出ABC的面积等于12,接着因为DB=2AD,所以AD=AB,而△ADC与△ABC同高,所以ADC的面积等于△ABC的面积的,从而求出△ADC的面积,然后利用三角形的面积计算公式求出DE的长。

方法二:构造方程来求出DE的长,作DF∥BC交AC与F(如图2),则△ADE∽△ABC,因为AD∶AB=1∶3,所以DF∶BC=AF∶AC=1∶3,从而可以求出AD,AF,DF的长,然后引导学生观察△ADF,发现这个三角形的三边确定,因此必定可以求出AF边上的高DE的长,设AE=x,则EF=-x,AD=,DF=2,分别在Rt△ADE与Rt△DEF中,利用勾股定理将DE用含有x的式子表示出来,然后以DE为“桥梁”构建方程解出x,从而可以求出DE的长。在多解性题目中,必须注意解法的合理性。注意比较多种解法的优缺点,有助于培养学生思维的灵活性、深刻性,不断提高解题技巧。

保护学生的质疑,并提倡多角度联想

在数学教育中,我们在不知不觉中迷信权威,尤其是老教师,他们长期的教育,使知识点明了化,此时,学生如果提出与内容没有直接联系的问题,教师往往会否定他的发现。对于新教师,由于没有完全掌握课堂教学的变通,也容易否定学生的思维,例如,我在上黄金分割点的时候,讲到人的黄金分割点最好落在肚脐眼上,这时候的人看上去会感觉特别的舒服,此时,有个学生提出:老师,你的黄金分割点是落在肚脐眼上吗?当时,我觉得这个学生不太懂礼貌,怎么可以这么问我,于是,我就没有搭理他。

事后,我仔细的回想这个过程,其实,这个学生的问题很具有创造性,他能将书本知识立刻联想到实际,如果,我当时能够顺着学生的思维,立刻提问:如何才能知道我的黄金分割点是否落在肚脐眼上?如果不在,那又有什么办法可以弥补这个缺憾?与实际立刻相连,而且是学生自己的问题,容易激发学生的思考和兴趣。很多学生可能也有这样的疑问,只是碍于老师的权威,不敢轻言,此时,如果教师立刻否定学生的疑问,其他学生会庆幸自己的少言,同时,以后的教育中,学生会越来越沉默,思维也会逐渐狭隘,同时,一定程度上抹杀了学生学习的兴趣。保护学生的质疑,实际上是保护学生的联想动力,为他们的创新能力的激发提供保障。

篇6:借助数学教学拓展学生思维

借助数学教学拓展学生思维

借助数学教学拓展学生思维

文/陶永炯

摘 要:在数学教学中拓展学生的数学思维是数学新课程改革的要求,它要求教师要充分发挥数学课程的优势,运用一题多解或一题多变,设计开放性的课堂,进而提高学生的思维水平。

关键词:数学;思维拓展;学生

当前我国的教学模式正由“应试教育”向“素质教育”转变,这也就是说,我们的数学课堂不再是简单的知识传授、应对考试,而是要通过数学教学,让学生知识技能、数学能力、思维水平等都得到相应程度的提高,最终促使学生获得全面的发展。所以,本文就从一题多解和一题多变两个方面,对如何拓展学生的思维,进行简单介绍。

一、倡导一题多解,发散学生思维

一题多解是在教师的引导下,让学生对一道试题从不同的角度进行思考,以获得两种以上的解题过程,这既可以对学生提出挑战,满足学生的好奇心,又可以锻炼学生思维的灵活性,活跃思路,最终提高学生的解题能力。

例如,证明:三角形的'一条中位线与第三边上的中线互相平分。

已知:△ABC中EF是它的一条中位线,AD是第三边BC上的中线,交EF于O。

求证:EF和AD互相平分。

该题有多种解题思路,可以通过连结ED和FD,求证四边形AEDF是平行四边形,接着判断EF和AD互相平分。第二种,同样连结ED,通过求△AOF≌△DOE得出EF和AD互相平分,等等。在学生的思路得到肯定后,学生的自信心会得到大幅度的提高。与此同时,学生的思维也会得到发散。

二、鼓励一题多变,拓展学生思维

一题多变是以一道试题为基础,演变出来的不同题型,对提高学生的解题能力有着非常大的帮助,也有助于促进和增强学生思维的深刻性。

例如,在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD的中点。求证:CE⊥BE。

变换1:在梯形ABCD中,AB∥CD,CE⊥BE,E是AD的中点。求证:BC=AB+CD。

变换2:在梯形ABCD中,AB∥CD,BC=AB+CD,CE⊥BE,判断E是AD的中点吗?为什么?

……

从这道试题我们可以看出,每道试题的本质是没有变的,只不过是试题的形式在变,条件和结论之间在变等,学生通过长期的练习,不仅可拓展思维,而且对提高学习效率也有着非常重要的帮助。

总之,教师要充分发挥数学的优势,使学生的思维能力在不断的练习中得到大幅度的提高,最终让学生获得更大的发展空间。

参考文献:

曾琼。如何在初中数学课堂教学中拓展学生思维[J]。魅力中国,(17)。

(作者单位 青海省海西州德令哈市第三中学)

篇7:如何拓展学生数学思维的深度

1如何拓展学生数学思维的深度

转变观念,转换角色,为学生创设民主、和谐、宽松的学习氛围

如果要让学生真正做到脱离束缚,主动探究,那么教师首先要放下架子,走近学生,努力创设一种和谐、宽松的教学环境,使学生感到教师是自己的亲密伙伴——老师与学生之间,学生与学生之间就可以畅通交流,从而使教师成为了名副其实的“组织者、合作者、参与者”。因此,老师在教学中要把学生当作学习的主人,用平等友善的口气与学生展开交流,尽量消除师生之间存在的天然心里屏障。

例如,我曾经看过一个老师在教学第五册“长方形和正方形的认识”,他讲到将长方形通过折剪,变成一个正方形这一环节时,就拿出了一张长方形纸,对学生说:“同学们,现在老师想变一个小魔术给大家看看,你们想看吗?”“想!”学生很期待,于是呼声就强烈。这个老师就转身把这个长方形纸一裁,即刻变成了一个正方形纸。老师接着就故意问学生:“这个魔术好玩吗?”“不好玩,我们也会!”学生边笑边说。“是吗?我不信,你们也变给我看看。”学生果然“上当”了,大家很快完成任务。看到这个结果,这位老师便故意沮丧地说:“完了,我的秘密全被你们发现了。”“哈哈哈……哈哈哈……”学生们大笑,笑得很得意,其实——这个时候最欣慰的还是老师自己,因为这一刻,不仅把“长方形和正方形的认识”这个问题解决了,而且师生间的心理距离也大大缩短了,课堂的气氛更加融洽了,后面的学习活动就更为轻松乐意了。

教师要注意评价学生的艺术,努力从情感角度来促进学生深度思维

在开放的教学环境下,学生的思维始终处于较积极的状态,在解决问题的过程中,难免会出现这样那样的想法,为了避免削弱学生的积极性,教师的评价艺术就显得尤为重要了。因为这是促进学生思维充分拓展的有效催化剂。 教师在评价学生时,一定要坚持以激励为主的原则。特别当学生的想法有道理、有创意时,教师要不怜惜自己的褒扬之词,使学生真正感受到成功的价值所在;

当学生在表述某个观点不够清楚时,教师也千万不可全盘否定,一定要有耐心,要真诚倾听学生的发言,努力找到学生的“中心思想”,即便实在没有什么具体收获,教师也可以鼓励地说“你的想法很有道理,如果能说得更明白些,就太好了,试试看”;当学生的想法或思路是明显错误时,教师也应该尊重学生的发言,让他说完,最后也应用委婉的语气说“看得出,你正在积极思考,再想想。”当然,教师在激励学生时,语言一定要恰到好处,既不能言过其实,给人虚假的感觉,又不能总是一味地机械重复那些枯燥单调的语言,要结合实际进行客观评价。

2数学思维的培养

鼓励质疑求异,拓展思维深度

教学中,我把解决学生的疑难问题作为必不可少的教学环节,使学生逐步养成质疑的习惯,学会把“问号”变为“句号”,又从“句号”中产生新的“问号”。长期坚持下来,课堂上经常异彩纷呈。例如,在教学完平行线的画法后,就有学生提出了不同看法:画平行线其实用一把直尺就够了,用直尺的一组对边一定能画出一组平行线。此话一出,班内立即炸开了锅,经过一阵争辩,最后有一个学生指出,这样好是好,但画出的平行线不能是任意的,还是应该两把尺配合画。

提出问题的学生脸上露出了不服气的表情,还对着旁边的学生嘀咕:用两把尺这么麻烦,肯定要用一把尺。我笑了笑说:“既然这位同学态度这么坚决,他一心一意想为大家解决两把尺作图的麻烦,多好的愿望啊!我们为什么不一起研究研究,说不定还真能实现这个愿望呢!”经过学生的一番努力,还真找到了方法:在已确定的直线同一侧,画两条相等并垂直于该直线的垂线段,即找到在直线同侧、到直线距离相等的两点,再通过两点就可以画出已知直线的平行线。此时学生们脸上都露出了笑容,尤其是提出这个问题的学生,笑得更灿烂。

引导学生积极参与学习、教会学生学会学习,从中得到学习的乐趣。

课堂教学中引导学生参与学习、教会学生学会学习,从中得到学习的乐趣就要求教师不能只根据教案在讲台上独奏,课堂教学最大的特点是教与学的相互交替,是老师与学生之间的交往,在交往过程中起主导作用的是教师,起主体作用的是学生。课堂是师生共同探讨问题的场所,教师不能只传授知识,还应结合自己的教学把获得这种知识的方法、程序、思考问题的策略也传授给学生,使学生不仅通过教学获得知识,也获得认识问题的方法,这样学生才能学会学习,从而体会到学习的乐趣。

在平时的教学中,还应根据不同的教学内容、不同的教学目标,结合学生的特点选用不同的教学方法,努力创设一种和谐、愉悦的教学氛围和各种教学情境,精心设计教学过程和练习。在课堂上给予学生自主探索、合作交流、动手操作的权利,让学生充分发表自己的意见。久而久之,学生体会到了成功的喜悦,就会激发出对数学的好奇心、求知欲以及学习数学的兴趣,觉得数学不再是那些枯燥、乏味的公式、 计算 、数字,从思想上变“被动接受”为“自主学习”。

3数学思维的培养

1.在教学过程中,给学生展示思维的过程。“授人以鱼,不如授人以渔。”在讲解范例时,教师不能简单地给学生介绍解题步骤,要展现自己的思维过程。教师讲解例题时要给学生示范如何分析问题,如何采用解题策略,让学生感受教师思考的实际过程,使学生不仅掌握知识,还能学习解决问题的思维方式。

2.培养学生思维的敏捷性和灵活性。很多中职生思维僵化,做题程式化、模式化,这是学生平时大量重复性练习,缺少自己的思考和探索造成的。教师要引导学生掌握数学概念原理的本质,在头脑中提高对所学数学知识的概括和抽象程度。学生在头脑中所掌握的数学知识抽象程度越高,在应用时提取的速度就越快,应用也越灵活。另外,教师可以教会学生一些速算的技能,让学生牢记一些常用数据,这些数学技能的训练也可以发展为学生的数学思维能力。

3.培养学生思维的深刻性。引导学生理解概念的本质,全面地思考问题,认清概念之间的区别和联系,从而深刻地理解概念。可以通过变式练习,使学生理解数学概念、定理的本质。在解题过程中,引导学生把握题干中的关键词,挖掘题目中的隐含信息。

4.在数学教学中培养学生的概括能力。概括是思维的基础,让学生经历教学结论获得的过程,有层次地培养学生的概括能力。给学生提供适当的台阶,做好铺垫,引导学生归纳出结论。

4数学思维的培养

组织辩论比赛,拓宽思维广度

辩论,是唇枪舌剑的战斗,是思想与思想的撞击,是智慧与智慧的较量,是深度思维淋漓尽致的展现,它犹如一个强有力的引擎,促使学生深入思考。课堂上组织辩论,能促使学生在课堂上大胆探讨问题,激发学生探究的兴趣。我在教学“分数的初步认识”时,让学生动手用长方形纸折出二分之一,并说说二分之一表示什么意思。有一个学生说:“把一个长方形分成两份,每份都是它的二分之一。”还没等我开口,快嘴的陈浩宇就喊起来:“错了!错了!”其他同学也不安静了,持不同观点的学生形成了两个阵营。这时,我索性把问题抛给学生:“大家请安静,既然有两种不同的意见,今天我们来一场辩论赛,看谁的说法有理。

认为对的为甲方,认为错的为乙方。辩论开始!”甲方拿起一张长方形纸对折后将其平均分成两份,说:“把一个长方形分成两份,每份都是它的二分之一。你们看,这不是长方形的二分之一吗?”乙方的一个学生马上说:“把一个长方形分成两份,每一份不一定是它的二分之一。”他拿起一张长方形纸,随意一折,长方形纸变成了大小不同的两份。“这里的哪一份是长方形的二分之一?”甲方也不示弱:“你不是平均分的,只要平均分就是。”这一说,倒给乙方提供了理由:“甲方说分成两份,并没有说平均分成两份,所以这种说法是错误的。”甲方仍然坚持:“我们没说平均分,也没有说不平均分呀。”乙方:“是呀,你们说把一个长方形分成两份,就包括平均分和不平均分两种情况。只有平均分时每份才是它的二分之一,否则就不是它的二分之一。所以这种说法不严谨,是错误的。”经过几个回合的辩论,两方同学取得了一致意见:必须在平均分的基础上才能用分数表示。

培养运用思维导图习惯

初中数学成绩的提高一定程度上受学习习惯的影响,良好的学习习惯可达到事半功倍的学习效果。众所周知,初中数学知识点彼此之间具有密切的关联,使用思维导图可帮助学生掌握知识点的关联,使学生拨云见日,抓住学习的重点。因此,初中数学教学实践中,教师应注重培养学生运用思维导图的习惯,使其更好的指导学生完成数学知识的学习。

培养学生应用思维导图时,应注重一方面,教师应鼓励学生学会应用思维导图,而不是局限在教会学生画思维导图上,即,教师可鼓励学生根据思维导图,编相关数学题目并尝试解答,从而对数学习题有更加深刻的认识与理解。另一方面,在讲解数学知识时,教师可从思维导图进行延伸,并针对不同知识列举典型习题,使学生了解习题涉及的知识点,从而尽快找到解题思路。

篇8:加强学生的数学思维的方法

加强初中数学学生逻辑思维训练的途径

历来,数学都被作为高度抽象的学科,它含有大量定理、公式、概念,所以很多学生都将数学视为晦涩、枯燥的学科。新旧知识紧密的联系在一起,所以为了教好数学这门学科,数学老师必须根据教学要求以及内在联系,做好教学工作的每个步骤,在知识环环相扣的过程中,帮助学生理解基本概念、教学方法和规律,进而生成有效的知识网络。这样在新知识出现时,通过原有的知识结构就能找出各个知识点的联系,并且转换、改组,生成对应的知识,确保各个知识点顺利完成。

例如:在“冥的乘方”法则教学中,可以从冥的意义入手,掌握冥的乘法法则;在旧的知识体重,得出冥的底,并且由此得出推理过程和乘方法则。又如:在正方形面积公式中,通过矩形面积公式,我们可以得到四边形的面积公式,再得出三角形与梯形面积公式,最后得出梯形面积公式。这种知识点延伸的方式,就能很自然的将各个知识点构成知识网,并且扩展原有知识结构,帮助学生发展逻辑思维。

注重引导和启发

从对逻辑思维构成影响的因素来看,老师指导具有重要作用。如果教学中,老师只注重结论,忽略了思考,那么学生在解题中大多数都会是机械模仿,缺少解决问题和旁通能力。在素质教育的今天,教育不仅要学生学会,更要会学,所以在教学中,老师必须努力启发学生推理,帮助学生发散思维,并且从多个角度和层次进行探寻。

因此,在数学教学中,老师必须引导学生活用逻辑思维,精心设计相关提醒,从各方面启发学生逻辑思考问题。通过长期综合、比较、概括、分析,学生就能从一般的演绎、归纳中,推进逻辑顺序实施,同时学生还能在学习中一直保持学习兴趣。

篇9:加强学生的数学思维的方法

掌握数学思维方法应遵循的原则

1、量变到质变的渗透原则 由于数学表层知识与深层知识是有机的整体,它们相互联系、相互依存、协同发展。数学思维方法总是以表层知识为载体,在表层知识中实现深层知识。又由于数学思维方法是表层知识的本质和内在联系的反映,它具更大的抽象性和概括性。如果说数学思维方法还具有某种形式的话,那么数学思维就难找到固定的形式,而体现为一种意识或观念。因此,它的教学不能一蹴而就,而要长期渗透;只有反复渗透,才能螺旋上升;日积月累,才能水到渠成。

2、启发性原则 所谓启发,用作指点别人有所领悟。教师应循循善诱,注意向学生讲清概念的形成过程,有意识地利用启发性原则,用发展的眼光有目的地去指导学生参与教学过程,从学生实际出发,由简到繁,由此及彼。启发学生形成科学的思维方法,激发学生的探索精神,掌握自我摄取知识的方法。要运用比喻。恰当的形象生动的比喻,能使要阐述的内容通俗易懂,富有说服力和感染力。启发式教育的关键就是鼓励学生提出问题、思考问题。启发式教育,能启发培养出第一流的人才。两千多年前中国伟大的教育家孔子(前551~前479)所说的“不愤不启,不悱不发”,正是启发式教学的体现。

在基本知识的教学中,渗透数学思维方法

数学思维方法总是蕴含在具体的数学基本知识里,处于潜形态。作为教师,应该将深层知识揭示出来,将这些深层知识由潜形态转变为显形态,由对数学思维方法的朦胧感受转变为明晰的理解。

在课堂教学过程中,表层知识的发生过程实际上也是思维方法的发生过程。像概念的形成过程,新旧知识的对比过程,结论的推导过程,规律的被揭示过程,解题思路的思考过程等,都是向学生渗透数学思维方法、训练思维的极好机会。此时提高学习效果,往往会起到事半功倍的作用。

3培养数学思维的策略

在问题解决方法的探索过程中,掌握数学思维方法。

许多教师往往产生这样的困惑:题目讲得不少,不但学生总是停留在模仿型解题的水平上,只要条件稍稍一变则不知所措,学生一直不能形成较强解决问题的能力,更谈不上创新能力的形成。究其原因就在于教师在教学中就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。

因此,在数学问题探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思维方法,使学生从中掌握关于数学思维方面的知识,并把这些知识消化吸收成具有“个性”的数学思维,逐步形成用数学思维方法指导思维活动,这样在遇到同类问题时才能胸有成竹,从容对待。因此,在解题教学中注重培养学生自觉运用数学思维解题的意识,注意分析探求解题思路时数学思维的运用,注意数学思维在解决典型问题中的运用。

要在知识的发生过程,渗透数学思维。

由于数学思维往往蕴涵在具体知识之中,体现在知识的发生、应用过程中,学生掌握数学思维与理解知识、形成技能并不同步,需要经历一个从模糊到清晰的较长过程,因此,数学思维方法的教学比数学知识的教学更加困难。尽管如此数学思维方法的教学还是有规律可循的,这些规律是中学数学教师应当掌握的。

譬如,实施数学思维教学应遵循以渗透为主线,结合反复性、系统性、化隐为显、循序渐进、学生参与的原则就是一条行之有效的规律。总之,挖掘、提炼和概括教材知识中的数学思维方法并将其教给学生,确实体现出某些规律性。但也应看到,数学思维的提高是一个长期过程,因而,教学中必须精心设计,反复渗透,潜移默化地引导学生领会蕴涵于数学知识中的思想方法。

4数学如何使用思维导图

应用思维导图提升学生自学能力

在当前新课程标准要求下,对学生自主能力的培养有着越来越高的要求,需要教师落实学生主体地位,在课堂教学中实施人性化管理.因此,在实际教学过程中教师应当对教学方法进行合理选择,对学生知识结构进行优化,从而对学生自主学习能力进行培养.为能够使这一教学目标得以较好实现,教师应当对思维导图进行运用,从而使数学知识能够得以全面、系统展示,可将系统严谨的数学知识体系向学生进行展示,从而使学生自学能力得以有效提升.

比如,在对“一个因数为两位数的乘法”这一内容教学的过程中,由于其涉及形式不同的口算乘法与笔算乘法,同时还包括其运用,此外还有常见的一些数量关系,所涉及内容比较多,利用常规教学方法很难得到理想效果,因此,教师可对思维导图进行利用,可利用思维导图将相关知识进行总结,从而更加直观且全面地向学生展示知识,使学生能够对知识更好地进行理解,进而可使学生自主学习能力得以提升.

借助思维导图的方式对学习自主学习、合作探究的能力进行培养

随着新课改的实施以及深入,对教学的教学方式有了新的要求,需要将以往将课堂知识传授为主的形式进行改变,使学生能够积极主动的进行学习,并使学生能够掌握基础知识以及基本技能,最终使学生的价值观更具正确性。借助思维导图的形式进行教学,能够使学生的主体作用得到充分的发挥,使学生的学习积极性得以调动,并能够促进学生自学能力、理解分析能力以及归纳总结能力的培养。

在实际教学过程中,教师需要充分借助思维导图的作用,改变知识枯燥乏味的特点,使学生真正拥有学习的主动权,能够真正掌握学习方法。具体实施方法为:首先,教师应该将本单元的思维导图大纲进行制作,对学习进行讲解;其次,将学生分为小组形式,借助对教材以及资料的阅读,查阅网络上所搜集的资料,为课堂学习做好准备;第三,对学习进行指导帮助,使其应用协作学习的方式,将所查找到的资料借助MindManager软件将思维导图描绘出来;最后,在课程上,将各个小组的思维导图结果进行展示,由教师做出最后的评价,针对作品中的不足,学习应该积极改进。在此学习过程中,学生也能够牢固的掌握知识。

篇10:引导学生数学思维的方法

1如何引导学生数学思维

巧用一题多解,多向思考,突破思维定势

教学实践表明,克服消极的心态定势,要从改变学生解题思维的常态入手,打破不同的解题方法之间的壁垒,找到它们之间的联系,并且在使用中要启发学生关注这些联系。关注一些数学一题多解是培养发散思维的很好形式,有利于知识的建立和认识上的飞跃,同时也可扩展学生独立学习的自由度,为提高解题能力创造有利的条件。灵活的思维方式与创造性思维是密切相关的,如果一个学生只会以一种固定的方式或教师教的方法去思考和处理问题,是无法产生创造力的。

教师应该让学生养成一种多角度思考问题的习惯和思维方法,不能拘泥于一个角度、一种模式,以免造成学生思路方法单一,思维僵化。在平时教学中应鼓励学生解题从多角度、多方面去思考,不断启发学生的求异思维。让学生在求异思维中生“慧眼”,透过重重“迷雾”洞察一切,以探求更巧妙的解题方法。例如,教学下面的例1、例2时,可引导学生从经历探究不同的解题思路过程中,筛选出最优的解题方法。

巧用一题多变,多题归一,突破思维定势

“数学是题的海洋”,教师不能要求学生做遍所有的数学题,这是不可能的。对学生进行一题多变的训练,是巩固基础知识、培养能力的一种重要手段,同时对培养学生思维的深刻性和广阔性是非常重要的。在平时的教学中,教师可以引导学生通过很多途径对课本的例、习题进行变式

如:改变条件、改变结论、改变数据或图形,条件引申或结论拓展,条件开放或结论开放或条件、结论同时开放等。通过一题多变、多题归一的训练,可以把各个阶段所学的知识、知识的各个方面紧密联系起来,加深对知识的理解,认识和体会数学是一个整体,但更重要的是可以达到解一道题懂一类题的目的,更能激发学生的学习兴趣、创新意识和探索精神,培养他们的创新能力,学会学习。

2数学思维的培养

加强反思,提升学生的应用能力

在学习中进行反思和总结,一方面可以让学生更好地回顾一下自己的学习过程,另一方面在反思之中让学生找到自己有待提高的地方。对预习阶段的学习内容进行反思,可以让学生在以后的预习之中更加有效地开展相关的预习,也可以让学生更好地认识到相关的问题。教学分析阶段的反思对学生的数学思维和逻辑能力的完善有巨大的帮助。对训练阶段进行反思,则会让学生在回顾某一类题目的解答过程中温习所学知识,可以让学生在长期的思考中找寻出某一类题型的解答技巧和具体方法。所以这些对于学生能力的培养和数学思想的发展都具有重要的影响。

例如,在分析教学中例题是借助二次函数的相关内容来完成求解的,在反思之中,首先学生就会对其中涉及到的相关条件进行分析“每件进价为8元、售价10元,一天可销售出约110件,商品单价每降低0.1元,其销售量可增加10件”,这些条件如何与要求的最大利润联系起来,在分析阶段中的“五步走”,每一步之间的关系都是层层递进的,是一个非常缜密的逻辑思考,最后寻找出“0 在这样一个与反思相关步骤的基础上,看似学生是对这道题目进行温习,其实是对有关二次函数的具体运用的总结。而学生一旦发现这个规律,就会发现其实有关二次函数的应用题,其一般的解题步骤是:明确已知条件—确定需要求解的问题是什么,是求最值还是其他—已知条件与问题之间如何进行联系—潜在的既定范围是什么—根据所有挖掘出来的条件列出解析式进行求解。

引导分析,培养学生的综合能力

在数学教学中,要充分地凸显出学生的主体性地位,这就意味着在数学教学之中,要将知识深化并与实际相结合。教师应该在例题的讲授上注意教学方法的逻辑层次性和注意对学生的逻辑能力及思维进行培养。

教师分析的过程其实就是引导学生对问题进行逻辑分析,对问题进行梳理的过程。在这样的过程中,学生会不断得到提高,学生的逻辑思维水平和能力也会不断得到加强。长此以往,学生的逻辑思维能力就能够在一定程度上获得提升。当然在这个过程中特别是在分析环节,教师也可以采取引导式问答的方式来调动学生的参与,凸显学生的主体性地位的同时也活跃课堂气氛。

3数学思维的培养

“做”数学,引导学生“玩”

少年儿童的天性就是好“玩”,新课程的数学也要一改过去那古板的面孔,让学生好好的“玩”! “玩”数学就是学生在积极情感体验下以特质或物质化活动方式去感知事物。有了问题意识的玩,“玩”就有了方向。如果说“问”是学习的起点和主线,那么“玩”就是探寻主线的活动方式。“玩”数学不仅是学生的认知过程,而且是师生之间、生生之间的活动和情感交流的饿过程。情感活动属于动力系统,它能促使主体积极主动的参与。“玩”数学的独特之处就在于学习主体处于愉悦的、积极的心理状态下,主动自觉的去“做”。

它和被动的“记”数学相比,是变“要我学”为“我要学”。“我要学”是基于学生对学习的内在需要,而“要我学”则是基于外在的诱因和强制。学生学习数学的内在需要主要是表现在对学习的兴趣。兴趣有直接和间接之分。直接兴趣直接指向活动本身,间接兴趣指向活动的结果。学生有了学习的兴趣,学习活动不再是一种负担,而是一种享受、一种榆快的体验,才会越学越想学,越学越愿意学、越爱学。 “玩”必须是在自主探索的基础上,小组合作之下的“玩”。在这种情景之下的“玩”,才能使数学学习的课堂,变成数学研究和人与人合作交流的场所,才能提高学生适应未来社会的必要的适应、合作与交流的素质。

敢于放手,勇于让学生大胆探索,培养学生的开放性思维。

开放性教学成为基础数学教育,数学中考题型教学,数学教学改革及研究的一个热点。开放性试题具有不完备性、不确定性、发散性、探索性、发展性、创新性等特点,其答案也具有不固定、不、不必、不确定、不必有解等情况。在课堂教学中培养学生的开放性思维,就是要精选例题,以启发为主,精讲精练,多引导、提示,给学生充分思考问题的时间,让学生大胆探索,全面调动其思维的积极性,提高其思维品质。

如初三代数中有这样一道题,经过点(1,2),且y随x的增大而增大的函数解析式为?摇?摇?摇?摇?摇?摇(只写一个即可)。此题结果是不的,但条件只有两个:①符合y随x的增大而增大;②经过点(1,2)。对于符合条件①的只有一次函数和正比例函数,所以可设出它们的解析式,然后让学生通过探索得到y=2x,y=x+1,y=4x-2等形式。

4数学思维的培养

做”数学引导学生“用”

数学只有回到生活中去,才会显示其价值,展示其魅力。学生只有回到生活中去用数学,才能真正实现“人人学有价值的数学”。在数学教学中,教师要善于在现实生活中采撷教学实例,把社会生活中的题材引入到数学课堂教学之中,让学生在发现问题、解决问题、实践活动的过程中,建立“用数学”的意识,培养“用数学”的能力,体验“用数学”的乐趣。还要引导学生从现实生活中发现数学问题,建立“用数学”的意识。

数学来源于生活,生活中处处有数学。《数学课程标准》指出:“教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成和发展的过程,获取积极的情感体验,感受数学的力量,同时掌握必要的基础知识和基本技能。”让学生参与一定的含有数学问题的实践活动,在提高“用数学”的能力的同时,体验“用数学”的乐趣。在数学教学中,教师有目的、有计划地组织学生参与具有生活实际背景的数学实践活动,通过运用所学的数学知识解决一些简单的实际问题,既能巩固所学的数学知识,又能开阔学生的数学视野。

做数学引导学生“悟”

“悟”是数学以及其他任何学习的重要阶段。

“悟”一般是在感觉和知觉的基础上产生的一种领悟或感悟,是人的智慧和品质发展的一种最重要的形式,如果“玩”是动手、动眼的外在的动,则“悟”是动脑动心的内在的动。玩可以为“悟”提供外部信息,而“悟”则可以使“玩”得以升华。如果只是“玩”,则只是停留在感知的层面上,“玩”和“悟”互动的过程才是“做”数学的最佳途径。

“悟”不仅是一个过程,也是数学学习的重要结果。当学生有所“悟”的时候,才是真的有所收获。而“悟”不能由别人说出、或代替,而必须是在主观努力之下的自身的一种体验和顿悟。教师只能通过合理的情景创设,合理的原形启发,引导他们自己去经历知识的发现过程和方法的形成过程,而不是简单的告诉。也不是简单的暗示或引诱。要采取手段充分调动学生的思维来“悟”。

如何引导学生数学思维

加强学生的数学思维的方法

数学八种思维方法

教师如何激发学生数学思维

如何锤炼学生的数学思维

浅谈学生数学思维障碍形成的原因及突破方法

成功人士的思维方法

拓展训练项目与方法

学生室内拓展训练项目

15种大脑思维训练的方法

科学技术研究的创新思维方法

《给学生拓展数学思维的方法(通用10篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

点击下载本文文档